IRIS: A Semi-Formal Approach for Detecting Requirements Interactions

Mohamed Shehata '

Armin Eberlein >

Abraham Fapojuwo '

! Dept. of Electrical & Computer Engineering, University of Calgary, 2500
University Drive NW, Calgary, AB, Canada
? Dept. of Computer Engineering, American University of Sharjah, PO Box 26666,
Sharjah, UAE
{Shehata; Eberlein; Fapojuwo}l@enel.ucalgary.ca

Abstract

Requirements engineering is considered a critical
phase of the software development life cycle. However,
because of the complexity of today’s projects,
requirements often have a negative impact on each other.
Requirements interaction detection is an important
activity for the discovery of such unwanted interactions.
Commonly used detection processes are oriented towards
the telecommunication domain and are done using either
human experts or formal approaches. This paper presents
IRIS, which stands for Identifying Requirements
Interactions using Semi-formal methods. The novelty of
IRIS is threefold: First, IRIS uses semi-formal methods
for the detection of interactions between requirements.
This helps to fill in the gap between the commonly used
informal and formal approaches. Secondly, IRIS is a
domain independent approach, which means that it is not
limited to the telecommunications domain but can be used
in any field. Thirdly, IRIS has a basic core as well as
extension hooks for future expansion through the creation
of new plug-ins that can be attached to the hooks. This
paper first presents an overview of IRIS along with its
basic core. It then describes the customizability of IRIS
through hooks and plug-ins. Finally it presents the
customization of IRIS using different plug-ins for different
domains as well as a summary of the results obtained
from these domains.

Keywords: Requirements engineering, Requirements
interactions, IRIS, Semi-formal approaches.

1. Introduction

The successful development of software systems
requires an unambiguous, complete, and non-conflicting
set of requirements. Requirements-related problems have
a major effect on the delivery of a software system on
time and within budget [1]. However, because of the
nature of software development, numerous problems
hinder the development of high-quality requirements. One
of the requirements-related problems that can lead to

costly repairs if not found early is requirements conflicts
or so-called requirements interactions. Requirements
interaction is the situation when two or more requirements
have an effect on each other. Requirements interactions
can be caused by the following [2], [3]:
1.Requirements are often collected from different
stakeholders with different perspectives and views.
This can lead to interacting requirements between the
different stakeholders.
2.Many projects employ reuse in order to reduce the
project’s development time and cost. However, the
reused requirements can have negative effects on the
new set of requirements for the project.
3.Certain software development methods such as
component-based development, product lines,
product families, require the collection of new
requirements to be integrated into the already existing
base system. These new requirements can have a
negative impact on existing requirements. Moreover,
when assigning values to parameterized reusable
requirements, these values might cause interactions.
For instance, consider a requirement stating that the
response time of the system should not exceed X ms
and another parameterized requirement that the
system shall use Y processor. If parameter X is
assigned a value of 0.5 ms and Y is an 8088
processor, these two requirements might be in
conflict. However, if X is 0.5 ms and Y a Pentium IV
processor, both requirements might be able to be met
at the same time. This shows that requirements
conflicts heavily depend on the values of parameters.
This paper presents a semi-formal approach to address
the problem of requirements interaction detection. IRIS,
which stands for Identifying Requirements Interactions
using Semi-formal methods, uses semi-formal methods
for the detection of interactions between requirements

2. Related Work

One of the commonly used methodologies in
developing software systems is feature-based
development. However, this approach has been hampered

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 11th IEEE International Conference and Workshop on the Engineering of Computer-Based Systems (ECBS’04)
0-7695-2125-8/04 $ 20.00 © 2004 IEEE

by the so-called feature interaction problem. A feature is
defined as an identifiable piece of functionality that is
added on top of a base system to extend it. Feature
interaction is the situation where two features contradict
or have a negative impact on each other. The problem of
feature interactions has been well researched in the
telecommunications domain. Calder et. al. give a very
extensive review of the different feature interaction
methodologies and research efforts in [4]. However, some
observations were noticed by the authors of this paper.

For example, most of these research efforts are directed

towards the telecommunications domain (e.g., [S] [6] [7])-

Although some methodologies claim to be domain

independent (e.g. [8]), they have never been applied to a

different domain. Furthermore, most methodologies use

formal methods for detecting interactions. Although,
formal methods (if used correctly) are very accurate in
detecting interactions, they are very time consuming and
expensive. Other approaches employ human domain
experts to detect interactions. But such experts are

expensive and prone to human errors [9].

In the past the term feature interaction detection was
very limited in scope and usually only referred to
detecting interactions between features of the
telecommunications domain using formal methods.
Requirements interaction management was introduced in
[10] as “the set of activities directed towards the
discovery, management, and disposition of critical
relationships among a set of requirements”. Requirements
interaction is very similar to feature interaction as both of
them try to identify the relationships between features or
requirements. However, requirements interaction has a
broader scope than feature interaction:
1.Requirements interaction is more general than feature

interaction as it considers functional as well as non-

functional requirements.
2.Requirements interaction
inconsistencies.

3.The term feature interaction is generally perceived to be
limited to the telecommunication domain. But
requirements interaction is a phenomenon that can
occur in any domain.

4. While feature interaction tends to consider only
technical interactions between requirements,
requirements interaction additionally considers
relationships between requirements caused by the
heterogeneity of stakeholders
Our research addresses the wider area of requirements

interactions. This paper first presents an overview of IRIS

in section 3 (IRIS basic core and IRIS customizability
concept). In section 4, three case studies are presented
that show how IRIS has been customized and used with

different plug-ins in different domains. Finally, section 5

ends the paper with conclusions and our intended future

work.

considers requirements

3. Introduction to IRIS

IRIS is a semi-formal approach that can be applied to
various domains. It consists of a basic core that contains
the main components and steps that must be performed at
all times. If a more thorough interaction analysis for a
specific domain is required, plug-ins can be added to
specific hooks in the basic core to increase its
effectiveness. The users can develop their own plug-ins as
long as it complies with the design rules described later in
this paper. In the following subsections the basic core and
the different plug-ins developed so far are presented.

3.1. The Basic Core of IRIS

The basic core of IRIS consists of the main steps,
tables, graphs, and interaction detection guidelines that
are applied regardless of the domain or the type of system
under development. In addition to these, the basic core
contains predefined hooks where domain-specific plug-
ins can be added in order to extend the basic core. IRIS
basic core is a systematic approach based on several steps
in a specific order to facilitate the detection of
requirements interactions. Different tables and graphs are
developed and in a final step the analyst reviews these
tables and graphs using a set of requirements interaction
detection guidelines to detect interacting requirements.
IRIS basic core is graphically presented in Figure 1.

The IRIS basic core methodology consists of six main
steps. The requirements are first written down in a textual
requirements document in natural language. Using six
steps, the requirements are gradually translated into a
graphical and tabular representation. The following
briefly describes the steps. A full description of them can
be found in [11], [12].

e Step 1: Organizing requirements: In this step all system
requirements are classified into one of the following
two categories:

o Requirements describing system axioms (A system
axiom is a property needs to preserve at all times).

o Requirements describing system dynamic behavior
(A dynamic behavior requirement is a requirements
that describes how the system should behave in
terms of states change and actions when triggered
by a trigger event).

This step is shown in Figure 1 as the classification of
the requirements into one of the two categories: system
axioms and dynamic behavior.

e Step 2: Filling in requirements tables: Two tables are
generated in this step:

o The first table is used to represent requirements
describing system axioms using the attributes Rules
and Conditions (more attributes can be added when
needed)

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 11th IEEE International Conference and Workshop on the Engineering of Computer-Based Systems (ECBS’04)
0-7695-2125-8/04 $ 20.00 © 2004 IEEE

Reyq. Document

Gei texiual representation ()
1
0..1 11
e—v— ;)',-nanuc Behavior
Axio re-state: g
Rule:_fg Tﬁggermrent: [u]
Condition: = Action: 2
Ne? .Fjiate: q
—TH2e=
== Fenerate linked events(): o
uses wes & *Extract Trigger Events(): o, .
] . ed
R |
Interactions Detection ; -~
¢ ___| Graphical irigger representation
Guideline 1: G : -
Guideline 2: G
uses i
Detect Interactions(Regs)

Figure 1: Basic core

o The second table is used to represent requirements
describing system dynamic behavior using the four
attributes Pre-state, Trigger event, Action, and Next
state (more attributes can be added when needed).

This step is done by filling in the values of the
different attributes of the system axioms and dynamic
behavior classes shown in Figure 1.

e Step 3: Extracting trigger events and tracing them to
their requirements: This step identifies and extracts all
the different trigger events from the requirements that
describe dynamic system behavior. This step is shown
as the process Generate Trigger Events() in the
dynamic behavior class in Figure 1.

o Step 4: Identifying linked events: During this step a
table is developed that contains all linked trigger
events. A trigger event is called a linked trigger event if
it can lead to other trigger events. This step is shown as
the process Generate Linked Events() in the dynamic
behavior class in Figure 1.

e Step 5: Representing each event-triggered requirement
in a graphical form: In this step, a graphical notation is
used to link each trigger event with the requirements
that it triggers. This graphical representation will later
facilitate the detection of interactions between the
requirements. This step is represented by the class
Graphical trigger representation in Figure 1.

Proceedings of the 11th IEEE International Conference and Workshop on the Engineering of Computer-Based Systems (ECBS’04)

0-7695-2125-8/04 $ 20.00 © 2004 IEEE

of IRIS

e Step 6: Detecting interactions: In this step, the analyst
detects interactions between requirements using
specific interactions guidelines. This step is shown in
Figure 1 by the class Interaction Detection.

The guidelines in Step 6 were derived from a general
interaction taxonomy that describes all the possible
categories and scenarios of requirements interactions [13].
The guidelines are a description of when two
requirements are considered to be interacting. The basic
core of IRIS contains the following two guidelines:

e Guideline 1: Two requirements interact if they are
triggered by the same trigger event and both of them
have the same pre-state but have contradicting actions
or contradicting next states.

e Guideline 2: Two requirements interact if they are
triggered by two linked events but have contradicting
actions or contradicting next states.

The hooks which are represented by H1, H2, H3, H4
and HS5 in Figure 1 are insertion points for plug-ins in
order to extend the basic core. Each hook has a unique
name that starts with an H followed by a number to
identify this hook. The type of the possible plug-ins can
vary from just adding an attribute to a table to adding a
complex step. However, not every type of plug-in can be
inserted at every hook. For example a plug-in that is

YF]',F.

COMPUTER
SOCIETY

inserted at hook H3 must be an attribute, while a plug-in
that is inserted at hook H4 must be a guideline. The
different plug-ins that have been developed so far are
described in the next sub-section.

3.2. IRIS Plug-ins

A plug-in is something that is added to IRIS basic core
to extend its capability of detecting interactions. Plug-ins
have a certain format that has to be followed when new
ones are designed. A plug-in has three main parts: The
first part identifies the type of the plug-in. The second
part is the plug-in main body. The third part identifies
where this plug-in can be inserted in the basic core of
IRIS. Figure 2 shows a description of the construction of
a plug-in.

The Type is a four letter abbreviation that describes the
type of the plug-in. A plug-in can have one of the
following types:

o Attribute (ATTR): An attribute is a description of a
specific part of a requirement. For example, every
dynamic requirement is described by four attributes
(pre-state, trigger, action, and next state). These
attributes correspond to columns in the dynamic
behavior table that is generated during step 2 of the
basic core. In new domains, new attributes may be
needed so that requirements can be fully described. For
example, in the smart homes domain (see case study 3
in section 3.3), many requirements have parameters in
their body and therefore two new attributes are needed.
The first one, called Variables, contains the list of
variables that are used in the requirement as well as
their data types. The second attribute is called Variable
Range and can be used to restrict the data range that can
be assigned to a variable.

e Guideline (GDLN): A guideline is a description of the

of guidelines used determines the reliability of
detecting design or implementation problems.

e Table (TABL): A table represents requirements or
events using a set of attributes. Each attribute
corresponds to a column in the table. A plug-in can be a
table that extends the basic core of IRIS to be able to
represent certain aspects as needed. For example, when
representing the system axioms in a system, some of
these system axioms might be non-functional
requirements (quality requirements). It is sometimes
desired to represent different development strategies of
these non-functional requirements as suggested by the
stakeholders. In order to do so, a new table plug-in can
be inserted at hook H2 to capture these different
development strategies along with their pros and cons.

e Step (STEP): A step is an independent component that
can generate its own set of tables and graphs. This type
of plug-in is needed when there is a certain step that is
not necessarily applied at all times, like representing the
requirements in a graphical notation to make sure that
the analyst fully understands how each dynamic
requirement behaves in terms of states and actions. This
type of plug-in is also needed in a possible preparation
phase before applying the basic core of IRIS.

The P in a circle (Figure 2) describes where this plug-in
can be Placed and inserted. For instance, if a plug-in can
be inserted into hook H2, the P in the plug-in is assigned
the value H2. This prevents any mis-location of plug-ins.
Finally, the plug-in body contains the main part of the
plug-in and describes what this plug-in is, when and how
the analyst should use it. The plug-in body has the
following parts:

e What: States what this plug-in is
o Name: A unique descriptive name of the plug-in
o Description: A textual description of what this

situations in which two requirements interact. These plug-in is
guidelines are derived from a requirements interaction o Construction: The internal construction of the
taxonomy [13] that describes the different categories plug-in
and scenarios of requirements interactions. The number
r--'----'------T“-'---------'—------------ -------------------------- i -

Type |

[

i i T

Main body of plug-in: Answers the
What , When, and How

Location: Describes where
the plug-in can be inserted

Type of the plug-in:
TABL: Table
GDLN: Guideline

Figure 2: Format of a plug-in

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 11th IEEE International Conference and Workshop on the Engineering of Computer-Based Systems (ECBS’04)
0-7695-2125-8/04 $ 20.00 © 2004 IEEE

e When: States when to apply this plug-in
o Problems it overcomes: A description of what
types of problems this plug-in can overcome
when used
o Expected enhancement: A description of the
expected enhancement this plug-in will bring
when used
o Example of application: A sample description of
when to use the plug-in
e How: States how to apply this plug-in
o Instructions: A set of instructions on how to
insert and use this plug-in plus any other
instructions.

So far we have designed twelve plug-ins that have the
structure described above and are fully documented.

Table 1 presents a full description of the plug-in named
“Graphical representation of individual requirements” as
an example. The other plug-ins are only briefly described
below.

® Resources: This is an attribute plug-in. It corresponds to
a new column in the system axiom table or the dynamic
behavior table. The new column describes what
resources each requirement needs in order to be fully
met. This plug-in is connected to hook H3 or connected
to hook H5.

o Parameter assignment: This is a step plug-in. It is used
to find any parameterized parts in the given set of
requirements. Then these parameterized parts are
replaced by parameters (e.g., X, Y ...etc). For
example, consider a requirement that has a part stating
“the lights will switch on in a certain place”. Certain
place is a parameterized part and the Parameter
assignment plug-in replaces this part with a parameter
X. The requirement now should be “the lights will
switch on in X”. This plug-in is connected to hook H1.

e Variables attribute: This is an attribute plug-in. It
corresponds to a new column in the system axiom
tables or the dynamic behavior tables. The new column
describes the different variables used in each
requirement along with the data type allowed for this
variable. This plug-in must be used in conjunction with
the “Parameter assignment” plug-in. It is connected to
hook H3 or hook H5.

o Variables Range attribute: This is an attribute plug-in
that has to be used in conjunction with the Variables
attribute plug-in. It corresponds to a new column in the
system axiom tables or the dynamic behavior tables.
The new column describes the allowed range of values
that can be entered for each variable. This plug-in is
connected to hook H3 or connected to hook HS.

o Functionalities identification: This is a step plug-in and
is used when a single requirement is complex and
describes different functionalities. For example a

requirement for an intruder alarm has many sub-
requirements and functionalities. The goal is to simplify
the parent requirement and to separate the different
encapsulated functionalities. This plug-in is connected
to hook HI.

Graphical representation of individual requirements:
This is a step plug-in that is connected to hook HI1. It
corresponds to a complete step that is performed before
step 2 in the basic core. This plug-in is used when the
given set of requirements are complex and therefore
must be fully understood before proceeding with the
rest of the interaction detection approach steps. A
complete description of this plug-in is given below in
Table 1.

System axioms strategies: This is a table plug-in, i.e., a
new sub-table is inserted as part of the parent system
axioms table. This table is completed during step 2 of
the IRIS basic core steps and describes what strategies
are necessary to implement the system axioms. This
plug-in is connected to hook H2.

Guideline 3: This is a guideline plug-in. It is used to
detect interactions between two requirements if both of
them are system axioms and the rule part of one
requirement contradicts the rule part of the second
requirement. This plug-in is connected to hook H4.
Guideline 4: This is a guideline plug-in. It is used to
detect interactions between two requirements if one of
them is a system axiom and the other one describes
dynamic behavior and the action part of the dynamic
behavior requirement is in conflict with the rule part of
the system axiom. This plug-in is connected to hook
H4.

Guideline 5: This is a guideline plug-in. It detects
interactions between two requirements that are
triggered by the same trigger event, have different pre-
states, and the activation of one requirement bypasses
the activation of the second requirement. This plug-in is
connected to hook H4.

Guideline 6: This is a guideline plug-in. It can be used
to detect interactions between two requirements that are
triggered by linked events, have different pre-states,
and the activation of one requirement bypasses the
activation of the second requirement. This plug-in is
inserted at hook H4.

Guideline 7: This is a guideline plug-in. It can detect
interactions between requirements R1 and R2 in the
following situation: Requirements R1 and R2 are
triggered by linked events (two events are said to be
linked when the occurrence of the first event is
logically followed by the occurrence of the second
event). R1 is already triggered and executing an action.
Then R2 is activated and requires an action that will
cancel the action of R1 before it is completed. This
plug-in is connected to hook H4.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 11th IEEE International Conference and Workshop on the Engineering of Computer-Based Systems (ECBS’04)
0-7695-2125-8/04 $ 20.00 © 2004 IEEE

Table 1: Details of the plug-in Graphical representation of individual requirements

Type: | STEP
Body: | What | Name Graphical representation of individual requirements
Description A complete step that is carried out to graphically represent each
individual requirement that describes dynamic behavior of the
system. This is to ensure that the analyst fully understands the
behavior of the requirements.
Construction The execution of this step requires the following activities:

1.Select every requirement that describes dynamic system
behavior, list it separately, and read it carefully.

2.1dentify a suitable graphical representation (e.g., State charts
[14], CRESS [15], UCM [16]).

3.Represent each of the selected requirements graphically using
the chosen graphical notation.

4.1f it is difficult to represent the requirement, the analyst needs to
restate the requirement and possibly consult with the
source/stakeholder of the requirement in order to better
understand it.

5.Go back to activity 3 until all requirements have been addressed.

When | Problems this 1. Complexity of requirements
plug-in 2. Ambiguity of requirements
overcomes 3. Lack of understanding of requirements
3. Clarification of wrong assumptions or wrong judgments
Expected 1. Reduced requirements ambiguity
enhancements 2.Reduced difficulty filling in the requirements tables in step 2 of
the basic core of IRIS

3.Improved accuracy of the requirements attributes (e.g. pre-state,
trigger event, action, next state)

4.Improved interaction detection and prevention of false
interactions

Sample of This step has been applied in a case study to identify interactions
application between the requirements of a lift system. Refer to [2] for an
example application.
How Instructions 1. This step is directly applied after step 1 of IRIS basic core.
2.This step is applied only to requirements describing dynamic
system behavior.

3. Any graphical notation can be used that is able to fully represent
the four basic attributes: pre-state, trigger event, action, and next
state.

® H1

Proceedings of the 11th IEEE International Conference and Workshop on the Engineering of Computer-Based Systems (ECBS’04)

0-7695-2125-8/04 $ 20.00 © 2004 IEEE

YF]',F.

COMPUTER

SOCIETY

4. Customizing IRIS for Different Domains

As stated earlier, IRIS is a semi-formal approach that
can be customized for different domains. Customization is
achieved by extending the basic core of IRIS using plug-
ins that are added to so-called hooks. This extensibility
gives the approach great flexibility and adaptability to the
needs of various domains.

In this section we show how these plug-ins have been
used with the basic core for different domains. So far, we
have conducted three case studies from three different
domains:

1. Control domain: A set of requirements that describe

the operation of the lift system was analyzed.

2. Telecommunications domain: A set of requirements
that describe different telephony features (e.g.,
CFBL, CW, TWC, TCS...etc) [17] was analyzed.

3.Smart homes domain: A set of user policies and
features that describes the operation of a smart home
was analyzed.

Although smart homes domain seems to be similar to
the control domain, it belongs to a separate category
because smart homes are concerned with user policies
which is different from the traditional control domains. In
the following subsections, a brief description of each case
study, a description of the plug-ins used, and a summary
of the results obtained are given. Also, a comparison of
the obtained results with other results reported in the
literature is given. The following points are worth
considering when reviewing and comparing our results
with those reported in the literature:

e The presented results were obtained using IRIS
which is a semi-formal approach. This means that no
costly formal models or expensive human experts
were used.

e The detected interactions are of two types:
Interactions detected using the guidelines of the basic
core and interactions detected using the additional
plug-ins. The guidelines of the basic core capture all
critical interactions (e.g., non-determinism) in any
system. The use of more detection guidelines (by
inserting plug-ins) helps to detect more interactions.

The number of detected interactions versus the overall
number of actual interactions is something that is up to
the customer (e.g. in low criticality systems, the customer
might want to detect only critical interactions). The need
to detect more interactions or to capture all interactions
means the use of more plug-ins and therefore more cost
and time.

4.1. Case Study 1: The Lift Control System

The lift control system can be considered as part of the
control domain. In this case study a set of 14 requirements
describing the behavior of a lift system was analyzed. A

more detailed description of the case study can be found
in [11].

4.1.1. Plug-ins Used in the Lift Control System
We first list the problems encountered in this case study
and then describe which plug-ins were used to overcome
these problems.
1.In the beginning some requirements were ambiguous.
The plug-in “Graphical representation of individual
requirements” was used to graphically represent
requirements and understand their exact behavior.
This helped resolve the ambiguities that existed
earlier on. The reformulation of the textual
descriptions of some requirements as part of the plug-
in greatly clarified the requirements and improved
their understanding.
2.Since the set of requirements used in the case study
contained requirements describing system axioms,
interactions between these system axioms had to be
analyzed. The plug-in “Guideline 3~ was used to
detect interactions that can arise between system
axioms. The plug-in provided instructions on to how
to detect such interactions.
3.Since the set of requirements used in the case study
contained requirements describing system axioms as
well as dynamic behavior, the analyst had to make
sure that no dynamic behavior requirements violate
or interact with any system axioms. The plug-in
“Guideline 4" provided instructions on how to detect
such interactions.

4.1.2. Summary of the Obtained Results

A summary of the results obtained as well as a
comparison with results reported by Heisel et al [18], [19]
are presented in Table 2. Three plug-ins were used in this
case study.

Table 2: Summary of the lift case study results

Simple Indirect interactions Missed
Interactions | (sequential interactions | interactions
by linked events)
Heisel et al [8] [9] 5 0 2
[RIS 5 1 1

4.2 Case Study 2: The Telecommunications
Features

The case study was conducted on a set of eight
telecommunication features that were provided by the
feature interaction contest held in 2000 [17]. The textual
descriptions of the features were at a suitable level of
abstraction, i.e., they did not contain implementation
details. Such low-level details are currently still beyond
the scope of IRIS. More details on the case study can be
found in [20].

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 11th IEEE International Conference and Workshop on the Engineering of Computer-Based Systems (ECBS’04)
0-7695-2125-8/04 $ 20.00 © 2004 IEEE

4.2.1. Plug-ins Used in the Telecommunications Case
Study
The descriptions of the features provided by the contest
organizers [17] were very detailed and addressed all the
questions that might be asked. The authors therefore only
had to use the following two guideline plug-ins that
helped detect interactions related to high-level design
problems:
1.The plug-in “Guideline 5” was used to detect
interactions caused by two features being triggered
by the same trigger event and one feature bypassing
the trigger of the other feature.
2.The plug-in “Guideline 6” was used to detect
interactions caused by two features being triggered
by linked trigger events and one feature bypassing
the trigger of the other feature.

4.2.2 Summary of the Obtained Results

A summary of the results obtained is presented in Table
3 together with results reported by other researchers. The
number of plug-ins used in this case study was two. It
must be noted that all the other contestants (P, N, and H)
used formal methods which included building formal
models of the system and validating these models. Formal
methods are quite accurate in detecting interactions but
they are very time consuming and costly. On the other
hand IRIS uses semi-formal methods, i.e., requires less
time and money because it reduces the number of
comparisons that an expert would have to do using pair-
wise comparisons. Therefore, assuming equal cost and
time for comparing two requirements, IRIS does achieve
good results using less time and less cost. When
comparing IRIS with other approaches using formal
methods, it achieved very good results at lower cost and
in less time.

Table 3: Summary of the obtained results for the
telecommunications feature case study

Approach Detected | Missed
IRIS 21 2
Plath & Ryan [21] 22 1
Nakamura et al. [21] 21 2
Hall [21] 22 1
Samborski [21] 8 15

4.3. Case Study 3: Smart Homes Policies

This case study identifies interactions between user
policies within a smart home [22]. A smart home user has
a set of user-defined policies. The following is an
example of a policy: At sunset, the home master control
shall close the windows, close the curtains, and turn on
the lights in the living room. Each of the policies tends to
involve different features such as the windows control

feature, the curtains control feature, and the lights control
feature. Each feature has many functionalities that it can
perform. For instance, the light control feature can turn on
the lights, turn off the lights, dim the lights to a certain
level, use timers and special triggers to do a combination
of these functionalities.

A policy consists of several functionalities that perform
the required actions. For example, in the above mentioned
user policy, the policy involves the functionality turn on
light when a certain trigger is received. This means that
functionalities link policies to features. Therefore, the
case study focused on detecting interactions among
functionalities. The 16 features could be broken down
into 35 functionalities which were then analyzed for
interactions. More details of the case study can be found
in [13].

4.3.1. Plug-ins Used in the Smart Homes Policies

The domain of smart homes is relatively new. It
contains numerous features, requirements, and physical
network elements the functions of which are determined
by user policies. The system is reasonably complex and
distributed, so several plug-ins were needed to customize
IRIS for this case study. The following plug-ins were
used:

1. The different functionalities in the case study had
many parameters, i.e., the plug-in “Parameter
assignment” was used to replace the parameters with
variables.

2.These variables (e.g. X, Y, etc) must be included into
the tables and graphs created within the basic core of
IRIS. In order to do this, the plug-in “Variables
attribute” was used to add new columns to the tables.

3.The plug-in “Variables Range” must be used in
conjunction with the previous plug-in in order to
indicate the allowed range of values that each
variable can have. The values assigned to each
variable have a major influence on possible
interactions between functionalities.

4.1In order to link the features of the smart home to user
policies and functionalities, the plug-in
“Functionalities identification” was used.

4.Since the case study had requirements describing
system axioms, it was necessary to look for
interactions between these system axioms. The plug-
in “Guideline 3" was used for this purpose.

5.Since the case study contained requirements
describing system axioms it was necessary to ensure
that no dynamic behavior requirement violates or
interacts with any system axiom. The plug-in
“Guideline 4" was used to detect such interactions.

6. This case study is about a distributed system and each
functionality requires a considerable amount of time
to complete (e.g., when the temperature drops, it
takes time for the heating control feature to adjust the

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 11th IEEE International Conference and Workshop on the Engineering of Computer-Based Systems (ECBS’04)
0-7695-2125-8/04 $ 20.00 © 2004 IEEE

temperature again). During this time, a new
functionality might be triggered that requires an
action that contradicts the first operation. Therefore
the plug-in “Guideline 77 was used to detect
interactions due to timing problems. Such
interactions can be termed “sequential interactions”.

4.3.2. Summary of the Obtained Results

Table 4 summarizes the interactions detected using
IRIS. To our knowledge, no results of other researchers
on smart homes are reported in the literature, therefore a
comparison of IRIS with other results is not possible.

Table 4: Summary of the obtained results for the
smart home policies case study

Number of Features 16
Number of functionalities 35
Number of interaction detected 88
Number of plug-ins used 6

5. Conclusions and Future Work

This paper presents the importance of using semi-
formal methods in detecting requirements interactions.
The paper presents IRIS, a semi-formal approach for
detecting requirements interactions. An important aspect
of IRIS is its customizability to different domains. In
order to do this, the basic core of the approach can be
extended using different plug-ins. Guidelines for when,
where, how, and why each plug-in should be used were
developed. The approach was validated by applying it to
three case studies from three different domains using
several plug-ins. The results obtained by IRIS are among
the best reported in the literature. Our future work
includes applying IRIS to more case studies from other
domains and developing new plug-ins. Also exploring the
relationship between IRIS and existing informal as well as
formal approaches is part of our intended future work.

Reference

[l] J.O. Palmer, N.A. Fields, “An Integrated Environment for
Requirements Engineering”, IEEE Software, pp. 80-85, 9(3),
1992.

[2] M. Shehata, A. Eberlein, "Requirements Interaction
Management: A Multi-Level Framework", SEA 2002, The 6th
IASTED International Conference on Software Engineering and
Applications MIT, Cambridge, USA - November 4-6, 2002

[3] M. Shehata, A. Eberlein, "Issues in Requirements Reuse and
Feature Interaction Management", ICSSEA 2002, Paris, France,
December 3-5, 2002.

[4] M. Calder, E. Magill, M. Kolberg, S. Reiff-Marganiec,
“Feature Interaction: A Critical Review and Considered
Forecast”, Computer Networks, Volume 41/1, pp 115-141,
North-Holland

[5] R. Andrade, "Applying Use Case Maps and Formal Methods
to the Development of Wireless Mobile ATM Networks". The
Fifth NASA Formal Methods Workshop, Virginia, June 2000.
[6] Q. Fu, P. Harnois, L. Logrippo, J. Sincennes, "Feature
Interaction Detection: a LOTOS-based Approach". Computer
Networks 32, 4, (2000) 433-448.

[7] P. Zave, “Formal description of telecommunication services
in Promela and Z”, In proceedings of the nineteenth
International NATO summer school, 1999.

[8] M.Plath and M. D. Ryan, “The feature construct for SMV:
semantics”, Sixth International Workshop on Feature
Interactions in Telecommunications and Software Systems, 10S
Press, 2000.

[9] B. Boehm, H., "Identifying Quality-Requirement Conflicts",
IEEE International Conference of Requirements Engineering,
IEEE CS Press, Colorado Springs, pp. 218, Apr. 1996.

[10] W. Robinson, S. Pawlowski, S. Volkov, “Requirements
Interaction Management”, ACM Computing Surveys, Vol. 35,
No. 2, June 2003, pp. 132-190.

[11] M. Shehata, A. Eberlein, "Requirements Interaction
Detection using Semi-Formal Methods", ECBS 2003, 10th IEEE
Symposium and Workshops on Engineering of Computer Based
Systems, Alabama, USA April 2003.

[12] M. Shehata, A. Eberlein, "Detecting Requirements
Interactions: A Three-Level Framework" ASE 2003,
Proceedings of the 18th IEEE Conference on Automated
Software Engineering, October 6-10, 2003, Montreal, Canada
[13] M. Shehata, A. Eberlein, A. O. Fapojuwo, "Feature
Interactions between Networked Smart Homes Appliances",
QSSE 2004, 4th ASERC Workshop on Quantitative and Soft
Computing Based Software Engineering, February 16-17 2004,
Alberta, Canada

[14] R. Grosu, C. Klein, B. Rumpe, M. Broy, “State Transition
Diagrams”, TUM-19630, 1996.

[15] K. J. Turner, “Formalizing the Chisel Feature Notation", In:
Sixth International Workshop on Feature Interactions in
Telecommunications and Software Systems, Glasgow, Scotland,
UK, May 2000. IOS Press, Amsterdam.

[16] D. Amyot, “Use Case Maps as a Feature Description
Language”, In: S. Gilmore and M. Ryan (Eds), Language
Constructs for Designing Features. Springer-Verlag. 27-44.

[17] M. Kolberg, E. H. Magill, D. Marples, S. Reiff, “Second
Feature Interaction Contest”, The sixth international workshop
on feature interactions in telecommunications and software
systems (FIW’00), pp. 293-325, May 2000.

[18] M. Heisel, J. Souquiéres, “A heuristic algorithm to detect
feature interactions in requirements” In S. Gilmore & M. Ryan,
eds, 'Language Constructs for Describing Features', Springer-
Verlag, 2000.

[19] M. Heisel, J. Souquiéres, “Detecting Feature Interactions -
A Heuristic Approach”, In G. Saake and C. Turker, (eds),
Proceedings 1st Fireworks workshop', Magdeburg, May 1998.
[20] M. Shehata, A. Eberlein, A. O. Fapojuwo, "The Use of
Semi-Formal =~ Methods for Detecting Requirements
Interactions", SE 2004, February 17-19 2004, Innsbruck, Austria
[21] M. Calder, E. Magill, "Feature Interactions in
Telecommunications and Software Systems VI”, Amsterdam:
10S press, 2000

[22] D. Briere, P. Hurley, “Smart homes for dummies”, 2nd
edition, Wiley Publishing Inc, 2003, ISBN0764525395

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 11th IEEE International Conference and Workshop on the Engineering of Computer-Based Systems (ECBS’04)
0-7695-2125-8/04 $ 20.00 © 2004 IEEE

	footer1:

