
University of Calgary

PRISM: University of Calgary's Digital Repository

Graduate Studies Legacy Theses

2005

Detecting requirements interactions using

semi-formal methods

Shehata, Mohamed Sami Abbass

Shehata, M. S. (2005). Detecting requirements interactions using semi-formal methods

(Unpublished doctoral thesis). University of Calgary, Calgary, AB. doi:10.11575/PRISM/2399

http://hdl.handle.net/1880/103400

doctoral thesis

University of Calgary graduate students retain copyright ownership and moral rights for their

thesis. You may use this material in any way that is permitted by the Copyright Act or through

licensing that has been assigned to the document. For uses that are not allowable under

copyright legislation or licensing, you are required to seek permission.

Downloaded from PRISM: https://prism.ucalgary.ca

UNIVERSITY OF CALGARY

Detecting Requirements Interactions Using Semi-Formal Methods

by

Moharned Sami Abbass Shehata

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

N PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE

DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

CALGARY, ALBERTA

JULY, 2005

© Mohamed Shehata 2005

UNIVERSITY OF CALGARY

FACULTY OF GRADUATE STUDIES

The undersigned certify that they have read, and recommend to the Faculty of Graduate

Studies for acceptance, a thesis entitled "Detecting Requirements Interactions Using

Semi-Formal Methods" submitted by Mohamed Sami Abbass Shehata in partial

fulfilment of the requirements of the degree of Doctor of Philosophy.

Supervisor, Dr. A. Eberlein,
Department of Electrical and Computer Engineering

Co- Supervisor, Dr. A. Fapojuwo,
Department of Electrical and Computer Engineering

Dr. R. Kremer,
Department of Computer Science

Dr. M. Husein, -J

Department of Chemical and Petroleum Engineering

External Reader, Dr. M. Reformat,
University of Alberta

Date

11

Abstract

Finding ways of detecting interactions between requirements is essential in order to

develop a set of clear requirements, which serves as a foundation for successful software

development. Detecting requirements interactions as early as possible helps avoid high

repair costs.

This thesis presents IRIS, Identifying Requirements Interactions usingSemi-formal

methods, which is a semi-formal approach for detecting requirements interactions. IRIS

is a systematic six step approach that uses tables, graphs, interaction detection scenarios,

and subjective judgment to detect requirements interactions in software systems. IRIS has

the advantage of not only being domain independent but also customizable towards a

specific domain in order to enhance its performance. IRIS helps reduce the number of

necessary pair-wise comparisons between requirements that have to be performed

informally by a human expert. This reduction is achieved by discarding irrelevant

comparisons that will not lead to interactions.

A general requirements interaction taxonomy was developed for identifying when two

requirements are considered interacting. This requirements interaction taxonomy

provides interaction detection scenarios that are used within IRIS for detecting

interactions.

To validate IRIS, it was applied to three different case studies from different domains. In

the first case study, the lift system, IRIS was able to detect 7 interactions as opposed to 6

interactions that were detected by another approach reported in literature. IRIS was also

able to achieve 17.6% reduction in the number of comparisons. The second case study

analyzed telephony features and IRIS was able to detect 21 interactions with 17.9% fewer

111

feature comparisons. This result is very good as other approaches that detected 22

interactions all used formal methods. The third case study looked at smart homes

policies. IRIS detected 83 interactions with 19.3% fewer policy comparisons. The smart

homes case study is a major contribution as the results from it serve as the first fully

documented analysis of interactions between smart homes policies in literature.

To facilitate the application of IRIS, a tool was implemented. IRIS-Tool Support (IRIS-

TS) is built as an add-on module for DOORS which is a well-known commercial

requirements management tool.

iv

Acknowledgements

First of all, I want to thank God almighty for giving me the strength to pursue this degree.

Looking back at the last four years, many people come to my mind who contributed in

one way or another in this thesis.

I always considered that getting a Ph.D. degree is not only about conducting research, but

rather it involves interacting with people and learning from their experience and

mentalities. I was very lucky in working with two great supervisors, Dr. Armin Eberlein

and Dr. Abraham Fapojuwo.

I would like to thank Dr. Armin Eberlein for his deep support and guidance in my

research from inception through to completion. I'm really grateful to all the

encouragement and inspiration that he gave to me.

I also want to thank Dr. Abraham Fapojuwo who helped me greatly during my research

and provided me with huge valuable feedback during my research.

I also want to thank Dr. Rob Kremer for his feed back on this thesis.

Additionally, I would like to thank the Egyptian Higher Ministry of Education for the

financial support that they covered me during my research course.

Moreover, I would like to thank all my fellow researchers in my research group, Abdallah

Mohamed, Jiang Li, Simon Pfeiffer, Quill Zhang, and Majid Môussavi.

I would like also to thank Tim Yue who participated with me in creating the code for the

tool support created in this thesis and presented in Chapter

Finally, a big thank you goes to my family especially my parents and my wife Samar who

continuously provided me with love, care, and encouragement during the period of this

research.

v

Dedication

I would like to dedicate my thesis to:

My Parents: Sami and Nawal

My Wife: Samar

My Daughters: Dina and Noha

My Son: Ahmed

vi

Table of Contents

Approval Page ii

Abstract ii

Dedication vi

Table of Contents vii

List of Tables xi

List of Figures and Illustrations xv

List of Symbols and Abbreviations xvii

CHAPTER ONE: INTRODUCTION 1
1.1 Introduction and Motivation of Research 1
1.2 Thesis Contributions 4

1.2.1 IRIS: A Semi-Formal Approach for Detecting Requirements Interactions 4
1.2.2 Applying IRIS to detect Interactions in different domains 6
1.2.3 A General Requirements Interaction Taxonomy 6
1.2.4 A Tool Support for IRIS Integrated in the DOORS Requirements Management
Software 7

1.3 Thesis Outline 7
CHAPTER TWO: CURRENT STATE OF THE ART 9

2.1 Introduction 9
2.2 Surveying the Feature Interactions Area 10

2.2.1 The Feature Interactions Problem 10
2.2.2 Methodology for Surveying the Feature Interaction Approaches 11
2.2.3 Detecting Features Interactions using Semi-Formal Approaches 12
2.2.4 Detecting Feature Interactions using Formal Approaches 17

2.3 Surveying the Requirements Interactions Management Area 30
2.3.1 The requirements Interaction Management Problem 30
2.3.2 Methodology for Surveying the Requirements Interaction Approaches 31
2.3.3 Classification Based Approaches 32
2.3.4 Patterns Based Approaches 35
2.3.5 Al Planning Based Approaches 36
2.3.6 Scenario Analysis Based Approaches 38

2.4 Summary 39
CHAPTER THREE: A REQUIREMENTS INTERACTION TAXONOMY 40

3.1 Introduction 40
3.2 System Decomposition 42

3.2.1 The Concept of System Decomposition 42
3.2.2 System Representation using Attributes 43

vii

3.3 The proposed Interaction Taxonomy 47
3.3.1 General Architecture 47
3.3.2 First Layer: Main Interaction Categories 49
3.3.3 Second Layer: Interaction Subcategories 51
3.3.4 Third Layer: Interaction Types 53
3.3.5 Fourth Layer: Interaction Scenarios 59

3.4 Comparison of the Proposed Taxonomy to Already Existing Taxonomies 66
3.5 Limitations of the Proposed Interaction Taxonomy 69
3.6 Summary 70

CHAPTER FOUR: IRIS: IDENTIFYING REQUIREMENTS INTERACTIONS USING
SENT-FORMAL METHODS 71

4.1 Introduction 71
4.2 Overview of IRIS 72

4.2.1 General Outline 72
4,2.2 Detecting Interaction with IRIS at Different Abstraction Levels 73
4.2.3 IRIS Customizability 74

4.3 IRIS: Class Model and Description 75
4.3.1 A Class Model for IRIS 75
4.3.2 Step 1: Requirements Classification 77
4.3.3 Step 2: Requirements Attributes Identification 78
4.3.4 Step 3: Trigger Events Extraction 80
4.3.5 Step 4: Linked Events Identification 81
4.3.6 Step 5: Trigger Events Charts Representation 84-
4.3.7 Step 6: Interactions Detection 86

4.4 Advantages of the Proposed IRIS Approach 90
4.5 Limitations of the Proposed IRIS Approach 93
4.6 Comparing IRIS to other Semi-Formal Approaches in the Literature 95
4.7 Summary 97

CHAPTER FIVE: IRIS CUSTOMIZATION 98
5.1 Introduction 98
5.2 The Concept of IRIS Customization 99
5.3 IRIS Hooks 100

5.3.1 Overview 100
5.3.2 Hooks Characteristics 101

5.4 IRIS Plug-ins 105
5.4.1 General Structure of a Plug-in 105
5.4.2 Plug-in Type 106
5.4.3 Plug-in Main Body 106
5.4.4 Plug-in Location 107
5.4.5 Available Plug-ins for IRIS 107

5.5 Summary 113
CHAPTER SIX: APPLYING IRIS IN THE CONTROL DOMAIN - THE LIFT
SYSTEM CASE STUDY 114

6.1 Introduction 114
6.2 The Lift System Requirements 115

viii

6.3 Customizing IRIS for the Lift System Case Study 116
6.3.1 Plug-ins used in the Lift System Case Study 116
6.3.2 Assumptions used in the Lift System Case Study 117

6.4 Applying IRIS to Detect Interactions in the Lift System Case Study 117
6.4.1 Using the Plug-in "Graphical representation of individual requirements" 117
6.4.2 Step 1: Requirements Classification 118
6.4.3 Step 2: Requirements Attributes Identification 118
6.4.4 Step 3: Trigger Events Extraction 120
6.4.5 Step 4: Linked Events Identification 120
6.4.6 Step 5: Trigger Events Charts Representation 120
6.4.7 Step 6: Interaction Detection 122

6.5 Discussion of the Results 127
6.5.1 Reduction in Number of Comparisons 127
6.5.2 Comparing IRIS Results with the Results by Heisel et al. in [17, 149] 128

6.6 Summary 129
CHAPTER SEVEN: APPLYING IRIS IN THE TELECOMMUNICATIONS DOMAIN
- THE TELEPHONY FEATURES CASE STDUY 130

7.1 Introduction 130
7.2 The Telephony Features 131
7.3 Customizing IRIS for the Telephony Features Case Study 132

7.3.1 Plug-ins used in the Telephony Features Case Study 132
7.3.2 Assumptions used in the Telephony Features Case Study 132

7.4 Applying IRIS to Detect Interactions in the Telephony Features Case Study 132
7.4.1 Step 1: Features Classification 132
7.4.2 Step 2: Features Attributes Identification 132
7.4.3 Step 3: Trigger Events Extraction 134
7.4.4 Step 4: Linked Events Identification 134
7.4.5 Step 5: Trigger Events Charts Representation 135
7.4.6 Step 6: Interaction Detection 137

7.5 Discussion of the Results 141
7.5.1 Reduction in Number of Comparisons 141
7.5.2 Comparing IRIS Results with Other Results Reported in the Literature 141

7.6 Summary 144
CHAPTER EIGHT: APPLYING IRIS IN THE POLICIES DOMAIN - THE SMART
HOMES CASE STUDY 145

8.1 Introduction 145
8.2 Features and Policies 147

8.2.1 Understanding Features and Policies 147
8.2.2 Relationship between Features and Policies 148
8.2.3 Features and Policies in a Smart Home Architecture 150
8.2.4 Simple Policies and Compound Policies 151

8.3 Smart Homes Features 152
8.4 Customizing IRIS for the Smart Homes Case Study 157

8.4.1 Plug-ins used in the Smart Homes Case Study 157
8.4.2 Assumptions used in the Smart Homes Case Study 159

ix

8.5 Applying IRIS to Detect Interactions in the Smart Homes Case Study 160
8.5.1 Using Plug-ins "Functionalities Identification" and "Parameters Assignment "160
8.5.2 Step 1: Simple Policies Classification 164
8.5.3 Step 2: Simple Policies Attributes Identification 165
8.5.4 Step 3: Trigger Events Extraction 168
8.5.5 Step 4: Linked Events Identification 169
8.5.6 Step 5: Trigger Events Charts Representation 170
8.5.7 Step 6: Interaction Detection 172

8.6 Discussion of the Results 178
8.6.1 Reduction in Number of Comparisons 178
8.6.2 Comparing IRIS Results with Other Results Reported in the Literature 178

8.7 Summary 179
CHAPTER NINE: IRIS TOOL SUPPORT 180

9.1 Introduction 180
9.2 Architecture of IRIS-TS 181
9.3 A prototype ofIRIS-TS 186

9.3.1 Implementation 186
9.3.2 Applying the IRIS-TS Prototype on the Smart Homes Case Study 188

9.4 Summary 196
CHAPTER TEN: CONCLUSIONS AND FUTURE WORK 197

10.1 Summary and Conclusions 197
10.2 Future research 199

10.2.1 Experimentation with IRIS 199
10.2.2 Development of a three layer frame work 199
10.2.3 Application of IRIS to new Case Studies 200
10.2.4 Further Development of IRIS-TS 200

REFERENCES 201
APPENDIX A: PUBLICATIONS 224
APPENDIX B: FULL RESULTS FROM CHAPTER 3 ON THE REQUIREMENTS
INTERACTION TAXONOMY 227
APPENDIX C: FULL RESULTS ON THE COMPARISON IN CHAPTER 3 ON
COMPARING THE PROPOSED REQUIREMENTS INTERACTION TAXONOMY
WITH OTHER TAXONOMIES 238
APPENDIX D: FULL RESULTS ON THE DEVELOPED PLUG-INS FOR IRIS IN
CHAPTER 5 241
APPENDIX E: FULL RESULTS FROM CHAPTER 8 ON THE DETECTED
INTERACTIONS IN SMART HOMES 249
APPENDIX F: THE IRIS-TS PROTOTYPE DXL CODE 257

x

List of Tables

Table 2.1: The Approach by Wakahara, Fujioka, Kikuta, Yagi, and Sakai 13

Table 2.2: Approach by Mierop, Tax, and Janrnaat 14

Table 2.3: The Approach by Kimbler, Kuisch, and Muller 14

Table 2.4: The Approach by Dankel, Schmalz, Walker, Nielsen, Muzzi, and Rhodes 15

Table 2.5: The Approach by Kuisch, Janmaat, Mulder, and Keesrnaat 15

Table 2.6: The Approach by Keck 16

Table 2.7: Approach by Kimbler and Sobirk 16

Table 2,8: Software Engineering Approaches 18

Table 2.9: The Approach by Zave and Jackson 20

Table 2.10: The Approach by Utas 20

Table 2.11: The Approach by Amyot et al. 21

Table 2.12: The Approach by Turner 21

Table 2.13: The Approach by Metzger and Webel 21

Table 2.14: Properties only approaches 23

Table 2.15: The Approach by Blom, Jonsson, and Kempe 24

Table 2.16: The Approach by Felty and Narnjoshi 24

Table 2.17: The Approach by Gibson 24

Table 2.18: Behavioural only approaches 25

Table 2.19: The Approach by Hall 26

Table 2.20: The Approach by Bruns and Mataga, Sutherland 27

Table 2.21: The Approach by Khournsi and Bevelo 27

Table 2.22: Properties and behavioural approaches 28

xi

Table 2.23: The Approach by Plath and Ryan 28

Table 2.24: The Approach by Calder and Miller 29

Table 2.25: The Approach by Bousquet, Ouabdesselam, Richier, Zuanon 29

Table 3.1: Summary of the resulting interaction types in the third layer 55

Table 3.2: Description of the interaction scenario SCR8 62

Table 3.3: Description of the interaction scenario SCR9 62

Table 3.4: Description of the interaction scenario SCR10 63

Table 3.5: Description of the interaction scenario SCR1 1 63

Table 3.6: Description of the interaction scenario SCR12 64

Table 3.7: Description of the interaction scenario SCR1 3 64

Table 3.8: Description of the interaction scenario SCR14 65

Table 3.9: Description of the interaction scenario SCR15 65

Table 3.10: Description of the interaction scenario SCR16 66

Table 3.11: Comparing the proposed taxonomy to other existing taxonomies 68

Table 4.1: Examples on classifying requirements 78

Table 4.2: System Axioms Attributes Identification 79

Table 4.3: Dynamic Behaviour Attributes Identification 80

Table 4.4: Resources Attributes Identification 80

Table 4.5: Trigger Events Extraction 81

Table 4.6: Linked Events Identification 83

Table 4.7: Comparing IRIS with other Semi-Formal Approaches 95

Table 5.1: Details of the plug-in Graphical representation of individual requirements.. 108

Table 6.1: Classification table for the lift system requirements 118

xii

Table 6.2: System axioms attributes identification table for the lift system, 118

Table 6.3: Dynamic behaviour attributes identification table for the lift system 119

Table 6.4: Trigger events extraction table for the lift system 120

Table 6.5: Linked events identification table for the lift system 120

Table 6.6: A summary of the detected interactions in the lift system case study 122

Table 6.7: Interaction between R12 and R8 in the lift system case study 124

Table 6.8: Interaction between R13 and R8 in the lift system case study 124

Table 6.9: Interaction between RI 3 and R8 in the lift system case study 124

Table 6,10: Interaction between R12 and R5 in the lift system case study 126

Table 6.11: Interaction between RI and R5 in the lift system case study 126

Table 6.12: Interaction between R14 and R5 in the lift system case study 126

Table 6.13: Interaction between R9 and Ri in the lift system case study 127

Table 7.1: A description of the telephony features used in the case study 131

Table 7.2: Dynamic behaviour attributes identification for telephony features 133

Table 7.3: Trigger events extraction table for the telephony features case study 134

Table 7.4: Linked events identification table for the telephony features case study 134

Table 7.5: Summary of detected interactions in the telephony features case study 137

Table 7.6: Explanation of telephony features case study interactions 139

Table 7.7: Interactions reported by different contestants in the FIWOO contest 142

Table 7.8: Comparing IRIS results to others results from the FIWOO contest 142

Table 8.1: Classification table for the smart homes case study 164

Table 8.2: System axioms attributes identification table for the smart homes policies 165

Table 8.3: Dynamic behaviour attributes identification table for the policies 166

xiii

Table 8.4: Trigger events extraction table for the smart homes case study 168

Table 8.5: Linked events identification table for the smart homes case study 169

Table 8.6: Results summary of detected interactions among smart homes policies 173

Table 8.7: Example of interaction between two system axioms using SCR1 174

Table 8.8: Example of interaction between a system axiom and a dynamic behaviour

simple policy using SCR3O 175

Table 8.9: Example of interaction between two dynamic behaviour simple policies

triggered by the same trigger event using SCR1 1 177

Table 8.10: Example of interaction between two dynamic behaviour simple policies

triggered by linked trigger event using SCRI2 177

Table 8.11: statistics on the smart homes case study 178

Table C.1: Comparing proposed taxonomy to Cameron et cii. taxonomy 239

Table C.2: Comparing proposed taxonomy to Kolberg et cii. taxonomy 239

Table C.3: Comparing proposed taxonomy to Reiff-Marganiec et cii. taxonomy 240

Table D.1: The plug-in Functionalities Identification 241

Table D.2: The plug-in Parameters Assignment 242

Table D.3: The plug-in Parameters 243

Table D.4: The plug-in Parameters Range 244

Table D.5: The plug-in System Axioms Strategies 245

Table D.6: The plug-in Availability 246

Table D.7: The plug-in Performance 247

Table D.8: The plug-in Interface 248

Table E. 1: Detected interactions using IRIS and suggested solutions 250

xiv

List of Figures and Illustrations

Figure 3.1: General architecture of the proposed interaction taxonomy 48

Figure 3.2: First layer of the proposed interaction taxonomy 50

Figure 3.3: Second layer of the proposed interaction taxonomy 51

Figure 3.4: Third layer of the proposed taxonomy 54

Figure 3.5: Fourth layer of the proposed interaction taxonomy 60

Figure 4.1: Application of IRIS to detect interactions when developing a software system

 72

Figure 4.2: A class model of the basic core of IRIS 76

Figure 4.3: Trigger Events Charts 85

Figure 5.1: Basic core of IRIS showing points of the different hooks 101

Figure 5.2: General structure of an IRIS plug-in 105

Figure 6.1 CRESS [65] representation for Ri on the left and R3 on the right 117

Figure 6.2 Trigger events charts for the dynamic requirements of the lift system 121

Figure 7.1: Trigger events chart for the telephony features case study 135

Figure 8.1: Object-oriented description of relationship between features and policies 149

Figure 8.2: Features, policies, and physical elements within smart homes 151

Figure 8.3: Overview of the features of a smart home 153

Figure 8.4: Trigger events chart of the smart homes dynamic behaviour policies 170

Figure 8.5: List of the comparisons needed to detect interactions between dynamic

behaviour simple policies in the smart homes case study 176

Figure 9.1: An example of modules, objects, and attributes 182

xv

Figure 9.2: Architecture of IRIS-TS 183

Figure 9.3: Internal structure of IRIS-TS 184

Figure 9.4: IRIS-TS implementation in DOORS 187

Figure 9.5: Performing requirements classification using IRIS-TS 189

Figure 9.6: Results of requirements classification using IRIS-TS 190

Figure 9.7: Performing system axioms attributes identification using IRIS-TS 191

Figure 9.8: Performing dynamic behaviour attributes identification using IRIS-TS 192

Figure 9.9: Results of system axioms attributes identification using IRIS-TS 192

Figure 9.10: Results of dynamic behaviour attributes identification using IRIS-TS 193

Figure 9.11: Results of trigger events extraction 194

Figure 9.12: Performing linked events identification 195

Figure 9.13: Results linked events identification 195

Figure 9.14: Results Trigger Events Charts Representation 196

xvi

List of Symbols and Abbreviations

3WC Three Way Calling

Al Artificial Intelligence

AOSD Aspect Oriented Software Development

ATTR Attribute

BCSM Basic Call State Modes

CENELEC European Committee for Electrotechnicl Standardization

CFBL Call Forward on Busy Line

Ci th Constraint

COSPAN COordination-SPecification ANalysis

CPL Call Processing Language

CRESS CHISEL Representation Employing Systematic Specification

CTL Computational Tree Logic

CW Call Waiting

DB Data Base

DC Duration Calculus

DDRA Deficiency-Driven Requirements Analysis

DFC Distributed Feature Composition

DOORS A requirements management software tool by Telelogic Inc.

DXL DOORS eXtension Language

EFSA Extended Finite State Automata

xvii

EHS European Home Systems

EIB European Installation Bus

eSERL extended Service Execution Rule Language

ESTI European Standard Telecommunications Institute

ETS Engineering Tool Software

FT Feature Interaction

FIW Feature Interaction Workshop

FIWOO The sixth Feature Interaction Workshop held in 2000

FOL First Order Logic

FR Functional Requirements

FSA Finite State Automata

FSM Finite State Machines

IN Intelligent Networks

IRIS Identifying Requirements Interactions using Semi-formal methods

IRIS-TS IRIS - Tool Support

IVR Interactive Voice Response

KAOS Knowledge Acquisition in autOmated Specification of software

KNX A smart homes networking system

LOTOS Language Of Temporal Ordering Specification

LTL Linear Temporal Logic

xviii

Lustre A storage and file system architecture that comes from Linux and
Clusters

MSC Message Sequence Charts

NFR Non-Functional Requirements

00 Object Oriented

P1MM Predefined Interaction Manager Module

POTS Plain Old Telephone System

PROMELA PROcess MEta LAnguage

PSHI DB Predefined Smart Homes Interactions Data Base

PSTN Public Switched Telephone Network

RACE Research and Development in Advanced Communications in
Europe

RBF Ring Back when Free

RC Reverse Charge

RE Requirements Engineering

RIM •Requirements Interaction Management

ROSA RACE Open Service Architecture

SCRi it" interaction SCenaRio

SDL Specification and Description Language

SE Software Engineering

Siit" interaction Subcategory

SMV Symbolic Model Verifier

ti interaction type

xix

TL Temporal Logic

TLA Temporal Logic of Action

UCM Use Case Maps

UML Unified Modelling Language

VM Voice Mail

xx

1

CHAPTER ONE: INTRODUCTION

1.1 Introduction and Motivation of Research

Studies have claimed that in order to succeed in developing high-quality software

systems, it is necessary to have correct and unambiguous requirements [1]. This makes

requirements engineering (RE) a vital part of software development [2-5] and critical to

the success of the entire project. Recent surveys by Nikula et al. [6] and McPhee [7]

show that industry has started to realize the importance of good requirements

engineering. Emam et al. [8] surveyed 56 projects worldwide over a period of two years

and concluded that good requirements have a positive impact on the quality of software.

A key issue in obtaining a set of clear requirements is how to manage negative

relationships between requirements [9] [10]. Robinson et al. [11] defines requirements

interactions management as "the set of activities directed towards the discovery,

management, and disposition of critical relationships among a set of requirements".

Requirements often interact when developing new systems because of the heterogeneity

and diversity of stakeholders [11] or because of reusing already existing requirements

from previous similar projects where people make the assumption that the reused

requirements will increase safety because they have been exercised extensively [12]. In

either case, developing a software project should be done with an ongoing effort to

discover and resolve interactions that could arise between requirements.

The so-called feature interaction problem has been extensively researched in the

telecommunications domain to identify interactions between telephony features. A basic

definition of feature interactions can be: Feature interaction is a situation where several

features that are integrated on top of a base system may interfere and affect each other.

2

Features and requirements can be seen to have an n:m relationship. A high level

requirement can consist of several features [13]. On the other hand, a feature may needs

to be defined by several requirements. Hence, the relation between features and

requirements can be seen as an n:rn relationship.

Requirements interaction is similar to feature interactions in the sense that both try to

identify the relationships between features, or requirements. However, requirements

interaction has a broader scope than the limited scope of feature interaction for the

following reasons:

1. Requirements interaction considers non-functional requirements as well as

functional requirements whereas feature interaction focuses on functional

behaviour interactions.

2. The feature interaction research focuses primarily on the telecommunication

domain where one examines possible interactions between new and existing

telephony features. But requirements interaction is a phenomenon that can occur

in any software domain.

3. Many of the current feature interaction approaches require design and possibly

implementation-specific knowledge such as complete descriptions of all the states

of the system. Such knowledge is not always available at the early requirements

engineering phase. On the other hand, requirements interaction approaches

focuses mainly on detecting interactions between requirements at the early

requirements engineering phase.

3

4. While feature interaction tends to detect only technical behavioural interactions

between requirements, requirements interactions additionally detects interactions

between requirements caused by the heterogeneity of stakeholders.

5. The techniques used for the resolution of requirements interactions consider social

and technical aspects. This means that the resolution of requirements interactions

must involve stakeholders (e.g. the WinWin model [14, 15] involves

stakeholders' views on the importance of each requirement and aims at achieving

a win-win situation for all stakeholders involved). Whereas in feature interaction,

most of the interaction resolution techniques assign priorities to the different

features and the feature with the highest priority dominates.

In this thesis we focus on the broader area of requirements interactions. The motivation

for this thesis was based on the following:

1. A review of the current practice of interaction detection (as summarized in

Chapter 2) showed that there are two extremes: one extreme uses informal

detection approaches using domain experts who rely on their experience with no

systematic approach to follow. The other extreme uses formal approaches, such as

the Specification and Description Language SDL [16]. However, domain experts

are expensive, hard to find and prone to errors [15]. Formal approaches provide

fairly accurate detection of interactions but not every company has the time and

resources necessary to carry out a formal verification of their systems under

development.

2. It appears as if there is currently no robust and complete definition of the different

types of possible interactions between requirements. Most definitions describe, at

4

a very high level of abstraction, what interaction is without defining the different

types of interactions or the various scenarios that can cause interactions.

Furthermore, the different approaches surveyed in this thesis rely on detection of

inconsistencies in formal models and design problems such as deadlocks and

livelocks.

3. Many approaches and techniques have been proposed to solve the feature

interaction problem in the telecommunications domain but only little effort has

been spent on researching the applicability of possible solutions to this problem in

other domains of software engineering.

1.2 Thesis Contributions

This Thesis offers 4 main contributions summarized as follows:

1.2.1 IRIS: A Semi-Formal Approach for Detecting Requirements Interactions

The first contribution of this thesis is the development of a semi-formal approach for

detecting requirements interactions in software systems. This approach is termed IRIS

which stands for identifying Requirements interactions using emi-formal methods. IRIS

has the following advantages over currently existing approaches:

1. Semi-formality of the approach: The proposed approach uses semi-formal

methods for detecting interactions. This means that it uses tables, graphs,

interaction detection scenarios, and subjective detection to detect interactions.

This requires visual system representation and does not require any heavy

mathematical modeling of the system under investigation as opposed to formal

methods.

5

2. Detecting interactions at different levels of abstraction: The proposed IRIS

approach uses attributes to represent system elements (e.g., dynamic behaviour

requirements). This enables IRIS to detect interactions at different levels of

abstraction. This thesis reports case studies in which IRIS was able to detect

interactions at the requirements level (see Chapter 6), at the features level (see

Chapter 7), and at the policies level (see Chapter 8).

3. Reduction in number of comparisons: IRIS reduces the number of necessary pair-

wise comparisons that a human developer would have to perform between

requirements in informal approaches and other semi-formal approaches described

in the literature (more details on these approaches are provided in Chapter 2).

IRIS achieves the reduction in the number of comparisons by discarding

irrelevant comparisons that will not lead to interactions and focuses only on

comparing requirements that are related either directly or sequentially. Hence, this

can result in a clear reduction in the number of comparisons and consequently

reduction in time and effort.

4. Domain independency: The proposed approach is not limited to a specific

software domain (e.g., the well known telecommunications domain). To achieve

this generality, IRIS was developed as a general approach that can be adapted to

any software domain through a customization process to include specific

knowledge about software domains through the use of plug-ins thus improving

the detection success rate (see Chapter 5).

5. Extendability of the approach: IRIS was designed with a basic core and extension

hooks. These extension hooks are insertion points that allow the addition of plug-

6

ins to IRIS basic core to extend its performance, increase the scope and

thoroughness of interaction detection to include design and resource interactions,

make IRIS applicable to new domains, and cope with any specific future needs by

system developers.

1.2.2 Applying IRIS to detect Interactions in different domains

The second contribution of this thesis is the application of IRIS in detecting interactions

in 3 case studies each belonging to different software domain. The first case study was

done to detect interactions between the requirements of a lift system (control domain).

The second case study was conducted to detect interactions between telephony features

(telecommunications domain). The third case study was conducted to detect interactions

between smart homes policies (policy domain). The first two case studies have been

analyzed by other approaches and their results were reported in literature [17-19]. Hence,

these results have been used as benchmarks to assess the effectiveness of IRIS. The third

case study represents a major contribution in the interaction community as no complete

interaction detection analysis between smart home policies has been reported in the

literature.

1.2.3 A General Requirements Interaction Taxonomy

The third contribution of this thesis is the development of a general interaction taxonomy

for classifying and identifying requirements interaction. The proposed taxonomy

describes 9 main interaction categories, 24 interaction subcategories, 37 interaction types,

and finally 37 interactions scenarios that also contain 37 interaction detection guidelines.

The interaction detection guidelines help developers identify when two requirements are

considered interacting. The proposed interaction taxonomy addresses the lack of detail

7

that exists in other interaction taxonomies in the literature [20-22]. To validate the

proposed interaction taxonomy, a comparison is made with other existing taxonomies in

the literature. The results of the comparison show that the proposed interaction taxonomy

was not only able to address the interaction issues in other taxonomies presented in the

literature, but it also contained many other interaction types that have not been captured

by other taxonomies (Chapter 3 provides more details).

1.2.4 A Tool Support for IRIS Integrated in the DOORS Requirements

Management Software

To help software developers apply IRIS, a tool called IRIS-TS, which stands for IRIS

Tool Support, was implemented as an add-on module for the commercial DOORS

requirements management tool [23]. IRIS-TS appears as a drop down menu on the main

tool bar of DOORS and has the ability to detect interactions between the requirements

saved in DOORS. IRIS-TS performs a step-by-step walkthrough of the steps of IRIS and

generates the appropriate inputs and outputs for the analyst. IRIS-TS was implemented

using the DOORS eXtension Language (DXL).

1.3 Thesis Outline

This thesis contains ten chapters including the introduction chapter. The remaining nine

chapters are organized as follows:

Chapter two contains surveys and analysis of the relevant literature. The literature review

presents the necessary background information on the different approaches to interaction

detection currently available.

Chapter three presents a general requirements interaction taxonomy used to identify when

two requirements are considered interacting.

8

Chapter four presents the proposed semi-formal IRIS approach and describes in details

its basic core.

Chapter five describes how IRIS can be customized and extended with plug-ins.

Chapter six presents the application of IRIS to the control domain. IRIS was used to

detect interactions between the requirements of a lift system.

Chapter seven presents the application of IRIS to the telecommunications domain, i.e.,

the detection of interactions between telephony features.

Chapter eight describes the application of IRIS to the policies domain by analyzing smart

homes policies for interactions.

Chapter nine presents the tool support, IRIS-TS, that was created to support the

application of IRIS using the commercial DOORS requirements management software.

Chapter ten presents a summary of the thesis and the conclusions. Chapter ten also

includes a list of future research topics on the work pioneered in this thesis.

At the end of the thesis, 6 appendices are included to provide complementary data and

information to the thesis' main body.

9

CHAPTER TWO: CURRENT STATE OF THE ART

2.1 Introduction

Although there has been relatively little attention paid to the problem of detecting

requirements interaction in software systems, the feature interaction problem has been

very well researched in the telecommunications domain. To provide the necessary

literature review that the work in this thesis was based on, some of the more relevant

previous work is described in this chapter. It is worth mentioning that other relevant

previous work on requirements interaction taxonomy and on the case studies presented

later-on in this thesis are specified in the appropriate chapters. Hence, this chapter

focuses only on the previously developed approaches for interaction detection.

The structure of this chapter is as follows: Section 2.2 presents a survey on the current

state of the art regarding approaches in the feature interaction research community.

Section 2.3 gives a survey on the current state of the art regarding approaches from the

requirements engineering research community. Finally, section 2.4 provides a summary

of this chapter.

10

2.2 Surveying the Feature Interactions Area

2.2.1 The Feature Interactions Problem

Feature interaction is a situation where several features that are integrated on top of a

base system may interfere with each other, or interact in ways that are hard to predict. To

explain the feature interaction problem, consider the following two telephony features:

Call Waiting (CW) and Call Forward on Busy Line (CFBL) [19, 24]. The CW feature is a

feature when active allows the subscriber to be notified of an incoming call while s/he is

busy and to accept the new call by putting the original call on hold. Then s/he is able to

toggle between the two calls. The CFBL feature, when active, will redirect all incoming

calls to the subscriber phone number to a predefined number when the subscriber line is

busy. The interaction occurs when these two features are implemented and activated on

the same phone line. In this case the system is unable to decide what to do: should it

notify the user of the incoming call and allow him to accept it according to the CW

feature, or it should automatically forward the incoming call to the predefined phone

number according to the CFBL feature.

The features interactions problem has received a lot of attention from the

telecommunications industry where many approaches have been developed. A good

description of the current research status of feature interaction in telecommunications and

software systems can be found in the proceedings of the feature interaction workshops

[25-3 1]. However, in this section, we try to summarize some of the work done on

creating approaches for detecting features interactions.

11

2.2.2 Methodology for Surveying the Feature Interaction Approaches

In this section, different approaches for detecting feature interactions are presented. A

classification can be made for the different feature interaction approaches based on

whether an approach is a static offline detection approach or it is a run-time detection and

resolution approach (also called online approaches). In this section we only focus on

offline approaches which are more relevant and of interest to the proposed IRIS approach

than the online approaches.

A classification of the offline approaches can be made based on their formality.

According to the formality criteria, offline detection approaches can be classified based

on their degree of formality into the following two categories: Semi-formal and formal

approaches. Semi-formal approaches use tables, graphs, and human subjective detection

(7 approaches) while formal approaches use formal methods (59 approaches). It must be

noted that an approach can have more than one paper published on it, however, all these

papers are counted only once as they all relate to the same approach. Due to the relevance

of semi-formal approaches to this thesis, all surveyed semi-formal approaches in the

literature are described in detail.

In the formal approaches category, only a summary table of the approaches is first

presented, then some of the approaches are described in detail. The selection criteria for

describing a formal approach in detail will depend on whether the approach has been

successfully applied in the industry or if the approach has a majorimpact in the feature

interactions research community.

12

The survey presented in this section is based on the following resources:

1. An extensive survey conducted by the author using online resources on the World

Wide Web and online database libraries such as the IEEE [32], ACM [33], and

CITESEER [34] digital libraries.

2. The proceedings of the feature interactions workshops [25-31] and journals

special issues on feature interactions [35].

3. The survey by M. Calder et al. [36] regarding the different approaches in the area

of feature interactions.

4. The survey by Keck and Kuehn [37] on the feature interaction problem in

telecommunications systems.

2.2.3 Detecting Features Interactions using Semi-Formal Approaches

Semi-formal approaches create and use graphical and tabular notations for representing

the system and using these representations for detecting interactions without the need to

use formal models. Through the conducted survey, only seven approaches were found to

fall under this category. In the following, all of the seven semi-formal approaches are

presented. Each approach will be described in a table using the following items: the

heading of the table is used to give an ID for the approach and also to list the authors and

references of the approach, the notation used in the approach, the main idea of the

approach, steps of the approach to describe how the approach is executed, results to

describe if the approach has reported any case studies or industrial results, types of

interactions that can be detected by this approach, pros to describe the points in favour of

this approach, and finally criticisms to list the points against and limitations of this

approach.

13

It is worth mentioning that all of these approaches and IRIS are similar in using semi-

formal methods. However, there are a number of differences between IRIS and these

approaches (see the criticism row in the tables below). Also, a summary of the

differences is listed in Chapter 4.

Table 2.1: The Approach by Wakahara, Fujioka, Kikuta, Yagi, and Sakai

SF 1: The Approach by Wakahara, Fujioka, Klkuta, Yagi, and Sakai [381
Notation Used Message Sequence Charts (MSC)

Approach

Main Idea

The main idea of the approach is to analyze the input-output relationships between the features of the
telecommunications domain. The analysis is done using human experts analyzing message sequence charts

Steps of the
Approach

• Informally specify features
• Check for features completion using specific telecomm. knowledge about how a feature should be written
• Define obvious interactions between features due to explicit input-output relationships between the features
• Define implicit relationships between the features using impact knowledge of features in telecomm. domain

• Develop MSC for system and features by adding all MSC of features and system in one chart
• Detect interactions by having an expert inspecting the MSC with the hell) of a telecommunications features

knowledge database

Results Examples from the telecommunications telephony features

Types of

Interactions

Detected

The interactions detected are in the fonn of.
• Duplication • Redundancy
• Incorrect order of execution • Inconsistency

Vagueness/non-determinism • Looping

Pros • Simple to use
• Do not require complete specification details to he applied but rather missing details are completed during

the execution of the approach
• One of the early attempts to tackle the problem of feature interactions using semi-formal methods

Criticism • Specific to the telecommunications domain due to the nature of knowledge being used

• The database and knowledge used are very abstract
• Combing two or more features on top of the base system in one MSC chart is not easy as the resulting MSC

will he hard to analyze by an expert
• Detects only interactions due to input-output relationships problems whereas many other types of

interactions are ignored
• Do not address system properties that must he preserved (e.g. non-functional aspects such as availability)
• Do not address resource related interactions

14

Table 2.2: Approach by Mierop, Tax, and Janmaat

SF2: The Approach by Mierop, Tax, and Janmaat 1391
Notation Used Object Oriented (00)

Approach

Main Idea

The main idea of the approach is to represent the system and the features as objects with interfaces. During
the specification of features as objects, ambiguities that arise are considered as interactions between the
features

Steps of the

Approach

• Build an object oriented environment for the telecommunication system and represent users in this base
environment as objects. Each user object will have an interface, a user agent object, and a user profile

object
• Specify the features to be added to the base system and model them as scenarios on the object oriented

environment
• Human developers analyze the object oriented environment and the object oriented feature specification for

any ambiguous situations such as two services inducing a non-determinism on busy signal

Results CW and CFBL example from European Community research Project RACE Open Service Architecture

(ROSA)

Types of

Interactions

Detected

The interactions detected are in the form of ambiguity in specification of the features in the object oriented

model

Pros • Separation of feature interactions from other resource interactions
• New and original representation of the problem

• One of the early attempts to tackle the problem or feature interactions using semi-formal methods

Criticism • No proof of'application outside the telecommunications domain
• The representation of the telecommunications domain in object oriented notation is not an easy task and the

approach is therefore did not spread
• Detects only interactions due to ambiguous situations which was defined as non-detenninism transitions

due to invoking more than one feature by a common signal
• Do not address system properties that must be preserved (e.g. non-ti,jnctional aspects such as availability)

• Do not address resource related interactions

Table 2.3: The Approach by Kinibler, Kuisch, and Muller

SF 3: The Approach by Klmbler, Kuisch, and Muller 1401

Notation Used None

Approach

Main Idea

The features are categorized into categories based on the similarities of their nature (e.g., charging features)
and the similarities of the roles they play. Interaction-prone feature combinations are obtained when two
categories are said to be interaction-prone which is decided based on the roles and resources that the
categories play and use. Once non interaction-prone combinations are eliminated, the rest are analyzed using a
systematic approach for identifying interactions. The interaction detection is based on manually analyzing the
features service life cycle created by the European Standards Telecommunications Institute/Group 6
(ESTI/NA6). The analysis is based on executing four steps in sequence and manually detecting interactions
between features.

Steps of the

Approach

• Analyse interactions between service pairs
• Analyse combinations of feature categories
• Once irrelevant non-interaction prone combinations are discarded, compare remaining stand alone feature

pairs
• Compare feature pairs within service context by manually analyzing the feature specifications provided by

the ESTl/NA6 for interactions

Results No

Types of

Interactions

Detected

Negative impact of a transition of the first feature on any state of the second feature

Pros • Uses experience along with structure approach for detecting interactions
• Analyze features in the context of their services in addition to the stand alone analysis

Criticism • Especially designed for the telecommunications domain
• The final interaction detection relies totally on experience with no rules or guidelines
• The approach used some serious simplifications in the ESTIINA6 specification with no proof of validity

(e.g., the modification of invocation data state cannot cause any interactions)

15

Table 2.4: The Approach by Dankel, Schmalz, Walker, Nielsen, Muzzi, and Rhodes

SF 4: The Approach by Dankel, Schmalz, Walker, Nielsen, Muzzi, and Rhodes 1411

Notation Used High level predicated

Approach

Main Idea

The main idea of the approach is to use a feature capturing system which will accept natural language
statements front the designer regarding specification of new features and then convert it to high level
predicates. The developed predicated are added or used to update a knowledge base. Artificial intelligence is
used to announce any ambiguities in the new specifications. Finally, developed models are shown to designers
to decide if there are interactions between the newly added feature and other existing features

Steps of the

Approach

• The designer input natural language statements about the new feature through a graphical interface
• Parse the statements using a lexical and grammar knowledge parser
• Generate high level predicates for the parsed statements
• Pass predicates to command interpreter to find any ambiguities to he returned to the designer. if no

ambiguities are found, add or update the knowledge base with the new feature
• Generate graphical models of the system for the new features with other features based on the selection of

the designer to check for interactions
• Human designer chec ks the models for interactions

Results No

Types of

Interactions

Detected

Incompatibility between two features

Pros • Allows designers to specify features with natural language
• Uses artificial intelligence to remove easy to detect ambiguities

Criticism • No proof of applicability outside the telecommunications domain
• The actual detection of interactions is completely done by human and with experience
• The approach does not have any systematic steps in it and does not address the detection of interaction

Table 2.5: The Approach by Kuisch, Janmaat, Mulder, and Keesmaat

SF 5: The Approach by Kuisch, Janmaat, Mulder, and Keesmaat [421

Notation Used Basic Call State Modes (BCSM)

Approach

Main Idea

The main idea of the proposed approach is to represent the system and the ICatures using a template. This
template contains information about the functional ities of features through the representation in BCSM
notation and the use of Detection points, information flows, and resources. The human developers analyze the
BCSM for interactions using specific criteria

Steps of the

Approach

• Produce a behavioural specification according to a predefined template
• Specify the features to be added to the base system using the BCSM, the Detection points, the dataflow, and

the resources usage

• Combine features to be examined for interaction in one model
• Determine the range that each feature controls on the BCSM model
• Allow human detection of interaction using the criteria that interaction occurs when there is a conflicting

overlap between the ranges of two features or when the two features want to process each others flow data
in conflicting manner

Results Examples from the telecommunications domain

Types of
Interactions

Detected

The interactions detected are in the form of:
• Conflicting data manipulation
• Conflict of control due to overlapping of features range
• Shared resources interactions

Pros • Practical and have sufficient in-depth details about the telecommunications IN networks
• Considers resources interactions
• One of the early attempts to tackle the problem of feature interactions using semi-formal methods

Criticism • Specific to the telecommunications domain
• Specification in BCSM is not an easy task
• The reference does not describe types of resource related interactions that can he detected but states that it

is limited and needs further development
• Do not address system properties that must be preserved (e.g. non-functional aspects such as availability)

16

Table 2.6: The Approach by Keck

SF 6: The Approach by Keck 1431

Notation Used Basic Call State Modes (BCSM)

Approach

Main Idea

Detect interactions prone scenarios by a tool that generates a list of interaction prone scenarios based on a
criteria for interaction detection. The generated list can be further analyzed by other interaction approaches

Technique of

the Approach

The developed tool will detect interaction prone scenarios using the following components:
• Initialization Components: This component select and parse the provided service description (i.e.,

provides pairs of services to be examined)
• Filtering Component: This component applies different filters based on criteria used for identifying

scenario prone interactions
• Result Generation Component: This component creates a file reporting the results of applying the filters

Results Case study on the telecommunications telephony features

Types of

Interactions

Filtering: Trigger collision interactions. Resource conflict interactions, and Data conflict interactions

Pros Reduces the number of scenarios to be examined in large and complex systems where analysis of all
behavioural scenarios of the system is hard

Criticism • The tool requires design details on the behaviour of features to be examined, The features are then written
using the BCSM notation

• The generated list contains only interaction prone scenarios and this list must he analyzed by another
detection approach for deciding which features arc really interacting

• The criteria used for identifying interaction prone scenarios are limited and many interactions (e.g.

sequential interactions) are not addressed
• Do not address system properties that must he preserved (e.g. non-functional aspects such as availability)

Table 2.7: Approach by Kinibler and Sobirk

SF 7: The Approach by Kimbler and Sobirk 1441
Notation Used Use Case Models

Approach
• Idea Main iuea

The main idea of the approach is to build a use case model that describe the different scenarios of using the
and then build a set-vice usage model that describes the dynamic relations of the features from the

users point of view. A human expert have then to manually analyze the models

Steps of the
pproac Approach

• Create a use case model that have many use cases that describe roles and actors for the system and how
di ff erent scenarios of the system might be executed by the actors

• Transform the use case model into a service usage model that describes the dynamic behaviour of the

service form the user's perspective
• In the service usage model, create service usage graphs that is based on state diagrams

• The process of building the service usage model is done as follows: first the use cases from the use case
model are analyzed, then the int'oniial description of each use case is converted into sequence of events,
then identify system usage states, and finally combine these analyzed data into a service usage model

• Manually analyze the created models for interaction-prone features by a human expert

• Two features are considered interaction-prone when they access or modify same service or call specific data

Results Examples from the teleconim domain

Types of
Interactions
Detected

Incompatibility between two features due to shared service or data access violation

Pros • Uses experience along with structure approach for detecting interactions
• Analyze features in the context of their services in addition to the stand alone analysis
• The approach can avoid state explosion by dividing the use case graphs into smaller ones

Criticism • The created use cases, which is the first step and basic core, cannot cover all possible usage scenarios

• The final interaction detection relies on experience with limited definition of when two features interact

• Creating use cases for new systems is very hard and hence the authors explicitly limit the approach to
telecommunications domain

• The criteria used for identifying interaction prone scenarios are limited and many interactions (e.g.
sequential interactions) are not addressed

• Do not address system properties that must be preserved (e.g. non-functional aspects such as availability)

17

2.2.4 Detecting Feature Interactions using Formal Approaches

A formal approach can be simply defined as an approach that uses a formal language for

describing software specifications such that formal proofs are possible about the software

specification. A formal language is a language whose vocabulary, syntax, and semantics

is based on mathematical concepts whose properties have been well investigated and are

well understood [45].

In this section we present a summary of the formal approaches for detecting feature

interactions and highlight some of the famous approaches that have been either applied in

the industry or have significant impact in the feature interaction research community.

Generally, formal approaches for detecting features interactions can be divided into the

following two sub-categories:

1. Approaches that employ Specific software engineering techniques: These

approaches employ techniques inspired by the software engineering domain and

use different formal languages (e.g., SDL [16,46] and LOTOS [47]),

2. Approaches that employ formal methods: These are approaches that mainly use

logic and formal languages like SDL to validate properties and/or behaviour.

These approaches are in turn divided into:

a. Properties only approaches

b. Behavioural only approaches

c. Properties and behavioural approaches

Software engineering approaches are often considered part of formal approaches since

they always involve a formal language in association with the software engineering

approach they adopt. However, a difference between software engineering approaches

18

and approaches that employ formal methods is that the latter approach uses only logic

and formal languages, whereas software engineering approaches use a more

comprehensive software engineering view.

2.2.4.1 Approaches Employing Specific Software Engineering Techniques

Software engineering approaches use specific software engineering techniques that have

been used elsewhere in the area of software engineering. Usually, software engineering

approaches use a formal language to detect and eliminate interactions between features.

Table 2.8 lists some of the approaches that have been introduced in the feature interaction

community that fall in this category.

Table 2.8: Software Engineering Approaches

ID Approach Authors
and References

Software
Technique used

Formal
Notation used

Application
Phase

Reported
Results

Fl
Hay, Atlee [48]

Feature
Composition

Labeled
Transition
Diagrams

Design
No

F2
Braithwaite, Atlee [49]

Layered State
Transition

State
Machines

Specification
Case study
(telecomm.
domain)

F3 Kelly, Crowther,
King, Masson,
DeLapeyre [50]

SDL SDL
Specification

Case study
(telecomm.
domain)

F4
Bredereke [51]

Product
Families

CSP-OZ Requirements
Case study
(telecomm.
domain)

F5 Heisel, Souquieres [17,
18]

Requirements
Elicitation

System state
traces

Requirements
Case study (lift

system)

P6
Zave, Jackson [52-55]

Feature
Architecture DFC

Design and
implementation

Industrial scale (telecomm.

domain)

F7
Iraqi, Erradi [56]

Composition of
FSA

MONDEL Specification
Case study
(telecomm.
domain)

F8
Prehofer [57]

Feature
Oriented

Programming
JAVA Requirements

Examples
(telecomm.
domain)

F9
Utas [58]

Pattern
Languages

FSM Implementation
Industrial Scale
(Telecomm.
domain)

19

Table 2.8 - Continued: Software Enineerirnz Annroaches
ID Approach Authors

and References
Software

Technique used
Formal

Notation used
Application

Phase
Reported
Results

F1O
Blair, PANG [59]

Aspect Oriented
Software

Development
Aspect 3 Specification

Case study
(email system)'

F11 Amyot, Charfi, Corse,
Gray, Logrippo,
Sincennes, Stepie,

Ware [60]

Use Case Maps LOTOS
Requirements,

Design

Industrial scale
(telecomm.
domain)

F12
Prehofer [61]

Feature
Composition

State chart
diagrams

Design
Examples

(email system)

F13 Berkani, Cave,
Coudert, Kaly, Le Gall,
Ouabdesselam, Richier

[621

Service
Integration

State
Transition
Rules

Design
Examples
(telecomm.
Domain)

F14
Metzger, Webel [63,

64]
Traceability
relationships

Formal
product model
(uses SDL)

Requirements,
Strategy,
Structure,

Environment

Case study
(heating and
illumination

control system)

F15
Turner [65-68] CHISEL LOTOS, SDL Requirements

Examples on
Interactive Voice
Services (IVS)

Fl6

Zave [69, 70]
Component
architecture

DFC Design

Examples
(telecomm.
Domain and
Email system)

F17
Choi, Kim, Lee, Kwon

[71]

Distributed
functional plan
abstraction level

Petri nets Design
Case study
(telecomm.
domain)

F18
Bredereke [72, 73]

Automata
theoretic

formalization
ESTELLE Design

Case study
(telecomm.
domain)

F19
Klein, Prehofer, Rumpe

[74]
Feature

Composition

State
Transition
Diagrams

Design
Example

(telecomm.
domain)

F20
Faci, Logrippo [75]

Goal oriented
knowledge

LOTOS Design
Examples
(telecomm.
Domain)

In the following, more detailed explanation of the approaches F6, F9, and Fl 1 is

presented (industrial scale application). Also, detailed explanation of the approaches F14

and Fl 5 is presented (impact on feature interactions research community)

20

Table 2.9: The Approach by Zave and Jackson

F 6: The Approach by Zave and Jackson 152-551
Notation Used Distributed Feature Composition (DFC)

Approach
Main Idea

Use the known pipe and filter principle, In this principle:

• Filters communicate with the environment through only pipes
• Filters does not know what is on the other side of the pipe
Based on this principle, feature interactions can be prevented through the enforcement of a certain architecture
called the DFC on the telecommunications network

Technique of

the Approach

A structure is
network through
On call request
outgoing call
The last feature
changes according
is triggered and

2C
tl

used on
certain

to tl.
to F2 and
who

to
so on.

which
ports

the interface
wait

receives
its specifications.
Hence

a line interface
on each interface.

oftl
for response.
the back signal

it is clear that

is used

sets up an
Also,

is
But if F I

Fl has

to represent
Features are
outgoing

F2 generates
F I and therefore

is not triggered
the highest

interface
represented

call which
an outgoing

if it
or

priority

between
by feature

goes to
call

is a trigger
it is disabled,

and then

F3. Now,
to Fl

to Fl
then
F and

-

a telephone
boxes.

F3
and wait
then Fl
F2 is
finally

and the

generates an
for response.
will make

to be checked if it
F3

10 2C Li F3 P2 FL Li o Po i,
t2

Results Industrial application in the telecommunications domain (AT&T Inc.)

Types of

Interactions

Detected

Prevention of interactions through the enforcement of the DFC architecture

Table 2.10: The Approach by Utas

F 9: The Approach by Utas 1581
Notation Used Finite State Machines (FSM)

Approach

Main Idea

The main idea of the paper is to present a pattern language for tackling the problem of feature interactions. A
pattern language is a collection of patterns that are used to solve a set of related problems (in this case feature

interactions). A pattern is a general technique used to tackle a problem using a standard foiin. In this
approach, each pattern can be used to handle a group of similar interactions (e.g.. the pattern called PFE Chain
of responsibility is used to tackle interactions that arise when two features can trigger at the same feature
alternation point which is the time when a feature modifies the base system).

Technique of

the Approach

The approach technique is based on developing several patterns to handle the different feature interactions at
the implementation level.
These patterns are then applied to detect and resolve feature interactions. Each pattern will consist of:
Context. Problem. Forces, Solution, Rationale, Resulting Context, Examples, and Related Patterns.

Results Industrial application in the telecommunications domain (Nomlel GSM Mobile switching centre)

Types of

Interactions

Detected

• A lature that changes a basic call parameter that must he used by another feature
• Interactions between a feature monitoring a channel data and features that can modify the users connection

(e.g., close the channel)
• Interactions between a feature that needs to change the state of another feature to execute
• A feature that needs to perfonn a query and wait for response and depending on the result of the query

suitable actions can he done
• Interactions between multiplexer features that can run at the same time for the same user

• Interactions between features that are triggered at the same feature alternation time
• Interactions between an feature active feature and another incompatible feature that is being triggered

21

Table 2.11: The Approach by Aniyot etal.

F!!: The Approach by Amyot, Charfi, Corse, Gray, Logrippo, Sincennes, Stepie, and Ware 160]
Notation Used Use Case Maps (UCM), LOTOS

Approach

Main Idea

UCM provides very good visual representation for features and can be used as a front end for any formal
language. In this work, LOTOS was chosen as the foniial language that is used to do the interaction detection.
The approach first uses UCM to visually represent features then the generated representations are translated
into LOTOS to be validated for interactions

Steps of the

Approach

• Represent the system features using UCM
• Translate the generated UCM models into LOTOS manually then automatically
• Extract test scenarios putting in mind that the tests should test: basic system properties, individual features

propel-ties, and interactions between features
• Use acceptance/rejection test scenarios to execute the LOTOS specification and see if the LOTOS

specification accept or 1-eject the test (reject means the executed behaviour of the specification does not
match the expected behaviour specified in the original test scenario)

Results Industrial results in the telecommunications domain (Mitel Inc.)

Types of

Interactions

Detected

UCM itself does not provide results of'interactions unless translated into a formal language. However, once
translated into LOTOS, the interactions Ibund would he in the fbnn of

• Basic service properties violation
• Scenarios that show negative impact of one feature on another feature

Table 2.12: The Approach by Turner

F 14: The Approach by Turner [65-681
Notation Used Chisel Representation Employing Systematic Specification (CRESS). LOTOS. and SDL

Approach

Main Idea

The CRESS notation can be used to graphically represent a service and its features. Then developed graphical
notation can be translated into a thnnal language (either SDL or LOTOS) where interaction detection takes

place

Technique of

the Approach

• Apply CRESS to represent the service and its features
• Translate the generated graphical representation into SDL or LOTOS using SDL or LOTOS code

generators
• Analyze the features using either an SDL validator or a LOTOS validator to find problems either in the

features themselves or in the group behaviour ot'the features

Results Examples are given on detecting interactions in Interactive Voice Services (IVS)

Types of Detecte&

Interactions

CRESS itself does not provide results of interactions unless translated into a formal language. However, once
translated into SDL or LOTOS, the interactions found would be in the form of inconsistency and deadlocks

Table 2.13: The Approach by Metzger and Webel

F 15: The Approach by Metzger and Webel [63, 641
Notation Used Formal product model (uses SDL)

Approach

Main Idea

The approach main idea is to detect interactions caused by the environment as well as interactions caused by the
system. The approach is based on developing a formal product model that describes requirements, functional
needs, tasks, and functional strategies. Using this formal model, analysis can be made to detect interactions
based on dependencies between the functional needs and the other atlilbets of the lbmial product model.

Technique of

the Approach

• Develop the fonnal product model of the system
• Detect interactions at the requirements level by developing a dependency graph between the needs and the

tasks. An interaction point is a node that realizes more than one need and has more than one direct parent.
From these points of interaction, the actual interactions can be deduced.

• To reline the potential interactions detected at the requirements level, interactions that cannot occur should
be eliminated. This is done by only considering tasks that are directly and not transitively realized by the
task at the point of interaction.

• Detect interactions at the strategy level. Alkr the above levels of information have been considered,
dependencies between tasks that are introduced by their realization can he examined as soon as the
developers have specified the strategies of the respective tasks. Dependencies on this level can occur
because strategies can be coupled by signals or attributes to exchange information

• Finally detect interactions at the environmental level. This is done by considering the dependencies that
arise due to the environment (e.g. building architecture)

Results Case studies in the building control system, automotive control system, and railway crossing controller

Types of Detecte

Interactions

Negative dependencies

22

2.2.4.2 Approaches Employing Formal Methods

Approaches that employ formal methods are divided into three categories:

• Property only approaches: This category contains approaches that represent the

features and the base system in terms of abstract properties and then check for

interactions such as inconsistencies or unsatisfiabilities.

• Behavioural only approaches: This category contains approaches that describe

features and the base system in terms of behavioural models and then check for

interactions such as nondeterniinism and deadlocks.

• Properties and Behavioural approaches: The third category contains approaches

that describe features and the base system in terms of both properties and

behavioural models and then check for interactions such as: combined features do

not satisfy the corresponding combined properties (i.e., a property of a feature can

be satisfied in the behavioural model of the feature but when two combined

features are modeled together in one behavioural model, the combined properties

of the two features are not satisfied)

23

2.2.4.2.1 Properties Only Approaches

Table 2.14 presents a summary of some of the approaches that use properties to detect

interactions. Detailed explanation of the approaches F21, F22, and F23 are presented later

on after Table 2.14.

Table 2.14: Properties only approaches

ID Approach authors Property language Detected Interactions

F21 Blom, Jonsson, Kempe [76] TLA
Deadlocks and

Inconsistencies

F22 Gibson [77, 78] FOL & TLA Invariant violations

F23 Felty, Namjoshi [79] LTL Inconsistencies

F24 Rochefort, Hoover [80] Constructive Logic Satisfiability

F25 Frappier, Miii, Desharnais [8 1) FOL Inconsistencies

F26 Bostrom, Engstedt [82] DELPHI Inconsistencies

F27 Calder, Miller [83] LTL
Deadlocks, race

conditions

F28 Lee [84, 85] Object-Z State variables conflicts

F29 M. Butler [86] Z Inconsistencies

24

Table 2.15: The Approach by Blom, Jonsson, and Kempe

F 21: The Approach by Blom, Jonsson, and Kempe [76]

Notation Used Temporal Logic of Action (TLA)

Approach

Main Idea

A service is considered as a module which can be formalized. Also each feature is seen as an independent
fonaal module. The overall system is obtained by composing the service and features modules. This
composition is seen as the conjunction of the properties of the modules.

Technique of

the Approach

• Specify the basic system using TLA in the form of variables, events, restriction, initial condition, and
reaction pail,

• Check for deadlocks interactions in the base system by making sure that the system always reaches states
where other events can still occur

• Specify features using TLA
• Check for logical inconsistencies of (Feature_A AND Feature—B) over the base system
• Resolve interactions between the interacting features by having Feature_A or Feature_B weaker

Results Case study in the telecommunication domain on telephony features

Types of

Interactions

Detected

• Deadlocks
• Logical inconsistencies between actions exhibited by two features

Table 2.16: The Approach by Felty and Namjoshi

F 22: The Approach by Felty and Namjoshi 1791
Notation Used Linear Temporal Logic (LTL)

Approach

Main Idea

Base system and features are specified in LTL. Two features are considered interacting if their specifications arc
mutually inconsistent under axiom properties about the underlying base system behaviour

Technique of

the Approach

• Model the base system axiom properties using LTL and W-automata
• Model the features specifications using LTL and W-automata
• Use the model checker COSPAN to check for consistency of the modeled formulae
• Two features A and B interact 1FF A and B can be enabled together under the system properties such that:

(System prosperities hold) AND (A and B are enabled together) AND (Some feature property doesn't hold)

Results Case study in the telecommunication domain on 10 telephony features based on Bell-labs specifications
documents

Types of

Interactions

Detected

• Inconsistencies between logical formulae

Table 2.17: The Approach by Gibson

F 23: The Approach by Gibson 177, 78]
Notation Used Temporal Logic of Action (TLA)

Approach

Main Idea

The main idea of the approach is that the base system and the features can be treated as objects. The author used
TLA to express the liveoess properties (such as always, eventually). The liveness properties are then checked

for each pair of features to detect interactions.

Technique of

the Approach

• Model the base system axiom properties using fair objects semantics (which is TLA and Object Oriented

concepts)
• Specify state invariant properties (properties that contain the word "Always") and fairness properties

(properties that contain the word "Eventually)
• Classify the features under consideration according to their triggers using a triggered feature taxonomy
• According to the result of the classification, apply interaction detection technique to mainly detect no-

determinism
• Resolve interaction based on prioritizing the features

Results Examples from the telecommunication domain on telephony features

Types of

Interactions

Detected

• Invariant violations

25

2.2.4.2.2 Behavioural Only Approaches

Table 2.18 presents a summary of some of the approaches that use behavioural languages

to represent the base system and the features to check for interactions. The different

approaches detect different interactions and at different levels of abstraction. A detailed

explanation is given after Table 2.18 on the approaches F30, F32, and F37.

Table 2.18: Behavioural only approaches

ID Approach authors Behavioural language Detected interactions

F30 Hall [87] State Transition

Diagrams

Inconsistent state changes,

Inconsistent actions

F31 P lath, Ryan [88] CSP Deadlocks

F32 Bruns, Mataga,

Sutherland [89]

Chisel variant Order dependency

F33 Blom [90] MSC variant Inconsistent post-conditions

Inconsistent event

F34 Au, Atlee [9 1] State Transition

Machines

Control and data modification.

Resource contention,

Unreachable states

P35 Bergstra, Bouma [92] Synchronous MSC Inconsistencies

P36 Laporta, Lee, Lin,

Yannakakis [93]

FSA Language differences

F37 Khoumsi, Bevelo [94, 95] ESFA Non-determinism,

Inconsistencies

P38 Inoue, Takami, Ohta [96,

97],

1-larada, Hirakawa,

Takenaka [98, 99]

State Transition Rules Abnormal state, Transition

disappearance of normal

state

F39 Nakamura, Kakuda,

Kikuno [100]

FSM Deadlocks, Loops, Non-

determinism

F40 Thistle, Malhame, Hoang

[101]

Control theory Conflicting languages

26

Table 2.18 - Continued: Behavioural only anroaches
ID Approach authors Behavioural language Detected interactions

F41 Chan, Bochrnann

[102]

SDL, MSC Resource contention,

Incoherence, non-determinism,

deadlocks, livelocks

F42 Mitchell, Thomson, Jervis
[103]

MSC, Process Algebra Phase transition interactions

F43 Kawauchi, Ohta [104] State Transition Rules Three way interactions

F44 De Marco, Khendek

[105]

eSERL Inconsistency of

composition

F45 Aggoun, Combes [106] SDL State errors

F46 Lin, Lin [107] PROMELA Violation of assertions

F47 Nakamura, Leelaprute,

Matsumoto, Kikuno [108,

109]

CPL Semantic warnings

Table 2.19: The Approach by Hall

F 30: The Approach by Hall 1871
Notation Used State Transition Diagrams
Approach
Main Idea

The main idea of the approach is to use foreground/background models for basic system and
features combination to detect interactions. A background model is a model used to represent the
base system and is of low priority whereas a foreground model is a model of the feature that has
higher priority and when merged with a background model will override only specific parts of it
and inherit its un-ridden parts. The combination approach is based on building a model for the basic
system extended for feature F I and another model for the basic system extended for F2 and then
use a straight merge to combine the two models. An interaction would occur whenever the
conceptual foreground behaviour of a feature is inconsistent of the conceptual background or
default behaviour of another feature. The resolution technique is to allow the foreground models to
override the behaviour of the background models at points of interaction. However, un-overridden
points are left as is

Technique of
the Approach

• Construct a foreground model of each feature
• Construct a background model of the base system
• Validate (FGl1 AND BG)
• Validate (FGI2 AND BG)
• Merge only the foreground models of the features using direct merge to get a new foreground
model ofF1' F2

• Validate(FGIrte AND BG)
• Resolve any interactions detected from the previous step as explained earlier

Results Case study in the telecommunications domain based on the second feature interaction contest [191

Types of
Interactions
Detected

• Type I interactions occur when feature combination results in an ill-defined next state or output
function for the resulting reactive system

• Type II interactions occur when feature combination results in the violation of a correctness
property for one of the individual features

27

Table 2.20: The Approach by Bruns and Mataga, Sutherland

F 32: The Approach by Bruns and Mataga, Sutherland 1891
Notation Used CHISEL valiant

Approach

Main Idea

The main idea of the approach is based on having an original service and then applying a new feature to the
service to extend the base service. Features are implemented on top ol'the base system by adding them in an
ordered sequence. If the system behaves differently when the order oithe features are changed then these
features are considered as interacting

Technique of

the Approach

• Model the base system as a state transition system
• Model the features that consists of sequence of updates, sequence of reactions, and sequence of events
• Apply Fl then F2 to the system and capture the behaviour of the system
• Reverse the order and apply F2 then F] and capture the behaviour of the system

• Interaction occurs if the system behaviour is different. i.e., (Fl(F2(S)))• (F2(Fl(S)))

Results Case study in the telecommunications domain based on telephony features

Types of

Interactions

Detected

order sensitive

Table 2.21: The Approach by Khoumsi and Bevelo

F 37: The Approach by Khoumsi and Bevelo [94, 95]
Notation Used Extended Finite State Automata (EFSA)

Approach

Main Idea

The main idea of the approach is inspired from the control theory ol'discrete events. Features can he described
using EFSA while the system can he extended using the Finite state automata (FSA). Features are added on top
of the base system to extend it. The extended system is then checked for non-detenninism or variable
inconsistencies

Technique of

the Approach

• Model the base system using FSA
• Model the features using the EFSA

• Describe a scenario that express the non occurrence ol'the suspected interaction
• Transform EFSA to FSA
• Apply a model checker to see if'the scenario holds

Results Case study in the telecommunications domain based on the second feature interaction contest telephony
features [19]

Types of

Interactions

Detected

• Non-determinism
• Inconsistencies

2.2.4.2.3 Properties and Behavioural Approaches

Table 2.22 presents a summary of some of the approaches that use both property and

behavioural languages to represent the base system and the features to check for

interactions. A detailed explanation is given after Table 2.22 on the approaches F50, F51,

and F55.

28

Table 2.22: Properties and behavioural approaches

ID Approach authors Property language Behavioural language

F48 Combes, Pickin [110] LTL SDL

F49 Gibson [13] TLA LOTOS

F50 Plath, Ryan [1111 CTL SMV

F51 Calder, Miller [112] LTL PROMELA

F52 Stepien, Logrippo [113] LOTOS LOTOS

F53 Capellmann, Combes, Petterson,

Renard, Ruiz [114]

MSC SDL

F54 Kamoun, Logrippo [115] CTL LOTOS

F55 Bousquet, Ouabdesselam, Richier,

Zuanon [116, 117]

Lustre Lustre

F56 Guelev, Ryan, Schobbens [I 18] DC SMV

F57 Thomas [119] Temporal Logic LOTOS

F58 Bouma, Levelt, Melisse,

Middleburg, Verhaard [120]

TL SDL

F59 Gamnielgaard, Kristensen [121] FOL State Transition rules

Table 2.23: The Approach by Plath and Ryan

F 50: The Approach by Plath and Ryan 11111
Notation Used Computation Tree Logic (CTL) and Symbolic Model Verifier (SMV)

Approach
Main Idea

The main idea of the approach is to describe the features formally as units of functionalities which can he
understood without much knowledge of the base system. The features are integrated on top of the base system
and the new extended system is verified. The verification of the new extended system includes verification of
the extended system properties and verification of the extended system behaviour

Technique of

the Approach

• Model the base system using the extended SMV code
• Model the system properties using CTL
• Verify the base system against the properties using SMV model checker

• Model the features using SMV code
• Integrate the features on top of the base system using the tool SF1 (SMV Feature Integrator which is a tool

tat the authors developed)
• Verify the extended system against the set of properties described in the second set and was modeled using

CTL. Detect any inconsistencies using the SMV model checker

Results • Case study in the telecommunications domain based on the telephony features

• Case study in the Lift system

Types of

Interactions

Detected

Logical inconsistencies

29

Table 2.24: The Approach by Calder and Miller

F 51: The Approach by Calder and Miller 11121

Notation Used Linear Temporal Logic (LTL) and PROM ELA

Approach

Main Idea

The main idea of the approach is to consider the base system service to develop the light level of abstraction
of needed to ensure that effixtive reasoning techniques are established before proceeding to add features.
Once this is done, features are added. The PROM ELA implementation is augmented with the new feature

behaviour, primarily through the use of an inline function, and then validated. Interaction detection analysis
takes two forms: static analysis which is inspection of the PROMELA code, and dynamic analysis which is

reasoning over combinations of sets of logical formulae and configurations of the feature

Technique of

the Approach

• Model the base system as a set of properties and as a finite state automata (use LTL for properties and

PROM ELA for finite state automata)
• Also, model the features as properties and finite state automata

• Add the features on top of the base system

• Perform static analysis to detect inconsistencies of the syntax of the features

• Perform dynamic analysis of the model and the properties using the tool SPIN

Results Case study in the telecommunications domain based on the telephony features

Types of

Interactions

Detected

• Non-determinism

• Logical Inconsistencies

• Violation of properties

Table 2.25: The Approach by Bousquct, Ouabdcsselam, Richier, Zuanon

F 55: The Approach by Bousquet, Ouabdesselam, Richier, Zuanon [116, 1171
Notation Used Lustre

Approach

Main Idea

The main idea of the approach is to represent the system behaviour and properties using Lustre. Features

validation should be conducted in an interactive way by observing different features behaviours through
sequences of exchange between the user and the telephony system executable specifications. Feature
validation is done through testing to save time and resources.

Technique of

the Approach

• Build a Lustre program that consists of the basic call service properties and the properties of the features

• Apply testing methods that are part of Lustre to validate a specific feature F
• Detect interactions between features by confronting each property of all available features to the new

feature F. This is done incrementally by having a Lustre program gathers the properties of the feature to be

compared and confront it with the properties of the new feature F. Several testing methods are then applied
and an interaction is detected when the Lustre testing model output a false result at any time.

• Perform static analysis to detect inconsistencies of the syntax of the features

• Pertonn dynamic analysis of the model and the properties using the tool SPIN

Results Case study in the telecommunications domain based on the telephony features

Types of

Interactions

Detected

Logical Inconsistencies

30

2.3 Surveying the Requirements Interactions Management Area

2.3.1 The requirements Interaction Management Problem

Requirements Interaction Management (RIM) was discussed in detail by Robinson et al.

in [11] and it was defined as "the set of activities directed towards the discovery,

management, and disposition of critical relationships among a set of requirements". It is

very similar to feature interactions in the telecommunications domain in that they both try

to detect possible interactions between features or requirements and provide guidance on

how to resolve these interactions. Requirements interaction approaches are complete

management approaches that include identification of interaction, proposed resolutions

for the interaction, and negotiation with stakeholders for the best solution. This complete

solution approach is more general than the feature interaction detection approaches as

discussed in Section 1.1.

The lack of proper requirements interaction management resulted in several problems

that ranged from minor inconsistencies between requirements to real life disasters like the

software of the Therac-25 system, the destruction of ARIANE-5, and the A320 Warsaw

airplane. In the A320 airplane disaster, an interaction between two requirements led to

serious results that in turn led to the destruction of the airplane as follows: In the air,

braking of an airplane is not allowed. To ensure that pilots will not accidentally engage

the A320's breaking system, the software has a requirement that the breaking system is

not engaged unless the wheels detect the full weight of the airplane during the landing.

Another requirement of the system is that the airplane will have an efficient breaking

system to ensure a safe landing. However, when a Lufthansa pilot attempted to land in

31

Warsaw on a wet, runway in high winds, the system did not detect the full weight of

the plane on the wheels, with the following results:

"The spoilers, brakes and reverse thrust were disabled for up to 9 seconds after landing in

a stonn on a water logged runway, and the airplane ran off the end of the runway and into

a conveniently placed earth bank, with resulting injuries and, loss of life" [122]

In this section we summarize some of the work done that are relevant to the requirements

interaction management area.

2.3.2 Methodology for Surveying the Requirements Interaction Approaches

In this section, different approaches for requirements interaction management are

presented. A classification can be made for the different approaches based on the way

they can detect interaction [11]. This classification will classify an approach into one of

the following categories: Classification based, Patterns based, Al planning based,

Scenario analysis based, formal model checking based, and runtime monitoring based.

However, in this section, the category formal model checking based approaches is not

considered as this was considered in detail in section 2.2. Also, the runtime monitoring

based approaches are not considered as they are irrelevant for this thesis.

Since the surveyed approaches are interaction management approaches, i.e., they are not

concerned with only detecting interactions but have many other activities, the focus

within each approach will be on the detection part as the rest of the approach is irrelevant

to this thesis.

32

The survey presented in this section is based on the following resources:

1. An extensive survey conducted by the author using online resources on the World

Wide Web and online libraries such as the IEEE [32], ACM [33], and CITESEER

[34] digital libraries.

2. The survey by Robinson et al. [I I] regarding the different approaches in the area

of requirements interaction management.

2.3.3 Classification Based Approaches

The classification based approaches detect requirements interactions by comparing

requirements against a-priori model of requirements interactions. The basic idea is to

build a knowledge of all commonly known interactions that would occur between

requirements (e.g., non-functional requirements), and then classify the requirements and

compare them to the rules and knowledge that was built previously. For example,

consider the two requirements Ri that can be classified to be a high accuracy requirement

and R2 that can be classified into a low cost requirement. From the a-priori knowledge on

non-functional requirements that the low cost is interacting with high accuracy, hence Ri

and R2 are considered as interacting requirements.

Approaches that fall in this category are: WinWin approach by Boehm in 1996 [15], NFR

approach by Mylopoulos et al. in 1992 [123], and Viewpoints by Nuseibeh et al. in 1994

[124].

33

2.3.3.1 The WinWin Approach [15]

The WinWin approach was built to support collaboration between a wide range of

stakeholders with the ultimate goal of getting each stakeholder to be a winner (i.e., his

needs are fulfilled). To achieve this, a-priori model on negative interactions between

different non-functional requirements was built in the QARRC project [15].

Interaction identification is done when an analyst enters a new requirement R for a

specific stakeholder into the database of the project under consideration. The QARRC

will then classify the new requirement under one of the non-functional categories Cl

(e.g., Accuracy) and starts searching for other non-functional requirements categories that

would interact with Cl using the a-priori model. Once an interacting non-functional

requirement category C2 is identified, all previously entered requirements that were

classified under this category C2 are identified as interacting requirements with the new

requirement R. The QARRC will then send a conflict advisor note to all concerned

stakeholders.

The QARRC model in the WinWin approach suffers from the following problems:

• The interaction detection is based on a-priori model and hence it cannot identify

new interactions that are not included in that a-priori model.

• The model is currently able to detect only non-functional requirements

interactions and it does not consider technical and behavioural interactions which

are in many cases the basic core of the system.

• The model uses implementation strategies for linking the non-functional

requirements categories together and identifying if they interact. This means that

these strategies need continuous update.

34

2.3.3.2 The Non-Functional Requirement (NFR) Approach [125]

The NFR approach was built to model and analyze non-functional requirements. The

approach is based on building dependencies graphs for the requirements of the system

(either functional or non-functional) in the form of AND/OR hierarchies. The interaction

detection is done when an analyst enters a new requirement R and models it into the

dependencies graphs. The first step will be to associate the new requirement with existing

non-functional requirements. Association here means that the new requirement when

entered will be known, via the a-priori model, to have positive or negative effect on some

non-functional requirements. The second step will be to propagate the effect to all other

non-functional requirements to estimate the cumulative effect of the requirement on the

overall non-functional requirements.

The NFR approach suffers from the following problems:

• The NFR approach is used to target the interactions and effects with respect to

only non-functional requirements

• The NFR approach is based on a-priori knowledge and hence it cannot tackle new

interactions that are not included in the a-priori model

• The NFR approach is based on human experts in building the hierarchy of the

requirements with AND/OR relations. However, human experts can make

mistakes.

• If a link is missed between two requirements then the interaction cannot be

propagated to other levels of the hierarchy.

35

2.3.3.3 The Viewpoint Approach [124]

Viewpoints were introduced as a means to partition requirements of different

stakeholders and analyze them for conflicting views. Viewpoints address the integration

of the different and heterogeneous viewpoints from stakeholders which are known to be

part of the requirements engineering known problems.

The interaction detection is done by having the analyst representing the new requirement

as a viewpoint. The analyst can then apply consistency rules to determine inconsistencies

between the new requirement and the other requirements.

Viewpoints are expressed usually using a language which can be dataflow diagrams [126]

or state transition diagrams [127]. Consistency rules are built using a formal rule pattern

and are based on a priori knowledge on the different types of inconsistencies and

interactions that can occur.

The viewpoints approach suffers from the following problems:

• It is aimed to detect inconsistencies rather than technical and behavioural

interactions

• It partially uses formal languages such as state transition diagrams, which require

heavy mathematical modeling, to represent the viewpoints in some cases.

2.3.4 Patterns Based Approaches

Pattern based approaches are approaches that detect interactions through the comparison

of requirements with detection pattern conditions and interaction is found when there is a

match. An interaction pattern uses pre and post conditions to constrain their use in

specific situations and hence identify interactions.

36

An example of the approaches that can be classified as patterns based approaches is the

KAOS project [128] which defines formal interaction patterns for identifying

interactions.

2.3.4.1 The KAOS Approach [128]

The Knowledge Acquisition in autQrnated Specification of software (KAOS) is a broad

project that includes meta-modeling, specification methodology, interaction

identification, learning, and reuse. We focus our efforts on the interactions detection with

patterns part. The KAOS detects requirements interactions as the following types:

Process level deviation, Instance level deviation, Terminology clash, Designation clash,

Structure clash, Conflict, Divergence, Competition, and Obstruction.

For each one of these interaction types, the KAOS applies the corresponding interaction

pattern to detect interactions under this type. For example, in the divergence interactions,

apply the divergence pattern to generate boundary conditions sufficient to detect

interactions. The divergence pattern is of the form:

"Given assertions of the Achieve-Avoid pattern: (P=OQ) A (RO-1S) A (Q=S),

consider the boundary condition: 0 (PAR)"

The KAOS approach has the following problems:

• It is a heavy weight approach

• It uses formal notations (temporal logic) to define its interaction patterns

• All requirements must be represented using formal notations (temporal logic)

2.3.5 Al Planning Based Approaches

The AT planning approaches divides requirements into operational and non-operational

requirements. For operational requirements, Al planning approaches use Program Slicing

37

techniques [129] to highlight semantic differences. However, for non-operational

requirements, which are presented as system goals, planning techniques can be used to

detect interactions when the planner cannot find a plan for the conjunction of the

requirements.

Example of approaches that fall in this category is the Deficiency-Driven Requirements

Analysis (DDRA) [130].

2.3.5.1 The DDRA Approach [130]

The DDRA was designed to use Al techniques to get assistance in analyzing

requirements for deficiencies. Several prototypes for achieving this goal were developed

including OPIE [131] and Oz [132].

The interaction detection is done by simulation. The planner OPIE will design and

simulate execution of an agent and environment that will lead to the satisfaction of a

requirement or the failure of a requirement. This method was used to validate individual

requirements against the environmental constraints in the system.

Another way to detect interactions between two requirements was to use OPIE to analyze

the conjunction execution of two requirements held by different stakeholders. If conflict

existed between the two requirements, which is usually in the fonn of inconsistencies

between the logical formulae of the two requirements, then the planner Oz is used to

identify the point at which a predicate was violated.

The DDRA approach suffers from the following problems:

• It uses formal notations for representing requirements (predicates logic)

• It is based on validating arbitrary constraints to represent the system

38

2.3.6 Scenario Analysis Based Approaches

Scenario analysis based approaches detect interactions by simulating a sequence of

events scenario to describe some aspect of system behaviour. In scenario analysis based

approaches, the aim is to check if a specific scenario can satisfy the requirements under

consideration. If a scenario fails to satisfy the requirements, then there is an interaction

between these requirements. Sometimes, scenario analysis is performed by model

checking tools or it is performed manually by having the analyst check the outcome of

the scenario to identify if an interaction exists or not.

An example of approaches that fall in this category is the Software Cost Reduction (SCR)

approach [133].

2.3.6.1 The SCR Approach [133]

The SCR approach was used to specify and analyze real time embedded software

systems. In SCR, the requirements are formally modeled and then a set of tools can be

used to analyze the system for interactions. Two types of interactions can be detected

using SCR. The first type of interactions is static interactions which includes

inconsistencies and deadlocks. The second type of interactions is based on modeling the

behaviour of the system with a model checker and identifying specific requirements

properties that need to be checked. The SCR will analyze and detect interactions using

scenarios. The output will be a trace that describes a scenario by which the requirement

property under investigation fails to hold.

39

The SCR approach suffers from the following problems:

• SCR uses formal modeling to represent requirements and properties

• SCR uses model checking for interaction detection using scenarios which are

problematic due to the state explosion problem

• SCR requires detailed design information that might not be available at the

requirements level

2.4 Summary

This Chapter presented a summary of the current state of the art on approaches for

detecting interactions. The survey conducted in this chapter was divided into a survey

regarding the approaches in the feature interactions research community and a survey

regarding the approaches developed in the requirements engineering research community.

The surveys presented in this chapter are intended as the necessary background to

understand the current state of the art regarding interaction detection approaches. The

first survey included 7 semi-formal approaches, which were described in detail, and 59

formal approaches of which a few were described in details. The survey conducted in the

requirements engineering research area included 6 approaches which were all described

in detail.

40

CHAPTER THREE: A REQUIREMENTS INTERACTION TAXONOMY

3.1 Introduction

Requirements often interact when developing new systems because of the heterogeneity

and diversity of stakeholders [124]. Hence, there is a need to have a requirements

interaction taxonomy that would answer questions such as: When are two requirements

considered as interacting? Why are these two requirements interacting? How do we

detect this interaction? And how do we resolve it?

To the best of our knowledge, not much work has been done in the area of general

requirements interaction taxonomies. Even though Robinson et at. [11] defined in detail

the concept of requirements interactions, their work did not include in-depth information

on when two requirements are considered interacting and how to detect such interactions

between the two requirements. To this end, other work and research have been done and

published in the area of feature interactions. In 1994, Cameron et at. [134] published a

paper describing a benchmark for classifying the different categories of feature

interactions. However, this paper is very specific to the telecommunications domain and

all examples are related to interactions between telephony features and therefore it is very

hard to be generalized. In 2000, Gibson et at. [135] presented a taxonomy for triggered

interactions using fair objects semantics. This work builds on the assumption of "having a

set of triggered features and using a semantic point of view for classifying interactions

between those telecommunications features". Hence, Gibson et al. work [135] cannot

be used beyond its assumption especially in cases where there can be triggered and non-

triggered (non-functional) requirements. In 2004, Reiff-Marganiec and Turner [68]

presented a taxonomy for identifying policy conflicts. However, this work focuses on the

41

social nature of policies interactions and the social explanations of why they occur.

Also, the taxonomy in [68] is geared towards policy domain and therefore not generally

applicable. There are also research efforts to present partial taxonomies as sections of

papers or thesis where no claim of completeness has been made [21, 136-138].

This chapter tries to address these shortcomings and presents a general interaction

taxonomy for classifying and identifying requirements interactions. The proposed

taxonomy can be represented in the shape of a four-layered pyramid where the first layer

describes 9 main interaction categories, the second layer describes 24 interaction

subcategories, the third layer describes 37 interaction types, and finally the fourth layer

describes 37 interaction scenarios. Each interaction scenario has an associated interaction

detection guideline. This structure addresses the lack of details that exist in other

interaction taxonomies (e.g.,'[11, 21]). Moreover, the proposed interaction taxonomy was

compared to other existing taxonomies in the literature and the obtained results were in

favour of the proposed interaction taxonomy as seen in Section 3.4.

This chapter is structured as follows: Section 3.2 presents the concept of system

decomposition. Section 3.3 presents the proposed requirements interaction taxonomy.

Section 3.4 compares the proposed interaction taxonomy with already existing

approaches. Section 3.5 presents the limitations of the proposed interaction taxonomy.

Finally, section 3.6 summarizes the chapter.

42

3.2 System Decomposition

3.2.1 The Concept of System Decomposition

The main goal of the proposed requirements interaction taxonomy is to define interaction

scenarios that fully describe interactions between requirements during the requirements

engineering phase of system development. The output of the requirements engineering

phase is a requirements specification document that contains a set of requirements that

describe stakeholders' needs. This set of requirements can either describe certain

properties that have to be preserved (static view) or dynamic behaviour which the system

exhibits when certain triggers occur (dynamic view). Usually, there is also a description

of the available resources that the system will use (environmental view). Therefore, we

consider a system that comprises the following components:

• System Axioms: Each system axiom describes certain properties of the system

that must be preserved. For example, in the lift system [139], a system axiom

states that "At any time the user 6an press a call button to call the lift". This

property must be preserved at all times to ensure the proper operation of the lift

and hence it is considered a system axiom.

• Dynamic Behaviour Requirements: Each dynamic behaviour requirement

describes how the system should behave when it is in a certain state and a specific

trigger event occurs. For example, a requirement from the lift system [139] might

state the following: "When the lift stops at floor K, it will open its doors". This

dynamic behaviour requirement should perform the action "open lift doors" when

the trigger event "the lift stops at floor K" occurs.

43

• Resources: Each resource describes physical elements that the system uses to

fulfill its requirements. For example, Infra Red sensors (IR) in security systems

are considered as resources used to detect motion.

The difference between a system axiom and a dynamic behaviour requirement is that the

latter contains a certain action during a transition of system states when the system

receives a specific trigger. On the other hand, system axioms are properties that are

neither related to events nor contain transitions of system states.

3.2.2 System Representation using Attributes

A system is usually defined by textually describing all the elements of the three system

components: system axioms, dynamic behaviour requirements, and resources. However,

the textual description is often long, ambiguous, and easy to get lost in. For example, if it

is required to examine the trigger events in a system, then a whole textual document must

be read and analyzed in order to identify those trigger events. We propose the use of

attributes to describe the system. In general, an attribute can be defined as a part that

belongs to a bigger entity and characterizes this entity. Examples of attributes used to

represent dynamic behaviour requirements include: Prestate, Trigger Event, Action, and

Next State attributes. The values of these attributes for a dynamic requirement are

determined from the textual description of that dynamic behaviour requirements.

This concept of representation using attributes can be applied to all the three system

components as follows:

44

Consider a system S which can be described using the following equation:

S= 92 uDuW (3.1)

where S: the system under consideration, : system axioms component

D: dynamic behaviour requirements component, 'I': resources component

Mathematically, n is defined by:

(3.2)

where o1.. co,, are all the system axioms in the system

Every individual system axiom coi can be represented using system axioms attributes.

Based on the different textual formats that system axioms can have, our research found

that any system axiom can be represented by:

= < 1 11, 112, 13, 1j4, 1j5, 116 > (3.3)

where l: is the jth attribute associated with the ith system axiom, j1, 2, ..., 6

System axiom o can be defined using the attributes Yii ... Io as follows:

Ti ID: A unique ID number corresponding to the system axiom number given in the

requirements document

112 Description: An informal description of the system axiom as specified in the

requirements document

1j3 Rule: A description of the required property encapsulated in this system axiom

that must be preserved

1j4 Condition: A description of any specific conditions on preserving the property

described in the Rule attribute

T5 Parameters: A description of any parameters that are listed in the system axiom

body {optional}

1i6 Parameter range: A description of any restrictions on the values that the

parameters can have {optional}

45

The dynamic behaviour requirements component can be mathematically represented

by: D = {d1, d2, ... , d} (3.4)

where d1: represents the i dynamic behaviour requirement in the system

The th dynamic behaviour requirement d1 can be represented using dynamic behaviour

requirements attributes. After a study of the different possible textual representation that

a dynamic behaviour requirement can take, it was found that any dynamic behaviour

requirement can be represented using 8 attributes:

d1 = < F, F12, F13, F14, F15, ['16, F17, F18> (3.5)

where r: is the jth attribute associated with ith dynamic requirement, j=1, 2, . .

Dynamic behaviour requirement di can be defined using Fi . . .T18 and written as follows:

F1 ID: A unique ID number corresponding to the dynamic behaviour requirement

number in the requirements document

F12 Description: Informal description of the dynamic behaviour requirement given in

the requirements document

F13 Pre-state: A description of the required system state prior to the execution of this

dynamic behaviour requirement

['j4 Trigger event: A description of the trigger event required for this dynamic

behaviour requirement to execute

F15 Action: A description of the action carried out by this dynamic behaviour

requirement once triggered

F16 Next state: A description of the next state that the system should reach once this

dynamic behaviour requirement finishes executing

F17 Parameters: A description of any parameters that are listed in the dynamic

behaviour requirement body {optional}

F18 Parameter range: A description of any restrictions on the values that the

parameters can have {optional}

46

Finally, consider 'P as the resources component within a system. It is defined by:

(3.6)

where ji: denotes the th resource in the system

Resources attributes can be used to represent a resource ij. Based on a study of the

different possible textual representations that a resource can take 5 different attributes

have been identified to represent a resource:

xVi = <A11, Al2, A13, A14, A15 > (3.7)

where A: is the jth attribute associated with ith resource, j=l, 2, ..., 5

Resource iVi can be defined using the attributes Ai I . . Ai5 as follows:

A11 ID: A unique ID number corresponding to the dynamic behaviour requirement

number given in the requirements document

Al2 Description: An informal description of the dynamic behaviour requirement

specified in the requirements document

A13 Availability: A description of this resource's availability constraints {optional}

A14 Performance: A description of this resource's performance constraints

{optional}

A15 Interface: A description of this resource's interface constraints {optional}

It is worth mentioning that an optional attribute, which is labelled by {optional}, will

only have a value if textual description of the system axiom, dynamic behaviour

requirement, or resource describes these attributes. For example, if the resource jui textual

description has a certain constraint value on its availability value, then the attribute

Availability of 'j1 is assigned to this availability value.

47

3.3 The proposed Interaction Taxonomy

3.3.1 General Architecture

In order to address the problem of requirements interaction in software systems, many

questions arise such as:

• WHERE can interactions occur in a system? Interactions can occur between two

elements from two different components, e.g., a system axiom from the system

axioms component and a resource from the resources component. Alternatively,

interactions can occur between two elements within one component, e.g., system

axiom A and system axiom B from the system axioms component.

• WHAT attributes cause the interaction? This requires the identification of those

attributes that cause the interaction to really occur.

• WHY does the interaction occur between the attributes? This question looks for

the reasons of why the attributes are interacting.

• HOW can the interactions be identified? This question looks into how the

different types of requirements interactions can be detected.

48

Detailed Scenarios

1St layer
(Where)

2' layer
(What)

3111 layer

(Wily)

4111 layer

(How)

Figure 3.1: General architecture of the proposed interaction taxonomy

The question on how to resolve interactions was left out of the taxonomy because the

focus of this thesis is only on the detection of interactions. Moreover, different

resolutions can heavily vary according to stakeholders' preferences.

The architecture of the proposed interaction taxonomy addresses the questions listed

above in a gradual manner as shown in Figure 3.1. The proposed taxonomy starts in the

first layer by addressing the question of WHERE in the system interactions can occur.

Whenever two elements (either from two different components, e.g., a system axiom and

a resource, or from the same component, e.g. two system axioms) are interacting, they are

said to form a main interaction category.

The second layer of the taxonomy addresses the question of WHAT attributes of the two

system elements, identified in the first layer, cause the interaction. The second layer

contains interaction subcategories. Each interaction subcategory describes the two

attributes that cause the interaction.

49

The third layer of the proposed taxonomy addresses the question of WHY the

attributes, identified in the second layer, are interacting. The third layer contains

interaction types with each interaction type describing why the two attributes from the

second layer are interacting.

The fourth layer of the proposed interaction taxonomy addresses the question of HOW to

detect interaction types, identified in the third layer, in any software system. This layer

contains interaction scenarios where each scenario is used to describe in detail a specific

interaction type and how to detect it.

The elements of the first and the second layers of the proposed interaction taxonomy have

a 1:n relationship. This means that each main interaction category in the first layer can

have up to n (where n≥l) interaction subcategories in the second layer depending on what

attributes cause interactions.

The elements of the second and the third layers of the proposed interaction taxonomy also

have a 1:n relationship. This means that each interaction subcategory in the second layer

can have up to n (where n≥l) interaction types in the third layer depending on why the

two attributes in the interaction subcategory are interacting.

The elements of the third and fourth layers of the proposed interaction taxonomy have a

1:1 relationship. This means that each interaction type in the third layer will have only

one corresponding interaction scenario in the fourth layer.

3.3.2 First Layer: Main Interaction Categories

Any two elements (out of system axioms, dynamic behaviour requirements, and

resources) that interact are said to form a main interaction category (whether these two

elements are from two different components or from the same component).

50

The number of the main interaction categories is 9 as shown in Figure 3.2 and are

listed as follows:

@ Two interacting system axioms.

© A system axiom interacting with a dynamic behaviour requirement.

© Two interacting dynamic behaviour requirements.

® A system axiom interacting with a resource.

® A dynamic behaviour requirement interacting with a resource.

© Two interacting resources.

® A dynamic behaviour requirement interacting with a system axiom.

® A resource interacting with a system axiom

© A resource interacting with a dynamic behaviour requirement

In the remainder of this chapter we will focus our efforts on explaining and describing

only the main interaction category "Two Interacting Dynamic Behaviour Requirements"

as an ongoing example. However, the rest of the taxonomy will be listed in Appendix B.

Which components /
interact?

I I
- - - -- - --

System - 1- Dyrtsmic
/ Axioms Behavior
I /1

I
I

,'System

Figure 3.2: First layer of the proposed interaction taxonomy

51

Which components
interact?

Which components
Attributes interact?

V layer

Two Interacting -Dynamic
Behavior Requirements

S5
Next state-
Next state
Interactions

SB
Action-Action
Interactions

ST
Action-Prestate

Interactions

SB
Trigger Event-
Trigger Event
Interactions

2's" layer

Figure 3.3: Second layer of the proposed interaction taxonomy

3.3.3 Second Layer: Interaction Subcategories

The second layer of the proposed interaction taxonomy contains interaction subcategories

that are linked to the first layer through an attribute-based decomposition. An interaction

subcategory describes what attributes of the two interacting system elements, identified in

the first layer, cause the interaction. Therefore, to generate the second layer interaction

subcategories, each possible pair of attributes between the two interacting elements is

first listed, with the first attribute is from the first element and the second attribute is from

the second element. Then the obtained pairs of attributes are analyzed to determine which

ones can cause interactions. Any pair of attributes that could cause an interaction

situation is then listed and considered to be an interaction subcategory.

Therefore, the main interaction categories from the first layer will be decomposed into

different numbers of interaction subcategories in the second layer depending on the

outcome of the analysis of attributes pairs (e.g., as seen in Figure 3.2, the main interaction

category © has four subcategories S5-S8, whereas as seen in Appendix B3 the main

interaction category (@ has three subcategories S9-S 11).

The first layer's 9 main interactions categories resulted in the following 24 interaction

subcategories in the second layer: 1 subcategory (Si) from main category D, 3

52

subcategories (S2, S3, and S4) from main category ©, 4 subcategories (S5, S6, S7, and

S8) from main category ©, 3 subcategories (S9, S1O, and Si 1) from main category ®, 3

subcategories (S12, S13, and S14) from main category ®, 3 subcategories (S15, Si6, and

S17) from main category ®, 1 subcategory (S18) from main category , 3 subcategories

(S19, S20, and S21) from main category ®, and 3 subcategories (S22, S23, and S24)

from main category ®.

We continue with the ongoing example of presenting and explaining the subcategories of

interactions derived from the main interaction category ® "Two interacting Dynamic

Behaviour Requirements". The remaining interaction subcategories associated with the

other eight main interaction categories, are presented in Appendix B.

Figure 3.3 shows how the third main interaction category ® from the first layer is

decomposed into 4 interaction subcategories in the second layer. The decomposition was

based on the attributes of dynamic behaviour requirements, namely: Prestate, Trigger

event, Action, and Next state (refer to Section 3.2.2). The other two attributes

"Parameters" and "Parameters range", described in section 3.2.2 as part of the dynamic

behaviour requirement set of attributes, are not used in the decomposition. This is

because these two attributes will not cause interaction situations with other attributes but

they are used to show the effects that parameters can have on the interaction and how the

parameters values can heavily affect the interaction. This is further explained in the

fourth layer of the proposed interaction taxonomy.

After analyzing the possible pairs of attributes that can form interaction categories, only

four pairs were found to really represent interactions subcategories as follows:

53

• S5: Next State—Next State interactions: This subcategory contains all the

interactions that arise between two dynamic behaviour requirements because the

next state attribute of the first requirement interacts with the next state attribute of

the second requirement.

• S6: Action—Action interactions: This subcategory contains all interactions that

arise between two dynamic behaviour requirements because the action attribute of

the first requirement interacts with the action attribute of the second requirement.

• S7: Action—Prestate interactions: This is a subcategory that contains all the

interactions that arise between two dynamic behaviour requirements because the

action attribute of the first requirement interacts with the prestate attribute of the

second requirement.

• S8: Trigger Event—Trigger Event interactions: This is a subcategory that

contains all the interactions that arise between two dynamic behaviour

requirements because the trigger event attribute of the first requirement interacts

with the trigger event attribute of the second requirement.

Note that the numbering started from 5 because there are other 4 subcategories derived

from the first two main interaction categories W and ©.

3.3.4 Third Layer: Interaction Types

The third layer of the interaction taxonomy describes the reasons why the attributes,

identified in the interaction subcategories in the second layer, are interacting. Each one of

these reasons forms an interaction type. Therefore, the number of interaction types for an

interaction subcategory will depend on the number of reasons that can cause the two

attributes of this interaction subcategory to interact.

54

Which components
interact?

Which components
Attributes interact?

Why the attributes
interact?

$6
Action-
Action

Interactions

$7
Action.
Prostate

Interactions

S5
Next state-
Next state
Interactions

Two intoroctinti
Dynamic Behavior

1 layer

Trigger Event
Trigger Event
Interactions

2d layer

30 layer

Figure 3.4: Third layer of the proposed taxonomy

Sometimes there are certain constraints on an interaction type to occur. For example,

consider the interaction subcategory S5 "Next State—Next State interactions" derived

from the main interaction category ® "Two interacting dynamic behaviour requirements"

(see Figure3 .4).

This interaction subcategory has only one interaction type t8 called "Non-Determinism"

in the third layer that describes that the attribute Next State of the first requirement

interacts with the attribute Next State of the second requirement because they have

different values and will therefore cause a non-determinism situation in the system.

However, for this interaction type to occur, the two dynamic behaviour requirements

must execute simultaneously, i.e. they must have: (same prestates) AND (same trigger

events). This is considered to be a constraint on the interaction type "Non-Determinism"

and therefore the subcategory "Next State—Next State interactions" is connected to the

"Non-Determinism" interaction type through the constraint Cl "Same prestates AND

same trigger events".

55

It must be noted that some interaction types can be repeated more than once under the

same subcategory because this interaction type occurs under two different constraints

(e.g., t 1 and t12 under S6 in Figure 3.4).

Overall, the 24 interaction subcategories from the second layer resulted in 37 interaction

types and 5 constraints in the third layer as shown in Table 3.1.

We continue with our ongoing example and describe only types of interactions that are

derived from the subcategories S5 "Next State - Next State interactions", S6 "Action -

Action interactions", S7 "Action-Prestate interactions", and S8 "Trigger Event - Trigger

Event interactions", which are presented in section 3.3.3 as subcategories derived from

main interaction category © "Two interacting Dynamic Behaviour Requirements". The

remaining types of other interaction subcategories are presented in Appendix B.

Table 3.1: Summary of the resulting interaction types in the third layer

Si t:2, C:O
(Appendix B.1)

S2 t:2, C:O
(Appendix B.2)

t:1, C:1
(Figure 3.3)

S3 t:1, C:O
(Appendix B.2)

S4 t:2, C:O
(Appendix B.2)

S5 S6 T:6, C:2
(Figure 3.3)

S7 t:l, C:1
(Figure 3.3)

S8 t:1, C:1
(Figure 3.3)

S9 t:2, C:O
(Appendix B.3)

Sb t:1, C:O
(Appendix B.3)

Sib t:2, C:O
(Appendix B.3)

t:2, C:O
(Appendix B.4)

t:1, C:O
(Appendix B.5)

S12 t:2, C:O
(Appendix B.4)

S13 t:1, C:O
(Appendix B.4)

S14 S15 t:1, C:O
(Appendix B.5)

S16 t:1, C:O
(Appendix B.5)

S17 S18 t:2, C:O
(Appendix B.6)

S19 t:1, C:O
(Appendix B.7)

S20 t:1, C:O
(Appendix B.7)

t:1, C:O
(Appendix B.8)

S21 t:1, C:O
(Appendix B.7)

S22 t:1, C:O
(Appendix B.8)

S23 S24 t:1, C:O
(Appendix B.8)

Where Si: The ith Interaction subcategory in the second layer
type in third layer resulting from the corresponding Si
in the third layer resulting from the corresponding Si

t= Number of interaction
C= Number of constraints

56

Figure 3.4 shows how the subcategories S5, S6, S7, and S8 from the second layer are

associated with interaction types and constraints in the third layer of the proposed

taxonomy. The details of these interactions types in the third layer are as follows (in all

interaction types t8 to t16 described below, consider RI and R2 to be dynamic behaviour

requirements):

t8: "Non-Determinism" interaction type (under constraint Cl): Consider Ri and R2

to have the same trigger events and the same prestates and hence will be executed

together. Also consider RI and R2 to have different values for their Next State attributes.

If these two requirements are executed at the same time then the system will face an

ambiguous situation in which the system is unable to determine which state to go to (the

next state specified in Ri or the next state specified in R2).

t9: "Dependence" interaction type (under constraint C2): Consider Ri and R2 to have

the same trigger events and the same prestates and hence will be executed together. Now,

suppose that the action of RI requires that the action of R2 be successfully executed. This

means that the action of Ri depends on the action of R2, i.e., an interaction occurs if the

action of R2 is not completed successfully for any reason.

tb: "Override" interaction type (under constraint C2): Consider the two dynamic

behaviour requirements RI and R2 to have the same trigger event and the same prestate

and that they have been triggered and are executing simultaneously. Suppose that the

action of RI interrupts and cancels the action of R2 before its completion which means

that the action of RI has overridden the action of R2. Hence there is a negative

relationship from Ri on R2, and by definition, RI and R2 interact.

57

til: "Negative Impact" interaction type (under constraint C2): Consider Ri and

R2 to have the same trigger events and the same prestates and that they have been

triggered and are executing simultaneously. Now suppose that the action of RI negatively

impacts the action of R2. Hence, RI interacts with according to the interaction type ti 1.

This interaction type is similar to tb, however, the difference is that in tlO the action of

RI will completely cancel the action of R2 while in ti 1 the action of RI will only

negatively impact, but not completely cancel, the action of R2.

t12: "Override" interaction type (under the constraint C3): Consider Rb and R2 to

have different, but linked trigger events, i.e., the occurrence of the first trigger event is

followed after some time by the occurrence of the second trigger event (Section 4.3.5

provides complete details and definition of linked events). Hence Ri and R2 are still

sequentially related and prone to interactions. Suppose that RI is triggered and starts

executing. R2 is also triggered and starts executing after some time because the trigger

event of R2 is linked to the trigger event of Ri. Now, assume that the action of Ri is not

yet completed while R2 is triggered. If the action of R2 cancels and overrides the action

of Ri before its completion then there is an interaction between the two requirements.

The interaction type t12 is also possible when the action of RI overrides and cancels the

action of R2. In both cases, Ri and R2 interact.

t13: "Negative Impact" interaction type (under the constraint C3): Assume RI and

R2 to have linked trigger events and hence if RI is triggered and starts executing then R2

will also be triggered and starts executing after some time. Now, if the action of Ri

negatively affects the action of R2 then the RI interacts with R2. This interaction type

can also occur when the action of R2 negatively impacts the action of Ri.

58

t14: "Order" interactions type (under constraint C3): Consider Ri and R2 to have

linked trigger events. Assume that the trigger of the first requirement leads to the trigger

of the second requirement, i.e. Ti ->T2. In this case, the first requirement RI executes

first then followed by the execution of the second requirement R2. Consider B i to be the

system specific behaviour after the two requirements have executed their actions. Now if

behaviour Bi is different from the behaviour that the system would exhibit if R2 had

started first followed by Ri, i.e., T2>Ti, then there is an interaction between the two

requirements. This is because the actions of the two requirements are not independent but

have an effect on each other. If they were independent then the same behaviour would

have been obtained no matter which action started first.

tiS: "Bypass" interaction type (under constraint C4): Consider Ri and R2 with linked

trigger events. Assume that Ri is triggered and starts executing and that the action of Ri

bypasses the system from being in a specific state. Suppose that this specific state is the

same state specified in the prestate attribute of R2. Hence when the trigger event of R2

occurs, R2 will never execute because the system is in a state different from R2's

prestate. Thus RI prevented the system from executing R2.

t16: "Infinite Looping" interaction type (under constraint C5): If RI is triggered and

starts executing such that its action will create the trigger event for R2 and hence R2

starts executing its action. Now if the action of the second requirement R2 causes the

creation of the trigger event of the first requirement Ri, then RI is triggered again and

starts executing its action which will again create the trigger event of R2 and so on.

Therefore, RI and R2 are forced into infinite looping and interact.

59

3.3.5 Fourth Layer: Interaction Scenarios

The fourth layer of the proposed interaction taxonomy contains interaction scenarios that

provide details on the different interaction types by giving:

• a guideline on how to detect this type of interaction

• an example of each interaction type in a real system

• an explanation of how parameters can affect this type of interaction

The third bullet in the above list, "parameters effect", was introduced to emphasize the

effect that parameters can have on the interaction between two requirements. In section

3.3.3, it was stated that the two attributes "Parameters" and "Parameters range" are used

to describe the effect parameters can have on the cause and resolution of requirements

interactions.

When a requirement has parameters in its body then it is called a parameterized

requirement where these parameters can be assigned specific values during later system

development stages. For example, a parameterized requirement from the telephony

domain might state that "The phone can dial a number using X techniques." The

parameter X in this requirement can take several values such as "pressing numbers on the

keypad" and/or "speed dial" and/or "voice dialling".

60

Which components
interact?

Which components
Attributes interact?

Why the attributes
interact?

,w Two Interac(ing\ 1°layer
I,, Dynamic Behavior)
,, quirements -

Es--
ieXt state
Next state
I iteraction

8b1
Action- Action- Trigger Even
Action Prostate Rigor Even

,teractioni iteractiens 1interactiens

-

4,
ci

a

Ho to detect the
I raction types? SCRO

0

I,)

r
0

0

21 layer

r
0

w
'C

01

00

C

314 layer

SCRIZ SCRI3 SCRI4 SCRIE SCRIQ 41111 et

Figure 3.5: Fourth layer of the proposed interaction taxonomy

A general template for each interaction scenario is used as a way of presenting it in a

more organized manner with the following columns:

• Scenario ID: This is a unique ID that distinguishes one interaction scenario from

another.

• Interaction Type: This describes the interaction type the scenario is associated

with. The description does not only include the interaction type as a single leaf

but it includes the whole branch starting from the main interaction category in the

first layer.

• Detection Guideline: This column describes how to detect the interaction type

described in the scenario by a non-expert. The detection guideline includes a

textual description and, where appropriate, a graphical description.

61

• Example: This is an example that explains the occurrence of the interaction

type, associated with this scenario, taken from a real life system.

• Parameters Effect: This column gives an example of how parameters in

parameterized requirements affect the interaction described in the scenario.

Each interaction type from the third layer is associated with only one interaction scenario

in the fourth layer. Hence, the fourth layer of the proposed interaction taxonomy contains

37 interaction scenarios. In the remainder of this section we continue our ongoing

example and present only interaction scenarios associated with interaction types t8 to t16

as shown in Figure 3.5. The details of SCR8 to SCR16 are presented in Tables 3.2 to

3. 10, respectively. The following symbols have been used:

• Ti: Trigger event of the requirement Ri

• Pi: P restate of the requirement Ri

• Ni: Next state of the requirement Ri

• Ai: Action of the requirement Ri

It is worth mentioning that all examples presented in SCR8 to SCR 16 are taken from the

smart homes domain which is described in more detail in Chapter 8.

62

Table 3.2: Description of the interaction scenario SCR8

Scenario ID SCR8

Type of Interaction TwolnteractingDynamicBehaviourRequirements - NextState-NextStatelnteractions -3

Non-Determinism ICl-SaineTrierE,enIs&Stnct'rStates
Detection
Guideline

IF (R I .TriggerEvent=R2.TriggerEvent)

(RI.NextState # R2.NextState)

AND (RI. PrcState=R2. PreState)

THEN JR1 interacts with R2 under

AND
the interaction type t8

TI-.-'

()
T2

NUN2

Example • RI :"Adjust the audio level of the device (Xl =TV) to (X2=35% of the max. volume) when the
device is first turned on" .

• R2:"Adjust the audio level of the TV when it is turned on to the last used audio level setting
before the last shutdown".

• Interaction: Assume that someone was previously watching TV and has manually adjusted the
TV audio level to 20% of its max volume before he shuts it down. Later on, when the TV is
first turned on then both RI and R2 are triggered at the same time. Since the audio level
specified in R2 (20% of max audio level) is different from the audio level specified in RI
(35% of the max. volume), then the system will face a non-determinism situation on which
state it should transit to. Should it transit to the state where the volume of TV is 20% as
specified by R2 or should it transit to the state where the volume of TV is 35% as specified

by RI?

Parameters Effect If XI was set to another audio device then there is no interaction between the two
requirements RI and R2. Moreover, if X2 is set to automatically obtain the last stored audio
settings of the audio device, then there is no interaction also.

Table 3.3: Description of the interaction scenario SCR9

Scenario ID SCR9

Type of Interaction TwolnteractingDynamicBehaviourRequirements -Action-Actionlntcractions -3

Dependence IC2SatiieTi'krliveni&Saine1'rcSIaes
Detection
Guideline

IF (Rl .TriggerEvent=R2.TriggerEvent)
DEPENDS_ON

AND (RI .PreStateR2.PreState) AND
R2.Action) THEN JR1 interacts with R2 under the interaction

(RI .Action
type t9

Tl
(Al
kP1

T T : DDEPENDS_ON
A2 v 0.

D (Dependence relationship between Al and A2) null

Example • 113:-Increase th. temperature inside the house to the preset temperaturc (X322) when
temperature reading from thermostat is S (X3=22)— 21 degrees"

•R4:"Open the ventilation grills in locations (X4=LivingRoom, BedRooml) to allow air
flow when the temperature reading from the thermostat is :5 (X3=22) - 2} degrees"

• Interaction: When the temperature drops below 20, then both requirements R3 and R4 trigger
at the same time. However the action of R3 depends on the action of R4 as the temperature is
increased by pumping hot air through the ventilation grills. If R4 fails to execute for any
reason, then R3 will not be able to perform its action. Even more, if the action of R4 opens
only one or two ventilation grills, then the action of R3 is affected by the few opened

ventilation grills and it will not be effective enough

Parameters Effect X4 has an effect on the type of interaction between R3 and R4 as X4 determines which
ventilation grills are opened. If X4 was an empty set, i.e., no ventilation grills were opened
then R4 will fail to increase the temperature of the house. But if X4 was properly assigned
then the dependence relationship is reduced to malfunctions situations of the ventilation grills.

63

Table 3.4: Description of the interaction scenario SCRIO

Scenario ID SCRIO

Type of Interaction TwolnteractingDynamicBehaviourRequirements - Action-Actionlnteractions

Override IC2=SanirrerEvein&SauPreStales
Detection
Guideline

IF 11 (R 1 .TriggerEvciit=R2.TriggerEvent)
OVERRIDES R2.Action)l

AND (RI .PreState=R2.PreState)
THEN I RI interacts with R2 under the interaction

AND (RI .Action
type 001

T1

Pi

P2 ZL

Al (Rl.Action) OVERRIDES A2 (R2.Action)

Example • R5:"As a security measure, secure the doors and windows of a house by having them closed
starting at time (X5=I 1:00 pm) for (X66 hours)"

• R6:" automatically opens the windows in (X7=LivingRoorn) at time (X81 1:00 pm)"

• Interaction: When the time is 11:00 pm the two requirements. R5 and R6, are triggered and
start executing. However, R6 tries to open the windows but R5, which is a security
requirement, will override the action of R6 and will not allow it to open the windows.

Parameters Effect If X8 was set out the range in which R5 is active. i.e., X5 to X5+Xô, then there is no
interaction as R6 can execute normally. Moreover, if XÔ is set to 0 hours then the user is

technically disabling R5 and there is no interaction

Table 3.5: Description of the interaction scenario SCR11

Scenario ID SCRI I

Type of Interaction Two[nteractingDynarnicBehaviourRequirements - Action -Action Interactions -

Negativelmpaet IC'Sa,FtiIVeitS&S.,ICPrCSIaS
Detection
Guideline

IF {(RI. Trigger
NEGATIVELY_IMPACTS
type t I

Event= R2.TriggerE veil t) AND (Rl.PreStateR2.PreState) AND
R2.Action)j THEN JR1 interacts with R2 under

(Rl.Action
the interaction

TI
10. Al

T m I=NEGATIVELY IMPACT
A2

I (Negative impact relationship from Al on A2) # null

Example •Ro (revisited from SCR 10): automatically open the windows in (X7LivingRoom) at time
(X8 11:00 pm)"

• R7:"Increase/Decrease the temperature of the house to the temperature (X922) at time
(XIO=ll:00 pm).

• Interaction: When the time is 11:00 pm the two requirements are triggered and both of them
start executing. Now, if the temperature outside the house is too cold or too hot then the
action of RÔ will negatively affect the action of R7 as R7 will try to increase/decrease the
temperature of the house when the windows are opened.

Parameters Effect If Xl 0 was set to he a different time prior to X8 then there is no interaction as the two
requirements will execute at different times. Moreover, if X7 is an empty set then there are no
windows to be opened and the interaction is eliminated.

64

Table 3.6: Description of the interaction scenario SCR12

Scenario ID SCRI2

Type of interaction Two lnteractingDynarnieBehaviourRequirements -> Action-Actionlnteractions -

Detection
Guideline

Q
R2.TriggerEvent)
OVERRIDES
interacts
t12}

IF .(RI.TriggerEvent ->
AND (RI .Action

R2.Action)l Then I RI
with R2 under the interaction type

®
R2.Tr-iggcrEvent)
OVERRIDES
interacts
tl2

IF (RI.TriggcrEvent ->
AND (R2.Action

RI.Action) 11 Then JR1
with R2 under the interaction type

(i'i' Al (ri) Al

T2- T2

Llr,k.d to A2

OVERRIDES Al (R14cti0u1)

.- A2
Linked to

Al (Rl.Action) OVERRIDES A2 (R2.Action)

Example • R3 (revisited from SCR8): "Use the last stored audio level settings of the TV to adjust its
volume when the TV is first turned on"

• R8: "Completely shutdown power supply to all Audio/video devices starting at

(Xl lmidnight) for (X 12=5 hours)"
• Interaction: Suppose that the TV was turned on just a few seconds before midnight.

According to R2 the system will obtain the last stored audio level settings of the TV and
starts adjusting its volume. But at midnight R8 starts executing and hence all audio/video
devices including the TV arc shutdown. Hence the action of R8 has overridden the action of
R2 before its completion. This example is shown as the detection guideline number 2.

Parameters Effect If the parameter X 1 was set to 0 hours, then there is no interaction as R8 will not power off
any devices.

Table 3.7: Description of the interaction scenario SCR13

Scenario ID SCRI3

Type of
Interaction

TwolnteractingDynamicBchaviourRequirements - Action-ActionInteractions -) Negativeimpact

cLinkedrroerEcnts

Detection
Guideline

D IF (Rl.TriggcrEvent -> R2.TriggerEvent)
AND (RI Action NEGATIVELY _IMPACT
R2.Action) Then RI interacts with R2
under the interaction type 03 1,

Q IF (Rl.TriggcrEvent —> R2.TriggerEvent)

AND (R2.Action NEGATIVELY—IMPACT
Rl.Action)} Then I RI interacts with R2 under
the interaction type t 13

Al Al

INEGATIVELY_IMPACT

LIOItO A2

I) Negative impact relationship from A2 on Al) a' null

-

T2... [=NEGATIVELY IMPACT

uri,te A2

I) Negative impact telationship from Al on AZ) a' null

Example •RÔ (revisited from SCR 10):- automatically opens the windows in (X7LivingRoom) at time
(XS=I 1:10pm)"

• R7 (revisited from SCR I):"Increasc/Dccrease the temperature of the house to the temperature
(X9=22) starting at time (Xl 0=11:00 pm).

• Interaction: When the time is 11:00 pm, R7 is triggered and starts executing. Now, R7 tries to
increase/decrease the house temperature to the value specified in X9 which is 22 degrees.
However this needs some time and meanwhile the time gets to 11:10 pm which triggers R6.
Now R6 opens the windows and consequently negatively affecting the action of R7. This
example is shown as the detection guideline number 2 in the previous row.

Parameters Effect The parameters effect is the same as explained in SCRI 1. But the example above shows that

when X8 had a different value, the type of interaction change from Negative Impact with same
trigger event and same prestates to Negative impact with linked trigger events.

65

Table 3.8: Description of the interaction scenario SCRI4

Scenario ID SCR14

Type of Interaction Two] nteractingDynamicBehaviourRequiremcnts -) Action-Action Interactions 4 Order

1C3Link edTrherF vents
Detection
Guideline

IF I (SYSTEM_B EHAV
(SYSTEM_BEHAV IOU
interaction type 04 1

IOU RIR I.TriggerE%ent -> R.TrigerEs'ent) •
RIR2TC.ESt.sRlTljCfES.fflt) I Then RI interacts with R2 under the

Bi System hvior
when Ti - T2)

B1B2

62 (System Behavior
when TZ —'Ti)

Example • R9: "The system shall support a one-click remote control 911 emergency service that calls
emergency centre and provides the home address and a pre-recorded message once a

connection is established"
• RIO: "The system shall provide a regular telephone line with the set of telephony features

(X13=Three Way Calling).
Interaction: Suppose that an elderly resident A faces an emergency health condition (e.g. heart
attack). A calls his son on the phone to take him to the hospital but meanwhile, the condition
gets worst so he uses R9 to call 911. Now R9 finds the line is busy and it cannot execute 911
directly, so the system uses the Three Way Calling feature in RIO to put the son on hold and

then connects to the emergency centre using 911. Consider this as the system behaviour BI
when Three Way Calling is activated first then 911 is followed later. Now, consider the same
situation but at this time A uses R9 first to call 911 then tries to use Three Way Calling

feature in RIO to put 911 on hold and inform his son of the situation. In this case the system
will not execute the Three Way Calling as the 911 service prevents anyone from putting it on
hold. Consider this as system behaviour B2 when 911 executes first then the Three Way
Calling. Obviously BI # B2 because in BI both TWC and 911 are executed successfully but

in B2 only 911 is executed successfully.

Parameters Effect If X13 did not contain the Three Way Calling feature then there is no interaction between R9

and RIO.

Table 3.9: Description of the interaction scenario SCRI5

Scenario ID SCRI5

Type of Interaction lwolnteractingDynamicBehaviourRequirements

Bypass k4UikedTrierEvenls

—) Action-PreStatelnteractions —

Detection
Guideline

IF (Rl.TriggcrEvent —>
{Rl interacts with R2 under

R2.TriggerEvent) AND (Rl.Act ion Bypass
the interaction type t15}

R2.PreState) Then

Al

KBypss

A2

Ll,h.dtn

null

Example •R5 (revisited from SCRIO):
house by having them closed

• RI 3: When the intruder alarm
and it can be unfrozen only

• Interaction: Suppose that
freeze the security control
case would look like a
would bypass the prestate
simply because the whole
frozen (in another abnormal
the prestatc of R5

R5:"As a security measure, secure the doors and windows of a

starting at time (X5=l 1:00 pm) for (X66 hours)"
is triggered and goes on then the security control unit is frozen

by a PIN
R13 is triggered and starts executing. One part of RI 3's action is to

unit to prevent an intruder from disabling the alarm, which in that
system glitch, or opening doors and windows to escape. Now this

of R5 and it will not allow the trigger event of R5 to trigger R5
security control unit including doors and windows is completely

state). Therefore it can he said that the action of R13 bypasses

Parameters Effect If X6 in the requirement
executing and in this case
hence it is not affected by

R5 was set to hours then, the user is disabling the requirement from
there is no interaction, as RS is not supposed to do anything and

R13.

66

Table 3.10: Description of the interaction scenario SCR16

Scenario ID SCRI6

Type of Interaction TwolnteractingDynamicBehaviourRequirements -> TriggerEvent-TriggerEventinteractions -

I nfl niteLoopirig IC5=DuaILinbedFriL',erFvenls
Detection
Guideline

IF (Rl.TriggerEvent <--->
AND (R2.Action CREATES
interaction type tb:

R2.TriggerEvent) AND (RLAction CREATES
Rl.TriggerEvent) Then I RI interacts with

R2.TriggerEvent)
R2 under the

Al
Tli)

El=CREATES

E2CREATES
12

A2

El null A1IO E2 null

Example • R4 (revisited from SCR9):"lncrease the temperature inside the house to the preset temperature

(X4=22) when temperature reading from thermostat is 15 (X4=22)— 2 degrees"
•RI2: "Open the windows in locations (Xl6=LivingRoom and BedRoom) to decrease the

temperature when the thermostat reading is ≥ (X17=22) degrees. Then close them again

when the thermostat reading is ≤ (X 17=22) —2 degrees"
• Interaction: Suppose that the house temperature is now at 24 degrees then R12 is triggered

and the windows are opened to decrease the temperature inside the house to 20 degrees.
Once the temperature is at 20 degrees then the windows closes but also R4 is triggered (i.e.,
the action of RI 2 dropped the temperature to 20 which means that it created the trigger event
of R4). Now R4 starts executing and pumps hot air to increase the temperature back to 22.

Once the temperature reaches 22 then R12 is triggered and starts executing again (i.e., the
action of R4 created the trigger of R12 which is to have a temperature ≥ 22 degrees).The

preceding process repeats indefinitely. It is noted that the first requirement is created by a
person who wants to keep the house temperature at 22 degrees while the second requirement
is created by someone who wants to keep the house temperature at 20 degrees. This is

understandable in a multi occupant smart home

Parameters Effect lfXI 7 is changed to 24 degrees then looping chain is broken. Also if X4 is changed to other
values then the looping is broken. It must be noted that R4 and RI 2 are representative of
increasing and decreasing temperature requirements. The numbers arc just for clarification.
The interaction would still occur if X4 was 22.5 for example as the small fractions cannot be
precisely achieved when increasing or decreasing the temperature

3.4 Comparison of the Proposed Taxonomy to Already Existing Taxonomies

In this section, we compare the proposed interaction taxonomy to the following already

existing interaction taxonomies:

1. Feature interaction benchmark for Intelligent Networks —proposed by Cameron et

cii. in 1994 [20]. Cameron et al. presents in [20] two approaches for categorizing

interactions which will be denoted by C-I and C-2, respectively.

2. Interaction taxonomy for services of networked appliances - proposed by Kolberg

et cii. in 2003 [21] and denoted by K.

67

3. Interaction taxonomy for policies - proposed by Reiff-Marganiec et al. in 2004

[68] and denoted by R.

The three taxonomies mentioned above were chosen because they are cited frequently

(first taxonomy) or there is close similarity with our proposed interaction taxonomy

(second taxonomy) or they are very recent (the third taxonomy). The comparison will be

based on:

• The method used for categorizing interactions (e.g., nature of interactions)

• The main focus of the taxonomy (e.g., telecommunication telephony features)

• The number of interaction categories and interaction types proposed in each

interaction taxonomy

• The number of examples presented to illustrate each interaction category

• The number of presented examples addressed by our proposed interaction

taxonomy and whether there are any examples missed and not addressed by our

proposed interaction taxonomy.

Using the criteria mentioned above, the results of the comparison are summarized in

Table 3.11. However, for brevity of presentation in the body of the thesis, the details

regarding the number of addressed examples by our proposed interaction taxonomy (fifth

row of Table 3.11) are presented in Appendix C using Tables C. 1, C.2, and C.3

68

Table 3.11: Comparing the proposed taxonomy to other existing taxonomies

K R S
C-i C-2

Method of
Categorizatioi

Nature of
interactions

Cause of
interactions

Cause of
interactions

Nature of
interactions

Cause of
interactions

Main Focus Telecommunic-
ations Intelligent
Networks

Telecommunica-
tions Intelligent
Networks

Smart homes
networked
devices

Policies General (with
restriction on
implementation
interactions)

Number of
Interaction
Categories

5 main categories 3 Main Categories
12 subcategories

4 main
categories

5 main categories
19 subcategories

9 main categories
24 subcategories
37 types

Number of
presented
examples

22 22 (same ones
used in C-i)

5 10 37

Number of
examples

addressed by
proposed
taxonomy

Addressed: 18
Missed: 4
(implementation
interactions)

Addressed: 18
Missed: 4
(implementation
interactions)

Addressed: 5
Missed: 0

Addressed: 10
Missed: 0

N/A

C: Cameron etal. taxonomy [20]
C-i: Cameron ci al. taxonomy - first approach
C-2: Cameron et al. taxonomy - second approach

K: Kolberg etal. taxonomy [2 1]
R: Reiff-Marganiec ci al. taxonomy [68]
S: Shehata et cii. taxonomy (proposed taxonomy)

From Table 3.11, the following points are evident:

• The proposed interaction taxonomy categorizes interactions according to the

cause of interactions. This satisfies the objective of our proposed taxonomy which

is to present where, how, and why interactions occur. This is most beneficial in

understanding the technical aspects rather than the social aspects of interactions

and also facilitates the definition of detection guidelines for interactions between

two requirements.

• The proposed interaction taxonomy starts by categorizing interactions into high-

level main interaction categories in a similar way as the other taxonomies do. This

helps provide a general understanding of the possible interactions. However, the

proposed taxonomy provides more in-depth details regarding the subcategories

and types of interactions that are abstract or do not exist in other taxonomies.

69

The proposed interaction taxonomy is able to address all examples presented in

other taxonomies except for the 4 missed interactions under the Cameron et al.

taxonomy [20]. Those 4 missed interactions are caused by the way the system was

implemented and not by the requirements and therefore are intentionally outside

the scope of the proposed interaction taxonomy.

3.5 Limitations of the Proposed Interaction Taxonomy

The proposed interaction taxonomy has the limitation of not being able to address deep

design or implementation interactions. The taxonomy is designed to address interactions

at the requirements and early design stages of software systems. Hence, all

implementation interactions are missed. However, in the majority of cases most of the

critical interactions manifest themselves during the requirements engineering phase of the

software lifecycle [13] and hence can be captured by the proposed interaction taxonomy.

Another limitation is when detecting interactions that involve resources. The definition of

resources uses only three attributes: availability, performance and interface. This reduces

the number of interaction types to those interactions that involve these attributes.

However, resources vary heavily and the number of attributes that can be used to describe

them can be very large. Therefore we limited the number of attributes to the common

ones which are: Availability, performance, and interface. However, the proposed

interaction taxonomy is expandable and can be extended by adding new attributes as

needed to be suitable for other domains.

70

3.6 Summary

This chapter presented a general taxonomy for identifying requirements interactions in

software systems. In total, the proposed interaction taxonomy has 9 main interaction

categories, 24 interaction subcategories, 37 interaction types, and 37 interaction scenarios

that contained 37 interaction detection guidelines that can be used to detect the

corresponding interaction types.

The proposed interaction taxonomy is novel in the following sense: It is a general

taxonomy that can be applied in any domain rather than being oriented towards a specific

domain. This can be seen from the principle of representing the system under

consideration using general and domain independent attributes. Hence, it can be

considered as the first domain-independent requirements interaction taxonomy. Also, the

taxonomy provides 37 interaction scenarios that give a detailed description of when two

requirements are considered interacting. The 37 interaction scenarios provide also 37

detection guidelines that can be used to detect the different interaction types.

The proposed interaction taxonomy was compared to other existing taxonomies in the

literature and not only was it able to address the interaction issues in those taxonomies

but it also contained many other interaction types that have not been captured by other

taxonomies.

71

CHAPTER FOUR: IRIS: IDENTIFYING REQUIREMENTS INTERACTIONS

USING SEMI-FORMAL METHODS

4.1 Introduction

This chapter introduces an approach for detecting requirements interactions called

Identifying Requirements Interactions usingSemi-formal methods (IRIS). As the name

already indicates, the approach uses semi-formal methods such as tables, graphs,

interaction scenarios, and human judgment to identify interactions between software

requirements. In contrast to several other approaches that have been surveyed in Chapter

2, IRIS is a customizable and domain-independent approach. This means that IRIS can be

customized to detect interactions in different domains and at different levels of

abstraction and thoroughness using semi-formal methods. As a result, IRIS is an

approach that fills the gap between existing informal and formal interaction detection

approaches.

Section 4.2 gives an overview of some basic concepts of the proposed IRIS approach.

Then, Section 4.3 provides a detailed description of IRIS along with a description of the

steps that must be performed when applying IRIS. In Section 4.4, a discussion of the

advantages of using IRIS for detecting interactions in software systems is provided.

Section 4.5 lists the limitations of IRIS. Section 4.6 compares IRIS to other semi-formal

approaches found in the literature. Finally, in Section 4.7, the chapter is summarized.

72

4.2 Overview of IRIS

4.2.1 General Outline

Figure 4.1 shows how IRIS is applied to detect interactions when developing a software

system. IRIS is applied during the Requirements Engineering phase. The requirements

can be all new, or some new requirements are added to a set of already existing system

requirements, or reusable requirements are tailored and added to the system requirements.

IRIS is a semi-formal approach which means that it involves graphical and tabular

representations and human subjective judgment involving an analyst. The analyst is a

regular human developer who must be knowledgeable and experienced in the application

of IRIS to ensure the successful application of IRIS otherwise the whole process can fail.

However, the analyst does not have to be a domain expert.

Figure 4.1: Application of IRIS to detect interactions when developing a software
system

73

4.2.2 Detecting Interaction with IRIS at Different Abstraction Levels

Originally, IRIS was developed to detect interactions between requirements. However,

IRIS has also been successfully applied to detect interactions between features, as well as

between policies. This is because IRIS uses the concept of attributes which was discussed

in Chapter 3. Usually, a software system being developed is described with a long textual

description using requirements, features or policies. Regardless of the way a system is

described, the system will still consist of three main components: a static view

represented by system axioms, a dynamic view represented by dynamic behaviour, and

an environmental view which is represented by resources. Since any of these elements

can be represented using attributes as discussed in Chapter 3, this enables IRIS wide

applicability for detecting interactions between requirements, between features, or

between policies as demonstrated by the case studies presented in Chapters 6, 7, and 8

respectively.

In this chapter, a description of IRIS is given based on the assumption that IRIS is being

applied to detect interactions at the requirements level. Hence, the word "Requirements"

is being used throughout the remainder of this chapter when explaining and describing

IRIS and its steps. The same description is also valid for features and policies.

74

4.2.3 IRIS Customizability

As mentioned in the introduction to this chapter, IRIS is a customizable approach. The

customizability of IRIS means that it can detect interactions in any domain and at

different levels of thoroughness. To achieve such a goal, IRIS was designed with a basic

core as well as extension hooks that allow expansion through the addition of plug-ins

attached to the hooks. The basic core of IRIS consists of several main steps, tables,

graphs, and interaction scenarios that always have to be applied regardless of the domain

or the type of system under consideration or the abstraction level on which IRIS is being

applied (e.g., requirements, features, or policies).

The basic core of IRIS is already capable of detecting critical interactions within a

software system, such as non-determinism and conflicting actions being executed

simultaneously or sequentially. However, plug-ins can be used to customize IRIS for new

domains and also enhance the obtained results by providing more steps, tables,

interaction scenarios, etc to detect interactions more thoroughly. This chapter focuses on

the basic core of IRIS and its associated steps, tables, graphs, and interaction scenarios.

However, a discussion on the customization concept of IRIS and the different plug-ins is

provided in Chapter 5.

75

4.3 IRIS: Class Model and Description

4.3.1 A Class Model for IRIS

The basic core of IRIS consists of several main steps, tables, graphs, and interaction

scenarios that are applied regardless of the domain or the type of system under

development. IRIS basic core is a systematic approach composed of six ordered steps that

facilitate the detection of requirements interactions. Different tables and graphs are

developed and in a final step the analyst reviews these tables and graphs using a set of

interaction scenarios to detect interactions. IRIS basic core is graphically presented in

Figure 4.2. Each block represents a class in the figure. Each class has three parts, the top

part contains the name of the class, while the middle part contains any requirements

attributes that are used within this class, and finally the bottom part contains steps that are

executed in this class.

The figure starts by having a requirement document which is represented by the "Req.

Document" class. The requirements contained in the requirements document are then

classified into system axioms, dynamic behaviour, and resources. This classification is

represented by the step Classify_Requirements(Reqs). It is worth mentioning that the

output of the classification is zero or more system axioms, zero or more resources, and

one or more dynamic behaviour requirements. This is because a system can consist of

dynamic behaviour requirements without system axioms or resources as seen from the

case study in Chapter 7. But a system cannot consist of only properties without

description of the behaviour of the system.

76

Req. Document

elasslfvRequneinents(Reqs)

Resoiiires

ID: A1
Desci 11)tlon:A2

Ideiitify_AttiIbutes_

Values Re s.,.

uses

0..
V

System Axinins

19: 1

I)esciipt ton. 12
Rule: 1

Condition: 14

Identify Attribu tes
\aIues(Reqs.)

uses

Interactions Detection

SCR!, SCR2, SCR. SCR4.
S('RS. 5(21(10, SCRII,
5CR12, SCRI3, SCRJO, SCRJI

DeteciInteuactioiIs(Req
uses

L.

Dynamic Behavior

ID: 171
Description: r2
Pie-slate: I'3
Trigger event: I'4
Action: i'5
Next state: JI'6

Itien tlfv Attribu tes_Va1ues(Reqs,...)
Iden Ev tify Linked ents(r4)
EitiacC'rilggem _Even .s(F4)

Repieseided
1w

Trigger Events Charts Representation

Geiiei ate_Ti iggei_ Events _Charts(Re(1s,,)

Figure 4.2: A class model of the basic core of IRIS

The "Resources" class has two attributes A1 and A7 and one step which identifies the

values of these attributes for all resources. The "System Axioms" class uses attributes li-

T4 and has one step which identifies the values for these attributes for all system axioms.

The "Dynamic Behaviour" class uses attributes F1-['6 and has three steps. The step

Identify_Attributes_Values(Reqsdyiauiiic) identifies the attributes values for all the dynamic

behaviour requirements. The step Extract—Trigger—events(F4) extracts all unique trigger

events from the different values of the attribute "Trigger event" and lists them in a

separate table. The step Identify_Linked_Events(F4) identifies all linked events and lists

them in a separate table. The class "Trigger Events Charts Representation" has only one

step, Generate_Trigger_Events_Charts(Reqsoynamic), which creates trigger events charts

77

for all dynamic behaviour requirements. Finally, the "Interaction Detection" class

detects interactions between requirements through the step Detect_Interactions(Reqs). In

this class, the step Detectjnteractions(Reqs) uses 11 of the 37 interaction scenarios,

namely: SCR1, SCR2, SCR3, SCR4, SCR8, SCR1O, SCR11, SCR12, SCR13, SCR3O,

and SCR3 1 to detect interactions between requirements. The details of these interaction

scenarios are provided in Chapter 3 and Appendix B.

Figure 4.2 shows that the basic core of IRIS contains six steps. These steps are ordered in

such a manner that the translation of requirements into graphical and tabular

representations is gradually achieved. The objective of these representations is to

facilitate the application of the interaction scenarios in the sixth step of IRIS.

4.3.2 Step 1: Requirements Classification

As stated in Chapter 3, any system will be decomposed into a static view represented by

system axioms, a dynamic view represented dynamic behaviours, and an environmental

view represented by resources. The first step is used to classify requirements contained in

the requirements document into one of three categories:

1. System axioms

2. Dynamic behaviours

3. Resources

Step 1 is performed by having the analyst examine the textual description of the

requirements of the system and determine if a requirement is a system axiom or a

dynamic behaviour or a resource. If the requirement describes a certain property of the

system that has to be preserved, then the requirement is a system axiom. If the

requirement describes how the system should respond in terms of state changes and

78

actions needed to be taken when a specific trigger occurs, then this requirement is a

dynamic behaviour requirement. Finally, if a requirement describes system specific

resource requirements, then this is a resource. It must be noted that a requirement can

belong to only one category, i.e., a requirement can be either a system axiom or a

dynamic behaviour or a resource. As an example, Table 4.1 shows three requirements and

the class they belong to.

The requirement classification step is shown in Figure. 4.2 by the

Classify_Requirernents(Reqs) in the Req. Document Class.

Table 4.1: Examples on classifying requirements

Requirement Requirement Classification

Occupants can control all AN devices through remote controls System axiom requirement

Automatically turn on the lights according to a daylight sensor when
the night begins,

Dynamic behaviour
requirement

The database server shall be available for processing requests more
than 99.9% of the time during each week

Resource requirement

4.3.3 Step 2: Requirements Attributes Identification

As mentioned in Chapter 3, the use of attributes was proposed as a general representation

to describe system axioms or dynamic behaviour requirements or resources. This step

identifies the values of the different attributes of each requirement (either a system axiom

or a dynamic behaviour or a resource). For a system axiom there are four basic attributes

which are: ID, Description, Rule, and Condition, Y -Y4. The two attributes Parameters T5

and Parameters Range T6 are optional attributes and hence are plug-ins that are not part

of the basic core of IRIS. In case of a dynamic behaviour requirement, there are 6 basic

core attributes which are: ID, Description, Pre-State, Trigger Event, Action, and Next

State F1 -F6. The two attributes Parameters F-, and Parameters Range F8 are optional

79

attributes and hence are plug-ins that are not part of the basic core of IRIS. Finally, in

case of a resource, there are only two attributes that are considered as part of the basic

core of IRIS which are: ID A1 and Description A2. The three attributes: Availability,

Performance, and Interface, A3-A5, are considered to be plug-ins to IRIS.

Step 2 is performed by the analyst who identifies the different values of attributes for the

requirements in each of the three categories determined in step 1.

Step 2 has three tables as output. The first table is called the "System Axioms Attributes

Identification" and contains all the system axioms along with the values of the attributes

for each system axiom (see Table 4.2 for an example). The second table is called the

"Dynamic Behaviour Attributes Identification" and contains all the dynamic behaviour

requirements along with the values of the attributes for each dynamic behaviour

requirement (see Table 4.3 for an example). The third table is called "Resources

Attributes Identification" and contains all resources requirements along with the values of

the attributes for each resource requirement (see Table 4.4 for an example).

The requirements attributes identification step is shown by

Identify._Attributes_Values(Reqs) which exists in the classes Dynamic Behaviour,

System Axioms, and Resources in Figure 4.2.

Table 4.2: System Axioms Attributes Identification

ID Description Rule Condition

Ri Occupants can control all AN
devices through remote controls

Control all AN devices through
remote controls

True

80

Table 4.3: Dynamic Behaviour Attributes Identification

ID Description Pre-State Trigger Event Action Next State
Automatically turn on the
lights according to a
daylight sensor when the
night begins,

Daylight--True
Lights=Off

Night begins
Automatically
turn on the
lights

Daylight--False
Lights=On

Table 4.4: Resources Attributes Identification

ID Description
R3 The database server shall be available for processing requests more than 99.9% during each week

4.3.4 Step 3: Trigger Events Extraction

Step 3 is aimed at identifying and extracting all the different and unique trigger events

that can cause dynamic behaviour requirements to execute. This step is performed by

looking at the table "Dynamic Behaviour Attributes Identification" that was created in

step 2 and by determining all the different unique trigger events from the attribute column

"Trigger Event". After that, these trigger events are listed in a separate table called

"Trigger Events Extraction" table as shown in Table 4.5. Each trigger event is listed in

the table and is given a unique ID (e.g. El, E2...) with an informal description of the

trigger event, as specified in the Trigger Event attribute column of Table 4.3, and a list of

which requirements this event is triggering. This table is important as it will be used

when creating the trigger events charts in step 5.

Step 3 is shown by Extract_Trigger_Events(F4) in the dynamic behaviour class in Figure

4.2.

81

Table 4.5: Trigger Events Extraction

Event ID Event Description Requirements Triggered by
this Event

El Night begins R2

4.3.5 Step 4: Linked Events Identification

To understand step 4 correctly, the concept of linked events must first be introduced.

Linked events are trigger events that are connected to each other. Linked events can best

be described using an example. For instance, consider the trigger event E1 stating that "A

window is opened". The occurrence of this event will likely cause a change in the

temperature of the house and therefore the trigger event E2, which describes that the

temperature of the home has changed, will also be triggered. This means that whenever

event B1 occurs then event E2 will also occur as a logical consequence after a short time

period. This means that event E1 leads to event E2 (or event E2 is linked to Bi) and this is

expressed as B1 -> E2 where the curly arrow (>) indicates that the occurrence of the first

event will most likely lead to the occurrence of the second event.

The degree of confidence that the occurrence of the first trigger event will lead to the

occurrence of the second trigger event is not of major concern because linked trigger

events are used to detect sequential interactions and hence if there is any chance that two

events are linked then it is better to mark them as linked trigger events in order not to

miss any sequential interactions.

82

An informal definition of linked events can be given as follows:

"Granted that events can be initiated by a user or a system, event E2 is said to be linked to

event E1 (B1 -> E2) if the occurrence of event B1 is followed by the occurrence of event

E2 as a logical sequence".

To give a more rigorous definition of linked events, consider the following symbols:

B: Event

U: User

S: System

@E: At the occurrence of the event B

createBventQ: Function that can represent a user or the system creating an event B

Using these symbols, linked events can be formally defined as follows:

(E1 -> E2) <- (@Ei - (E2 = S.createEvent() v E2 = U.createEvent())) (4.1)

This latter formula can be read as follows "(event E2 is linked to event Ei) is equivalent

to (at the occurrence of event E1 this will lead to (event E2 is created by the system S OR

event E2 is created by a user U))".

The linked events definition can also be extended to include transitive linked events. Two

events are said to have a transitive link relation when these two events are not linked

directly to each other but through one or more linked events. A transitive link between

the two events B1 and E3 exists as follows:

"If event E2 is linked to event E, AND event E3 is linked to event E2 then this leads to

event E3 is said to be linked to event B1"

83

This definition can be translated into the following equation using the same notation

explained earlier as follows:

(B1 > E2) A (B2 > E3) —> (B1 > E3) (4.2)

The purpose of investigating linked events is to detect interactions between requirements

that are sequentially related through linked events. This can be seen from the interaction

taxonomy introduced in Chapter 3 where there are interaction scenarios for identifying

interactions between sequentially executed requirements. Linked events are the

mechanism that IRIS uses for identifying requirements that are related sequentially and

hence allow the detection of sequential interactions. Moreover, the concept of transitive

linked events provides deep and sufficient means for IRIS to identify sequentially related

requirements even if these requirements are not related through a direct sequence of

events.

Linked events are identified in the 41h step of IRIS. During the 4t1i step of IRIS, an analyst

looks at the table "Trigger Events Extraction" (Table 4.5) that was created in step 3 of

IRIS. The trigger events listed in that table are examined in order to identify if the

occurrence of an event can lead to the occurrence of another event. In that case the two

events are said to be linked events and are they are listed in the "Linked Events

Identification" table shown in Table 4.6

Table 4.6: Linked Events Identification

Event
ID

Event Description Linked to Mathematical Representation

El A window is opened E2 El—>E2

84

The linked events identification step of IRIS is shown in Figure 4.2 by

Idenitfy.Linked_Events(F4) in the dynamic behaviour class.

4.3.6 Step 5: Trigger Events Charts Representation

In step 5, a graphical notation is used to link each trigger event with the dynamic

behaviour requirements it triggers. This graphical notation is called "Trigger Events

Charts" because it graphically groups together dynamic behaviour requirements that are

triggered by the same trigger event. Trigger events charts are very useful as they facilitate

the detection of interactions between the requirements, performed in the sixth step of the

proposed IRIS approach.

Trigger events charts are created only for dynamic behaviour requirements and are

created by having the analyst look at the "Trigger Events Extraction" table which was

created in step 3 of IRIS (Table 4.5) to identify which requirements are triggered by the

same trigger event. These requirements are then graphically represented as shown in

Figure 4.3.

85

Req ID 1

Prestatej Action 1>cNext state i'Tj

Req ID 2

Event Pre-state 22) Action 2>Next state 2

Req ID n

) are-state Action n>Next state

Figure 4.3: Trigger Events Charts

In Figure 4.3, the word Event represents any trigger event that has been identified in step

3. Each requirement that is triggered by this event is graphically represented as a

rectangle that shows the following attributes: Requirement ID, Pre-State, Action, and

Next State. The values of these attributes for each of the requirements are extracted from

the table "Dynamic Behaviour Attributes Identification" (Table 4.3).

The trigger events chart provides a graphical view for the analyst to easily compare and

apply the interaction scenarios in the sixth step of IRIS (Interaction Detection) in order to

find interactions between requirements that are triggered by the same trigger event or

requirements that are triggered by linked events.

The trigger events charts representation step is shown by

Generate_Trigger_Events_Charts(Reqs) in the class Trigger Events Charts

Representation in Figure 4.2.

86

4.3.7 Step 6: Interactions Detection

4.3.7.1 General Description

The interaction detection step is the last and final step of IRIS. The interaction detection

in this step is subjective which means that the analyst detects interactions between

requirements using the different tables and graphs that have been created in steps 2, 3, 4,

and 5 and also uses the different interaction scenarios that are part of the general

requirements interaction taxonomy described in Chapter 3.

The subjectivity of interaction detection is minimized through the application of the

interaction scenarios that help correctly detect interactions between requirements and

serve as an experience base for the human analyst. Also, the developed tables and graphs

from the previous steps serve as a clear presentation of the information collected so far

during the detection step. Therefore, with these interaction scenarios being applied on the

developed tables and graphs, the subjectivity of the approach is reduced. According to the

interaction taxonomy in Chapter 3, there are 9 main interaction categories:

1.

2.

3.

Interactions between two system axioms

Interactions between a system axiom and a dynamic behaviour requirement

Interactions between two dynamic behaviour requirements

4. Interactions between a system axiom and a resource

5. Interactions between a dynamic behaviour requirement and a resource

6. Interactions between two resources

7. Interactions between a dynamic behaviour requirement and a system axiom

8. Interactions between a resource and a system axiom

9. Interactions between a resource and a dynamic behaviour requirement

87

The analyst now tries to find interactions between requirements that fall in these 9

main interaction categories by applying the interaction scenarios provided under these

categories to detect interactions. However, not all interaction scenarios are always

applicable because some interaction scenarios are plug-ins and are not part of the basic

core of IRIS. For example, the interaction scenario SCR1 6 "Infinite Looping" is aimed at

finding interactions between two dynamic behaviour requirements due to infinite looping

but at the same time this interaction scenario actually detects interactions due to high

level system design problems, and therefore is not always applied (note that the

application of interaction scenarios requires time and effort and there might be situations

where such a thorough detection is not required). Also, there are interaction scenarios that

are applied only in specific cases. For example, there are interaction scenarios aimed at

detecting interactions when there are specific requirements for resources availability.

These interaction scenarios are applied when the attribute plug-in "Availability" is used

(Chapter 5 provides more details on using plug-ins with IRIS).

Based on this discussion, the following interaction scenarios are identified as part of the

basic core of IRIS: SCR1, SCR2, SCR3, SCR4, SCR8, SCR1O, SCR11, SCRl2, SCR13,

SCR3 0, and SCR3 1 (the complete details of these interaction scenarios are provided in

Chapter 3 and Appendix B). These interaction scenarios were chosen because they

provide detection of the most common critical interactions at the requirements level

based on the different case studies that have been conducted in this thesis or based on the

extensive literature survey of current approaches (previously presented in Chapter 2) that

was conducted during this research. However, more interaction scenarios can be plugged

into IRIS as needed as explained Chapter 5.

88

The following provides a description of how the 6' step of IRIS is applied using the

developed graphs and tables from the previous steps of IRIS and interaction scenarios

that are part of the basic core of IRIS.

4.3.7.2 Detecting Interactions According to Main interaction Category ®

The main interaction category number cD provides interaction scenarios for detecting

interactions between two system axioms. There are two basic core interaction scenarios,

SCRl and SCR2, that are part of this main interaction category. According to these two

interaction scenarios, the analyst is required to examine all the system axioms listed in

the "System Axioms Attributes Identification" table.

In order to detect interactions, the analyst compares pair-wise all the system axioms with

specific focus on the values of the rule attribute of the two system axioms being

compared, to find interactions. According to the first interaction scenario, SCR1, an

interaction is detected if the rule attribute of the first requirement overrides the rule

attribute of the second requirement. Whereas the second interaction scenario, SCR2,

states that an interaction exists between two requirements if the rule attribute of the first

requirement has a negative impact on the rule attribute of the second requirement.

Whenever the analyst encounters one of these two situations when examining the rule

attributes of a pair of system axiom requirements, then these two requirements interact.

4.3.7.3 Detecting Interactions According to Main Interaction Categories ® and ®

The main interaction category number ® provides interaction scenarios for detecting

interactions that occur between a system axiom and a dynamic behaviour requirement.

On the other hand, the main interaction category number ® provides interaction

scenarios for detecting interactions that occur between a dynamic behaviour requirement

89

and a system axiom. The main interaction categories number Q and ® were joined

together to avoid making the analyst comparing the same two requirements twice first

under main interaction category © and then under main interaction category ©.

There are four basic core interaction scenarios to be used which are SCR3, SCR4,

SCR3O, and SCR3 1. According to these four interaction scenarios, the analyst is required

to examine the table "System Axioms Attributes Identification" and the table "Dynamic

behaviour Attributes Identification" developed in step 2. The analyst has to compare pair-

wise every system axiom and every dynamic behaviour requirement with the objective of

finding interactions based on the four interaction scenarios SCR3, SCR4, SCR3O, and

SCR3 1.

4.3.7.4 Detecting Interactions According to Main Interaction Category ©

This main interaction category contains scenarios for detecting interactions between two

dynamic behaviour requirements. There are 5 basic core interaction scenarios under this

category which are: SCR8, SCR1O, SCR11, SCR12, and SCR13. The first three

interaction scenarios are used to detect interactions between two dynamic behaviour

requirements that are triggered by the same trigger event while the last two scenarios are

used to detect interactions between requirements triggered by linked events. The analyst

first looks at the trigger events charts developed in step 5 and the linked events

identification table developed in step 4 and extracts all unique pairs of requirements that

are triggered by the same trigger event or triggered by linked trigger events. These pairs

are the ones to be examined for interactions using the five interaction scenarios under this

category. This way, the analyst discards unrelated comparisons that will not lead to

interaction situations.

90

The analyst now examines each one of the identified pairs of requirements using the

trigger events charts developed in step 5 with the aim of finding interactions between the

two requirements in the pair under investigation. The examination is done by applying

the five interaction scenarios SCR8, SCRlO, SCR1I, SCR12, and SCR13 on the two

requirements being investigated to see if any interaction can occur between them. For

example, according to SCR8, the developer examines the trigger events chart for the two

requirements Ri and R2 that are triggered by the same trigger event and see if Ri and R2

have the same pre-sate and have different next states. Whenever such a situation occurs,

then these two requirements interact according to SCR8 because this would cause a non-

determinism situation in the system.

As another example for detecting interaction between two requirements triggered by

linked trigger events, consider El—>E2 and El triggers the requirement R3 while E2

triggers the requirement R4. According to SCR12, the analyst examines R3 and R4 to

determine if the action of R3 overrides the action of R4 or vice versa. If such a situation

occurs, then the two requirements R3 and R4 interact according to the interaction

scenario SCR12.

4.4 Advantages of the Proposed IRIS Approach

In Section 4.3, IRIS has been proposed as a semi-formal approach for detecting

requirements interactions. This section focuses on highlighting the main advantages and

characteristics of IRIS:

• IRIS is a semi-formal approach for detecting interactions. This means that it does

not require any heavy mathematical modeling of the system under investigation

as opposed to formal methods.

91

• IRIS reduces the number of necessary pair-wise comparisons that have to be

performed between all requirements in textual form. This is very important and

crucial as "The analysis of feature interactions is almost impossible in complex

system because the number of combinations to be analyzed grows exponentially

with the number of features" [140]. IRIS discards irrelevant comparisons

between requirements that will not lead to interactions (an irrelevant comparison

is a comparison that contains two requirements that are not triggered by the same

trigger event or by linked events). This can result in a clear reduction in the

number of comparisons as demonstrated in the case studies (chapters 6, 7, and 8).

Although this reduction in number of comparisons cannot be translated directly

into equivalent reduction in cost and time due to the fact that there will always be

an overhead due to the application of IRIS, but IRIS, as a structured approach, is

likely to increase the number of detected interactions. The increased number of

detected interactions will compensate for the additional time and effort of

applying IRIS. Also, the reduction in number of comparisons favours the

proposed IRIS approach.

• IRIS is not limited to a specific domain (e.g. the telecommunications domain) but

is domain independent. This is obvious through:

o The general representation notations adopted in the different steps of IRIS.

o The general interaction taxonomy that provides general interaction

scenarios applied in the sixth step of IRIS.

o The different case studies from different domains in which IRIS has been

applied to detect interactions.

92

• IRIS adopts the terminology introduced by Robinson et al. [1 1] which extends

the definition of feature interaction to Requirements Interaction Management

(RIM). This means that IRIS focuses on detecting interactions between

requirements during the requirements engineering stage to save costly repairs at

later stages.

• IRIS is capable of detecting interactions at different abstraction levels. In this

thesis, IRIS was able to detect interactions at the requirements level (case study

in Chapter 6), at the features level (case study in Chapter 7), and at the policies

level (case study in Chapter 8).

• IRIS is a customizable approach that can be extended by adding plug-ins to

enhance its performance and detection accuracy. More discussion on this point is

provided in the next chapter.

• The tables created in IRIS allow a comprehensive representation and visualization

of the requirements of the system in a structured format. The creation of these

tables requires a good understanding of the requirements forcing the developer to

clearly think about requirements which will likely improve them. This is because

when a developer cannot easily identify the values for the attributes of a

requirement, then this means that the requirement under investigation is

incomplete or ambiguous. Hence, the developer has to go back to the stakeholder

of this requirement to enhance and improve it.

• Using trigger events charts makes detection of interactions between dynamic

behaviour requirements easier. For instance, requirements that are triggered by the

same event are grouped together in the trigger events charts. Therefore detecting

93

interactions can be easily done by examining the different actions and states of

the requirements according to the interaction scenarios being used.

4.5 Limitations of the Proposed IRIS Approach

After discussing the benefits and advantages of using IRIS, it is also important to discuss

its limitations. The discussion of these limitations is as important as the approach itself so

that IRIS will not be used beyond its capabilities resulting in unsatisfactory performance.

The following summarizes the limitations of IRIS:

• IRIS is an offline detection approach which means that it cannot be used to detect

interactions in an interactive runtime environment. However, IRIS can be used to

detect interactions offline and then implement the obtained results in any online

detection approach as a knowledge base. Moreover, this limitation can be

compensated for by implementing the general interaction scenarios, which are

part of IRIS, in any online interaction detection approach.

• IRIS is a detection approach only which means that IRIS does not provide

suggestions for the resolution of the detected interactions. The resolution has been

intentionally left out of IRIS because different resolutions are available based on

the different stakeholders involved. Any suggested resolutions for the detected

interactions must involve an iterative negotiation process between the

stakeholders involved in setting the interacting requirements.

• IRIS is a semi-formal approach that has subjectivity in the interaction detection

step. This means that it is not guaranteed to detect all the interactions in a system.

Therefore, IRIS is only recommended for non-critical systems such as

94

commercial PC software, telecommunications features, and smart homes.

However, IRIS can be used as a first stage application to filter as many

interactions as possible at the early stage of requirements engineering. Then, once

the necessary design and implementation details are available, formal approaches,

such as SDL, can be applied to the system to have a more through interaction

detection. This way, IRIS can help detect interactions early and avoid high repair

cost due to late detection in the software life cycle.

• IRIS is not suitable for detecting detailed design and implementation interactions.

This is obvious as IRIS was designed originally to detect interactions between

requirements during the requirements engineering phase. This limitation was

slightly compensated for by the ability of IRIS to detect high level design

interactions such as infinite looping. Still, detailed design and implementation

interactions are beyond the capabilities of IRIS. It is worth mentioning that IRIS

can still be used as a front end filtering approach to detect interactions as early as

possible.

• IRIS can detect only interactions between two requirements (2-way interactions)

but it cannot detect interactions that are cause by 3 requirements together (3-way

interactions). It is worth mentioning that 3-way, interactions are rare and have not

been thoroughly addressed in the literature. To the authors' best knowledge, 3-

way interactions have been addressed only in the work by Hall [141], Sarnborski

[142], and Kawauchi et al. [104].

95

4.6 Comparing IRIS to other Semi-Formal Approaches in the Literature

To conclude presenting the proposed IRIS approach, a comparison is made between IRIS

and other semi-formal approaches that were identified in the literature. There are 7 semi-

formal approaches that have been compared to IRIS as shown in Table 4.7. The full

details of these approaches that are being compared to IRIS can be found in Chapter 2.

However, Table 4.7 compares all the semi-formal approaches including IRIS to highlight

the advantages and limitations IRIS over the other approaches. It must be noted that the

advantages from the comparison in Table 4.7 are not the only advantages but are added to

the list of advantages listed in Section 4.4

Table 4.7: Comparing IRIS with other Semi-Formal Approaches

Criteria IRIS Wakaliara etal. [38: Mierop etal. [39] Kimblcr at al. [40] Dankel etal. [41]

Notation Used
Tables,

Trigger events
charts

MSC 00 - High level predicates

Approach Type Offline Offline Offline Offline Offline

Application
Domain

General Telecoinm Telecoinm Telecomm Telecomin

Address
System Properties

Interactions
Yes No No No Yes

Address
Resources
Interactions

Yes No No Yes Yes

Human
Involvement

Regular human
developer

Expert with
knowledge of

telecomm. and MSC

Expert with
knowledge of

telecomm. and 00.

Expert with
knowledge of
telecomm.

Designers
and

Experts

Application Phase
Req. and high
level Design

Design Design Req. and Design Req. and Design

Experience
Factor

GeneralKnowledge
interaction

.

scenarios

bases witl
data on telecomm.

Human expertise Human expertise Human expertise

Number of case
studies reported
in the literature

3 0 0 0 0

Other
Specific

Limitations

Do not address
deep design and
implementation

related
interactions, Not
recommended fom
critical systems

Knowledge used in thi
DB are very abstract,

Integration of
developed MSC is
very hard, Not

recommended for
critical systems

Detects limited
types of

interactions,
representation of

telecomrn in 00 isvery hard Not
,

recommended for for
critical systems

uses serious
simplifications in
the ESTI/NA6

specification with
no proof of validity.
Not recommended

critical systems

Based on natural
language processing,

Behavioural
interactions are

detected infonnally,
Not recommended fom

critical systems

96

Table 4.7-Continued: Comparing IRIS with other semi-formal approaches

Criteria IRIS Ku ci al. [42] Keck [43]
Kimbler and Sobrikisch

[441

Notation Used
Tables,

Trigger events
charts

BCSM BCSM Use Case Models

Approach Type Offline Offline Offline Offline

Application
Domain

General Telecoinm Telecomin Telecoinm

Address
System Properties

Interactions
Yes No No No

Address
Resources
Interactions

Yes Partially Yes Yes

Human
Involvement

Regular human
developer

Expert with
knowledge of

telecomm. and BCSM
Human developer

Expert with knowledge of
telecoinm. and Use Case

- Models

Application Phase
Req. and high
level Design

Design Design Req. and Design

Experience
Factor

General interaction
scenarios

Human expertise
Criteria with Rules about

telecommunications scenario
prone interactions

Human expertise

Number of case
studies reported
in the literature

3 0 I 0

Other
Specific

Limitations

Don not address deep
design and

implementation
related interactions,
Not recommended
for critical systems

Specification in BCSM
is not an easy task, The

reference does not
describe types of
resource related

interactions that can be
detected, Not

recommended for
critical systems

The generated list contains
only interaction prone

scenarios and this list must be
analyzed by another detection
approach for deciding which
features are really interacting,

The criteria used for
identifying interaction prone

scenarios is limited,
Specification in BCSM is not

an easy task. Not
recommended for critical

systems

The created use case
models cannot cover all
possible usage scenarios,
The final interaction

detection relies totally on
experience with limited
definition of when two
features interact, The

criteria used for
identifying interactions
between features is

limited, Not recommended
for critical systems

97

4.7 Summary

This chapter presented the proposed semi-formal approach IRIS for detecting

requirements interactions. IRIS uses tables and graphs along with interaction scenarios to

detect interactions. IRIS is a systematic six step approach that can detect interactions in

any domain. IRIS is also a customizable approach which means that it can have plug-ins

attached to its basic core to extend and enhance its capability and increase its interaction

detection thoroughness. Chapter 5 provides more discussion on the concept of

customization for IRIS along with details of what and how the different plug-ins can be

hooked to the basic core of IRIS to extend it and enhance its capability.

98

CHAPTER FIVE: IRIS CUSTOMIZATION

5.1 Introduction

This chapter continues on the previous chapter with a focus on IRIS customization. This

chapter describes how IRIS can be customized, the different plug-ins are that can be used

with IRIS, and how they can be used and inserted to extend the basic core of IRIS.

IRIS plug-ins are considered to be a very powerful feature in IRIS that can be used to

extend the performance of IRIS, increase the scope and thoroughness of interaction

detection to include design and resource interactions, make IRIS applicable to new

domains, and cope with any specific future needs by system developers.

This chapter is structured as follows: Section 5.2 describes the concept of customizing

IRIS and presents its advantages. In Section 5.3, IRIS hooks are described as insertion

points for the different plug-ins. It also contains a description of the characteristics of the

hooks used in IRIS. Section 5.4 gives details regarding the different plug-ins that can be

attached to the hooks. This includes a description of the general structure of the plug-ins;

and how plug-ins can be inserted to specific hooks and be integrated as part of the whole

approach. Finally, Section 5.5 summarizes this chapter.

99

5.2 The Concept of IRIS Customization

IRIS was designed to be a domain independent approach that can detect interactions at

different levels of thoroughness between software requirements using semi-formal

methods. The challenge was to achieve this objective without creating a complicated

approach. For this reason, IRIS consists of a basic core that can be applied regardless of

the domain and is sufficient by itself to detect critical interactions within a software

system. This main core can then be supplemented with different plug-ins to extend it and

enhance its capabilities and ensure its successful application in new domains where

special needs may arise.

The advantages of extending IRIS with plug-ins can be summarized as follows:

• IRIS basic core is a simple approach that can be easily applied in any domain to

detect critical interactions. Hence, the analysts can easily learn how to use and

apply IRIS.

• The analyst only has to perform steps and create those tables and graphs that

necessary to detect interactions that meets his needs. For example, if the analyst

does not want to detect resources interactions, then s/he does not have to create

and fill the resources attributes identification tables nor apply interaction

scenarios related for the detection of resources interactions. This will greatly

reduce the overhead of applying IRIS.

• The created plug-ins can provide different levels of thoroughness for detecting

interactions. It is up to the analyst to decide the required level for detecting

interactions. If the system is to be thoroughly analyzed, more plug-ins are to be

used.

100

• Some of the created plug-ins are used to add the optional attributes that were

described in Chapter 3 (e.g., Parameters and Parameters Range) to system axioms

and dynamic behaviour requirements.

• So far 10 plug-ins have been created based on the needs identified from the case

studies conducted in this research. However, additional plug-ins can be created by

analysts to accommodate new needs when IRIS is applied in new domains. This is

a very powerful feature, as IRIS is no longer a static approach that might get

useless over time, but can evolve over time. The analysts only have to watch that

they follow the general structure and format of plug-ins to ensure the integrity and

successful application of IRIS.

5.3 IRIS Hooks

5.3.1 Overview

IRIS was built with a basic core that consists of six main steps. Using these six steps, the

requirements are gradually translated into a graphical and tabular representation and

finally specific interaction detection scenarios are applied to detect interactions.

In addition to these six steps, tables, graphs, and interaction scenarios, the basic core of

IRIS also contains specific point, so-called Hooks, into which plug-ins can be hooked to

extend IRIS. Figure 5.1 presents the basic core of IRIS and the different hooks.

101

Req. Doewneiit

('Lcsify_ReqniiesnriitcReqc)

0.. *

Resources

ID: Al
I)eci4ption:A2

Identify Attributes

\a1iies(Reqc5)

0.. *

Ssstein Axioms

ID: l
Description: Ti

Rule: 13

Condition: 14

I1eittify_Attribiites
Vdiies(Reqs,,)

Interactions Detection

SCRi. SCRZ. SCR. SCR4,
SCR, SCRLO, SCRIL
SCR1Z. SCRI3

MV

ces

Pyuun1e Behavior

ID: Fi
Description- F2
Pre-state: r'1
Trier event: F4

Action: I5
Next state: r6

Identffy_AttriIiutes_VaIues(Reqs,,,)
 'Isleittifv Linked_Fvents(F4)
Extract j.'iiuei_Eveists(F4)

Represented
bY

Detect_Intei ctions(Reqs)

Trigger Events Charts Representation

Genei'ate_Triggei_F'ents_C1iaits(Reqsr,,)

Figure 5.1: Basic core of IRIS showing points of the different hooks

5.3.2 Hooks Characteristics

The hooks which are represented by HI, H2, H3, H4, H5, H6, H7, and H8 in Figure 5.1

are insertion points for plug-ins. Each hook has a unique name that starts with an H

followed by a unique number to identify this specific hook. The numbering order used is

arbitrary and is of no importance. The locations of the hooks were chosen based on:

102

• The need to add more attributes such as the optional attributes described in

Chapter 3 to describe system elements (e.g., system axioms, dynamic behaviour

requirements, and resources). This can be achieved through the hooks H2, H4,

and H6.

• The need to extend IRIS to ensure its successful application in a diverse range of

domains. This need was obvious from the case studies conducted throughout this

research. This can be achieved through the hooks Hi and H3.

• The need to detect more thoroughly interactions using more interaction scenarios

other than the basic core interaction scenarios. This can be achieved through the

hook H8.

• The need to ensure the ability of IRIS to be extended to accommodate any

potential future needs. This can be achieved through the hooks H5 and H7.

In the following we give details on the characteristics of each hook and what plug-ins can

be inserted through each of these hooks.

5.3.2.1 Characteristics of Hook Hi

Hook Hi is an insertion point to add steps that need to be performed before the

application of the basic core steps of IRIS. For this reason Hi is located in the "Req.

Document" at the top of the IRIS class model as seen in Figure 5.1.

Hook Hi will accept only the insertion of plug-ins of type STEP (section 5.4.2) and

integrates them with the basic core steps of IRIS. The order of execution of the new

inserted plug-ins through hook Hi is prior to the execution of IRIS step 1.

103

5.3.2.2 Characteristics of Hook H2

Hook H2 is an insertion point to add attributes that are needed to fully represent system

axioms in the case that a system contains more data that cannot be represented by the

basic system axioms attributes. Examples of such attributes are the optional attributes

"Parameters" and "Parameters Range" discussed in Chapter 3. For this reason H2 is

located in the class "System Axiom" with other basic system axioms attributes as seen in

Figure 5.1.

Hook H2 accepts only the insertion of plug-ins of type ATTR (ATTR stands for

attributes) and integrates them with other basic system axioms attributes.

5.3.2.3 Characteristics of Hook H3

Hook H3 is an insertion point that allows the addition of steps that might need to be

performed on system axioms. For this reason H3 is located in the class "System Axioms"

with other basic system axioms steps as seen in Figure 5.1.

The Hook H3 accepts only the insertion of plug-ins of type STEP and adds them to other

basic system axioms steps.

5.3.2.4 Characteristics of Hook H4

Hook H4 is an insertion point to add attributes that are needed to fully represent dynamic

behaviour requirements in the case that a system contains more data that cannot be

represented by the basic dynamic behaviour attributes. Examples of such attributes are

the optional attributes "Parameters" and "Parameters Range" discussed in Chapter 3. For

this reason H4 is located in the class "Dynamic behaviour" with other basic dynamic

behaviour attributes as seen in Figure 5.1.

104

The Hook H4 only accepts the insertion of plug-ins of type ATTR and integrates

them with other basic dynamic behaviour attributes.

5.3.2.5 Characteristics of Hook H5

Hook H5 is an insertion point to add steps that might be needed to be performed on the

dynamic behaviour requirements. For this reason H5 is located in the class "Dynamic

Behaviour" with other dynamic behaviour steps as seen in Figure 5.1.

The Hook H5 accepts only the insertion of plug-ins of type STEP and adds them with

other dynamic behaviour steps.

5.3.2.6 Characteristics of Hook H6

Hook H6 is an insertion point to add attributes that are needed to fully represent resources

in the case that a system contains more additional data. Examples of such plug-ins

attributes are the optional attributes "Availability", "Performance", and "Interface"

discussed in Chapter 3. For this reason H6 is located in the class "Resources" with other

basic resources attributes as seen in Figure 5.1.

The Hook H6 only accepts the insertion of plug-ins of type ATTR and integrates them

with other basic resources attributes.

5.3.2.7 Characteristics of Hook H7

Hook H7 is an insertion point to add steps that might need to be performed on the

resources. For this reason H7 is located in the class "Resources" with other resources

steps as seen in Figure 5.1.

Hook H7 only accept the insertion of plug-ins of type STEP and adds them with other

resources steps.

105

5.3.2.8 Characteristics of Hook H8

Hook H8 is an insertion point to add interactions scenarios that the analyst might use to

achieve more thoroughly detected interactions. For this reason H8 is located in the class

"Interactions Detection" with other IRIS basic core interaction scenarios as in Figure 5.1.

Hook H8 only accepts the insertion of plug-ins of type SCR (where SCR stands for

scenario) and adds them with other basic core interaction scenarios.

5.4 IRIS Plug-ins

5.4.1 General Structure of a Plug-in

A critical point when creating plug-ins for IRIS is to follow the general format and

structure of plug-ins to ensure their integrity.

The general structure of a plug-in to be used with IRIS has three main parts: The first part

identifies the type of the plug-in. The second part is the plug-in main body. The third part

identifies the location where this plug-in can be hooked to the basic core of IRIS. Figure

5.2 shows a description of the general structure of an IRIS plug-in.

Type Main Body

Type of the plug-in:
STEP: Step
ATTR: Attribute
SCR: Interaction Scenario

Figure 5.2: General structure of an IRIS plug-in

Main body of the plug-in: Answers
the What. When, and How the plug-in can be inserted

Location: Describes where

106

5.4.2 Plug-in Type

As shown in Figure 5.2, the Type is a three or four letter abbreviation that describes the

type of the plug-in. A plug-in can have one of the following types:

• Step (STEP): A STEP plug-in is an independent step that generates its own set of

tables and graphs. This type of plug-in is needed when there is a certain step that

is not necessarily always applied, like representing requirements in a graphical

notation to make sure that analyst understands how each requirement behaves.

• Attribute (ATTR): An attribute is used to describe a specific part of a requirement

(see Chapter 3). For example, in the smart homes domain (presented in Chapter

8), many requirements have parameters in their body and therefore the two

attributes "Parameters" and "Parameters Range" have been inserted as plug-ins

into IRIS to analyze the smart homes domain.

• Interaction Scenario (SCR): An interaction scenario is a description of a situation

in which two requirements interact and how this interaction can be detected by a

human analyst.

5.4.3 Plug-in Main Body

The second part of a plug-in is the plug-in main body. The plug-in main body describes

what this plug-in is and when and how the analyst should use it. The plug-in body has the

following parts:

• What: states what this plug-in is

o Name: A unique descriptive name of the plug-in

o Description: A textual description of what this plug-in is

o Construction: The internal construction of the plug-in

107

• When: states when to apply this plug-in

o Problems it overcomes: A description of what types of problems this plug-in

can overcome

o Expected enhancement: A description of the, expected enhancement this plug-

in will provide

• How: states how to apply this plug-in

o Instructions: A set of instructions on how to insert this plug-in plus any other

instructions

o Example of application: A sample description of how to use the plug-in

5.4.4 Plug-in Location

The "Location", as shown in Figure 5.2, describes where this plug-in can be inserted. For

instance, if a plug-in is inserted into hook H2, the "Location" of the plug-in is assigned

the value H2. This prevents any mis-location of plug-ins.

5.4.5 Available Plug-ins for IRIS

So far 10 plug-ins have been designed that have the structure described above and are

fully documented. These plug-ins were identified and designed based on the case studies

carried out in this thesis and also based on the need to add optional attributes to the

system elements (e.g., adding the attributes parameters and parameters range to system

axioms or dynamic behaviour requirements). However, additional plug-ins can be

designed in the future by the author or by other developers if needed.

As an example, Table 5.1 presents a full description of the plug-in named "Graphical

representation of individual requirements". It is worth mentioning that the interaction

scenario plug-in (SCR) is not described as it is fully detailed in Chapter 3 and Appendix

108

B. The remaining 8 plug-ins are briefly described below. However, Appendix D

presents the full details of each of the 8 Plug-ins using the structure described in

subsection 5.4.3.

Table 5.1: Details of the plug-in Graphical representation of individual
requirements

Type: STEP

Body: What Name Graphical representation of individual requirements
Description A complete step that is carried out to graphically represent each

individual requirement. This is to ensure that the analyst'fully
understands the behaviour of the requirements.

Construction The execution of this step requires the following activities:
1. Select every requirement from the set of given requirements,

list it separately, and read it carefully.
2. Identify a suitable graphical representation (e.g., TJML

notations [143-146], CRESS [65], UCM[147-149]),.
3. Represent each of the selected requirements graphically using

the chosen graphical notation.
4. If it is difficult to represent the requirement, the analyst needs

to restate the requirement and possibly consult with the
source/stakeholder of the requirement in order to better
understand it.

5. Go back to activity 3 until all requirements have been
addressed.

When Problems this
plug-in
overcomes

1. Complexity of requirements
2. Ambiguity of requirements
3. Lack of understanding of requirements
3. Clarification of wrong assumptions or wrong judgments

Expected
enhancements

I. Reduced requirements ambiguity
2. Reduced difficulty filling in the requirements tables in step 2
of the basic core of IRIS

3. Improved accuracy of the requirements attributes
4. Improved interaction detection and prevention of false

interactions

How Instructions 1. This step is applied prior to step 1 of IRIS basic core.

Sample of
application

This step has been applied in a case study to identify interactions
between the requirements of a lift system. Refer to Chapter 6 for
an example application.

Location
Since this is a STEP plug-in that is needed to be performed prior to the application of IRIS
basic core steps, then this step is hooked to the hook Hi

109

• Parameter Assignment: This is a STEP plug-in and is used to find any

parameterized parts in the given set of requirements. These parameterized parts

are then replaced by parameters (e.g., X, Y . . . etc). For example, consider a

requirement that has a part stating "the lights will switch on in a certain place

when night starts". The "Certain place" is a parameterized part and the Parameter

Assignment plug-in replaces this part with the parameter X. The requirement now

reads "the lights will switch on in place X when the night starts". Since this is a

STEP plug-in that is needed to be performed prior to the application of IRIS basic

core steps, this plug-in is hooked into the hook Hi.

• Parameters: This is an attribute (ATTR) plug-in. It corresponds to adding the

attribute "Parameters" to the set of attributes used for representing system axioms

requirements or dynamic behaviour requirements. The use of this plug-in results

in a new column, called "Parameters", in the tables created for the system axioms

or the dynamic behaviour requirements. This new column contains the different

parameters used in each requirement along with the data type allowed for these

parameters. This plug-in must be used in conjunction with the "Parameter

assignment" plug-in. Since this is an ATTR plug-in that is needed to add the

attribute Parameters to either system axioms or dynamic behaviour, then this

plug-in is hooked into the hooks H2 or H4.

• Parameters Range: This is an attribute plug-in that has to be used in conjunction

with the Parameters plug-in. It corresponds to adding the attribute "Parameters

Range" to the set of attributes used for representing system axioms requirements

or dynamic behaviour requirements. The use of this plug-in results in a new

110

column, called "Parameters range", in the tables created for the system axioms

or the dynamic behaviour requirements. The new column describes the allowed

range of values that each parameter can have. Since this is an ATTR plug-in that

is needed to add the attribute Parameters Range to either system axioms or

dynamic behaviour, this plug-in is hooked into the hooks H2 or H4.

• Functionalities identification: This is a STEP plug-in that is used when a single

requirement is complex and describes different functionalities. For example a

requirement for an intruder alarm has many functionalities within the same

requirement. The goal of this plug-in is to simplify the parent requirement by

breaking it down into atomic functionalities that can be easily handled. Since this

is a STEP plug-in is needed prior to the application of IRIS basic core steps, this

plug-in is hooked into the hook Hi.

• Graphical representation of individual requirements: This is a STEP plug-in that

corresponds to a complete step that is performed prior to the application of IRIS

basic core. This plug-in is used when the given set of requirements are vague and

therefore must be fully understood before proceeding with the remaining IRIS

steps. A complete description of this plug-in was given in Table 5.1.

• System axioms strategies: This is a STEP plug-in, i.e., a new step is carried out to

identify the different strategies used for the design and implementation of system

axioms. This plug-in creates a table to describe the system axioms design and

implementation strategies. Since this is a STEP plug-in that performs a certain

step on the system axioms, this plug-in is hooked into the hook H3.

111

• Availability: This is an attribute (ATTR) plug-in. It corresponds to adding the

attribute "Availability" to the set of attributes used for representing resources

requirements. The use of this plug-in results in a new column in the table created

for the resources requirements. The new column contains the values of the

availability of each resource requirement. Since this is an ATTR plug-in that adds

the attribute "Availability" to the resources, this plug-in is hooked into the hook

H6.

• Performance: This is an attribute (ATTR) plug-in. It corresponds to adding the

attribute "Performance" to the set of attributes used for representing resources

requirements. The use of this plug-in results in a new column in the table created

for the resources requirements. The new column contains the values of the

performance of each resource requirement. Since this is an ATTR plug-in that

adds the attribute Performance to resources, this plug-in is hooked to the hook H6.

• Interface: This is an attribute (ATTR) plug-in. It corresponds to adding the

attribute "Interface" to the set of attributes used for representing resource

requirements. The use of this plug-in results in a new column in the table created

for the resources requirements. The new column contains the values regarding the

interface for each resource requirement. Since this is an ATTR plug-in that adds

the attribute Interface to resources, this plug-in is hooked into the hook H6.

• SCRi: The SCRi corresponds to the ith interaction scenario (SCR) plug-in. This

plug-in can correspond to the following plug-ins interaction scenarios: SCR5,

SCR6, SCR7, SCR9, 5CR14, SCR15, SCR16, SCR17, SCRl8, 5CR19, SCR2O,

SCR21, SCR22, SCR23, SCR24, SCR25, SCR26, SCR27, SCR28, SCR29,

112

SCR32, SCR33, SCR34, SCR35, SCR36, and SCR37. The details of each of

these interaction scenarios are described in details in Chapter 3 and Appendix B.

These interaction scenarios are used to increase the thoroughness for detecting

interactions between requirements. However, it is worth saying that some

interaction scenarios plug-ins cannot be used unless other plug-ins are used. For

example, all the interaction scenarios plug-ins (SCR1 7, SCR1 8, SCR22, SC23,

SCR27, SCR32, and SCR35) which are aimed at detecting interactions due to a

requirement resource availability attribute, cannot be used unless the plug-in

"Availability" has been hooked to IRIS and is being used. Since this is an SCR

plug-in that is needed to add interaction scenarios to "Interactions Detection", this

plug-in is hooked into the hook H8.

113

5.5 Summary

This Chapter presented the customization of IRIS to detect interactions in any domain

and at different levels of thoroughness. To achieve such a goal, IRIS was designed with a

basic core as well as extension hooks for expansion through the addition of plug-ins that

can be attached to the hooks.

The plug-ins can be used to ensure the successful application of IRIS in new domains and

also enhance the interaction detection results by providing more steps, tables, interaction

scenarios.. . etc to detect interactions more thoroughly. Currently 10 plug-ins have been

created in this thesis for extending and enhancing the performance of IRIS as needed.

However, as a powerful feature, new plug-ins can be developed by analysts who are

using IRIS to accommodate any special needs and hence to successfully apply IRIS to

detect interactions. When creating new plug-ins, an analyst must follow the general

structure of plug-ins to ensure the integrity of the approach and hence its successful

application to detect interactions. The next chapters describe the application of IRIS to

detect interactions in different domains using its basic core and some of the plug-ins

described in this chapter.

114

CHAPTER SIX: APPLYING IRIS IN THE CONTROL DOMAIN - THE LIFT

SYSTEM CASE STUDY

6.1 Introduction

The lift system is a well recognized system from the control domain that is often used as

a benchmark for validating new approaches for interaction detection. This chapter

presents the application of the proposed semi-formal approach IRIS to detect interactions

in the lift system. The lift system case study consists of a set of 14 requirements that

describes the basic operation of a simple lift system. Hence, IRIS is applied to detect

interactions in this case study at the requirements level.

IRIS was able to detect 7 interactions between the lift system requirements. The results

were compared with the results reported by Heisel et al. in [18, 150]. IRIS was able to

detect all interactions reported by Heisel et al. in [18, 150]. IRIS was also able to detect

an interaction that [18, 150] did not detect. Moreover, IRIS achieved a 17.6% reduction

in the number of comparisons that a human expert would have to do to compare all 14

requirements.

This chapter is structured as follows: Section 6.2 presents the requirements of the lift

system that were used in the case study. Section 6.3 shows how IRIS was customized to

more effectively detect interactions in the lift system. Section 6.4 describes in a step-by-

step manner the application of IRIS to the lift system requirements along with the results

obtained from each step. Section 6.5 contains a discussion and a comparison of the

obtained results with the results reported by Heisel et al. in [18, 150]. Finally, in section

6.6 a summary of the chapter is presented.

115

6.2 The Lift System Requirements

In the lift system case study, the followingl4 requirements describing the basic behaviour

of a simple lift have been identified [18, 150]:

Ri. The lift is called by pressing a call button, either at a floor or inside the lift.

R2. Pressing a call button is possible at any time.

R3. When the lift passes by floor K, and there is a call for this floor, then the lift will

stop at floor K.

R4. When the lift has stopped, it will open the doors.

R5. When the lift doors have been opened, they will close automatically after d

time-units.

R6. The lift only changes its direction when there are no more calls in current

direction.

R7. When there are no more calls, the lift stays at the floor last served.

R8. As long as there are unserved calls, the lift will serve these calls.

R9. When the lift is halted at floor K with the doors opened, a call from floor K is

not taken into account.

R1 0. When the lift is halted at floor K with door closed and receives a call from floor

K, it reopens its doors.

Ri 1. Whenever the lift moves, the doors must be closed.

R12. The closing of a door may be prevented by pressing an open-door button.

R13. When something blocks the door, the lift interrupts the process of closing the

door and reopens the doors.

Ri4. When the lift is overloaded, the door will not close.

116

6.3 Customizing IRIS for the Lift System Case Study

6.3.1 Plug-ins used in the Lift System Case Study

To illustrate what plug-ins have been used in the lift system case study, a list of the

problems encountered in this case study is described first. Then the plug-ins that were

used to overcome these problems are described.

1. The initial textual description of the lift requirements was unclear and some

requirements did not provide a clear understanding on how the system should

behave when these requirements are triggered (e.g., R3 and R14). The plug-in

"Graphical representation of individual requirements" was used to graphically

represent requirements and understand their exact behaviour. This helped resolve

the ambiguities that existed earlier on by visually modeling these requirements.

This plug-in is hooked to hook Hi and therefore is carried out prior to the

execution of step 1 of the basic core of IRIS.

2. To detect all possible interactions between a system axiom and a dynamic

behaviour requirement, the interaction scenarios "SCR5", "SCR6", and "SCR7"

were inserted into IRIS as plug-ins at hook H8 and were used to provide

interaction detection between system axioms and dynamic behaviour

requirements. These interaction scenarios are applied as part of sixth step of IRIS.

3. To detect all possible interactions between two dynamic behaviour requirements,

four interaction scenarios have been inserted into IRIS as plug-ins at hook H8,

namely: SCR9, SCR14, SCR15, and SCRl6. These interaction scenarios are

applied as part of the sixth step of IRIS.

117

6.3.2 Assumptions used in the Lift System Case Study

1. The lift system is described by a set of 14 requirements. Hence IRIS was applied

to detect interactions at the requirements level.

2. The set of 14 requirements were chosen as they explained the basic operation of a

simple lift system. Other requirements such as "Executive floor" or "Multi-Car"

were not included in this case study for simplicity purpose.

6.4 Applying IRIS to Detect Interactions in the Lift System Case Study

This section presents the application of IRIS to the lift system requirements presented in

Section 6.2. The basic core steps of IRIS as well as the plug-ins used in this case study

are presented in the order of their execution.

6.4.1 Using the Plug-in "Graphical representation of individual requirements"

The plug-in "Graphical representation of individual requirements" used the CRESS

notation [65] to graphically represent ambiguous requirements. Figure 6.1 shows a

sample of using CRESS to represent requirements Ri and R3.

Press a call
ton inside the
or at floor K

2. The iftis
called

There is a
call from
floor

2. Stop at
this floor

else

Figure 6.1 CRESS [65] representation for RI on the left and R3 on the right

118

Figure 6.1 shows that if the lift passes by floor K and there is a call from floor K, the

lift will stop at this floor. If there is no call the lift will proceed with normal operation and

no action is taken (represented by the empty oval on the right hand side of Figure 6.1).

6.4.2 Step 1: Requirements Classification

After analyzing the lift system requirements, they are classified into system axioms and

dynamic behaviour requirements as shown in Table 6.1.

Table 6.1: Classification table for the lift system requirements

System Axioms R2, R6, R7, R8, and Ri 1

Dynamic Behaviour Requirements RI, R3, R4, RS, R9, RiO, R12, R13, and R14

6.4.3 Step 2: Requirements Attributes Identification

Table 6.2 contains the values of the different attributes of each system axiom, and Table

6.3 contains the values of the different attributes of each dynamic behaviour requirement.

Table 6.2: System axioms attributes identification table for the lift system,

ID Description Rule Condition

R2
Pressing a call button is possible at

any time.
Pressing any button is always

available to the user
True

R6
The lift only changes its direction
when there are no more calls in the

current direction,
Changing direction is possible

No more calls in
the current
direction

R7
When there are no more calls, the
lift stays at the floor last served.

Lift stays at floor last served No more calls

R8
As long as there are unserved calls,

the lift will serve these calls.
The lift will always serve

unserved calls
There are unserved

calls

R11
Whenever the lift moves, the doors

must be closed.
Doors are closed Lift is moving

119

Table 6.3: Dynamic behaviour attributes identification table for the lift system

ID Description Pre-State Trigger Event Action Next State

Ri
The lift is called by pressing
a call button, either at a
floor or inside the lift.

Lift not
called

Pressing a call
button Call the lift Lift is called

R3
When the lift passes by
floor K, and there is a call
for this floor, the lift will
stop at floor K.

Lift is
moving

Lift passes by
floor K AND Call
from floor K

Stop at floor K Stopped at
floor K

R4
When the lift has stopped, it
will open the doors.

Lift is
moving

Lift has stopped
Open the

doors
Doors opened

R5

When the lift doors have
been opened, they will close
automatically after d time
units.

Doors are
opened

Doors have
finished opening
AND d time units
have elapsed

Close the
doors
automatically

Doors closed

R9

When the lift is halted at
floor K with the doors
opened, a call from floor K
is not taken into account.

At floor K
with doors
opened

Call from floor K
Ignore call
from this
floor

At floor K
with doors
opened

RIO

When the lift is halted at
floor K with doors closed
and receives a call from
floor K, it reopens its doors.

At floor K
with doors
closed

Call from floor K Reopen the
doors

Doors are
opened

R12
The closing of a door may
be prevented by pressing an
open-door button.

Doors are
closing

Pressing open
door button

Prevent doors
closing

Doors are
opened

R13
When something blocks the
doors, the lift interrupts the
process of closing the door
and reopens the doors.

Doors are
closing

Something blocks
the doors

interrupt door
closing and
reopens doors

Doors are
opened

R14
When the lift is overloaded,
doors will not close,

Doors are
opened

Lift is overloaded
Do not close
the doors

Doors are opened

120

6.4.4 Step 3: Trigger Events Extraction

After analyzing the triggers required to trigger the dynamic behaviour requirements of the

lift system, 9 trigger events are extracted and identified as shown in Table 6.4.

Table 6.4: Trigger events extraction table for the lift system

Event ID Event Description Requirements Triggered by this Event
El Pressing a call button Ri
E2 Call from floor K R3, R9, RIO

E3 Lift passes by floor K R3
E4 Lift has stopped R4

E5 Doors have finished opening R5

E6 Pressing open door button R12

E7 Something blocks the doors R13

E8 d time units have elapsed R5

E9 Lift is overloaded R14

6.4.5 Step 4: Linked Events Identification

Table 6.5 shows the results of identifying linked events (step 4). It must be noted that the

event number does not imply the direction of the link as can be seen with E6 which is

linked to E5.

Table 6.5: Linked events identification table for the lift system

Event ID Event Description Linked to Mathematical Representation

El Pressing a call button E2, E4 El --> E2, El -> E4

E2 Call from floor K E4 E2 -> E4

E3 Lift passes by floor K E4 E3 '-P> E4

E4 Lift has stopped E5 E4 '> E5

E5 Doors have finished opening E7, E9 E5 -'> E7, E5 --> E9

E6 Pressing open door button E5, E9 E6 -> E5, E6 > E9

E8 d time units have elapsed Ei,
i=l, 2, 3, 4, 5, 6, 7, 9

E8 -> Ei,
i-1,2,3,4,5,6,7,9

E9 Lift is overloaded E4, E8 E9 -> E4, E9 -.> E8

6.4.6 Step 5: Trigger Events Charts Representation

Figure 6.2 shows the 9 trigger events and the requirements they trigger using trigger

events charts. It is worth mentioning that some requirements need to be triggered by more

121

than one trigger event in order to execute (e.g., R3). In this case, the extra trigger

events are represented in the state charts in the form of logical AND constraints which

are represented by the symbol (III) (e.g., E3 and E2 triggering R3 at the top right hand side

of Figure 6.2).

RI

El Lift not
called

Call the lift /Lift is'\ II E2
> ca lled 9 E3 >

R4

E4 Lift is
> noving

Open the doors Doors
opened

E6 >

II E3

E2

R3

Lift is `\ Stop at floor
moving

-

Stopped at '\

floor

R5

ES (' oors
E5 > encq automatically

Close the doot

R3

Doors
closed

Lift is
moving

Stop at floor K>c1st toPPed)
floor K

R9

At floor K with
doors opened

Ignore call from,
this floor

RIO

R12

floor K (At
ith doors
closed

Reopen door.'

Doors
closing

Prevent dna>
closing

Door'\
opened

R5

III E5 Doors Close doors

E8 opene ,,) automatically
Doors
closed

R13

E7.__>t'001"\ Interrupt door closi
losing and and reopen door

Doors
opened

R14

Doors Do not close > ('oor
opened) the doors opened

Figure 6.2 Trigger events charts for the dynamic requirements of the lift system

122

6.4.7 Step 6: Interaction Detection

6.4.7.1 Summary of the Detected Interactions

In this step, the developer detects interactions between requirements using interaction

scenarios that are either within the basic core of IRIS or interaction scenarios that are

inserted as plug-ins into IRIS. The detection is subjective which means that a developer

uses the different tables and graphs developed along with the provided interaction

scenarios to determine if there exists any interaction between two requirements.

The developer now tries to find interactions as explained in Section 4.3.7. Table 6.6

provides a summary of the detected interactions in the lift system case study. Howe'er,

an illustration is given below on how these interactions were detected in the lift system

case study.

Table 6.6: A summary of the detected interactions in the lift system case study

Requirement Interacting Requirements

R9 Ri

R12 R5 and R8

R13 R5 and R8

R14 R5 and R8

123

6.4.7.2 Interactions According to Main Interaction Category ®

In this interaction category, two interaction scenarios are used, namely: SCR1 and SCR2.

The developer has to pair-wise compare all system axioms with the aim of finding

interactions according to SCR1 and SCR2.

The analysis of the system axioms of the lift system using SCRl and SCR2 did not result

in any detected interactions.

6.4.7.3 Interactions According to Main Interaction Categories 0 and ®

Seven interaction scenarios are used under interaction categories 0 and 0, namely:

SCR3, SCR4, SCR5, SCR6, SCR7, SCR 30, and SCR31. The developer is required to

examine the system axioms attributes identification table (Table 6.2) and the dynamic

behaviour requirements attributes identification table (Table 6.3). The developer has to

perform pair-wise comparison of every system axiom and every dynamic behaviour

requirement with the objective of finding interactions according to the seven interactions

scenarios.

Three interactions were detected using the interaction scenario SCR3O. The three

detected interactions are: interaction between R12 and R8, interaction between R13 and

R8, and interaction between R14 and R8. The details of these interactions are described

in Tables 6.7, 6.8, and 6.9, respectively.

124

Table 6.7: Interaction between R12 and R8 in the lift system case study

Interaction ID 15
Type of Interaction Interaction between a dynamic behaviour requirement and a system axiom

Interacting
Requirements

R12 and R8

Interaction Scenario
used

SCR3O

Explanation of
Interaction

There is a contradiction between the value of the Action attribute of the
dynamic behaviour requirement (R12) and the value of the Rule attribute
for the system axiom (118). The action of R12 will override the rule of R8.
A possible interaction situation could be the following: A user keeps
pressing the open door button for a long time and hence the lift is unable to
serve other unserved calls.

Table 6.8: Interaction between R13 and R8 in the lift system case study

Interaction ID 16

Type of Interaction Interaction between a dynamic behaviour requirement and a system axiom

Interacting
Requirements

R13 and R8

Interaction Scenario
used

SCR3O

Explanation of
Interaction

There is a contradiction between the value of the Action attribute of the
dynamic behaviour requirement (R13) and the value of the Rule attribute
for the system axiom (R8). The action of R13 will override the rule of R8.
A possible interaction situation could be the following: A user puts
anything like a rock to block the process of closing the doors and hence the
lift doors are always kept open and hence the lift is unable to serve other
unserved calls.

Table 6.9: Interaction between R13 and R8 in the lift system case study

Interaction ID 17
Type of Interaction Interaction between a dynamic behaviour requirement and a system axiom

Interacting
Requirements

R14 and R8

Interaction Scenario
used

SCR3O

Explanation of
Interaction

There is a contradiction between the value of the Action attribute of the
dynamic behaviour requirement (Rl4) and the value of the Rule attribute
for the system axiom (R8). The action of R14 will override the rule of R8.
A possible interaction situation could be the following: A user is using the
lift to move furniture and puts many things which overload the lift.
Consequently the lift doors will not close and will remain open. If that user
does not remove some furniture out, then the lift doors are kept open and
will not be able to serve other unserved calls.

125

6.4.7.4 Interactions According to Main Interaction Category ©

The basic core of IRIS contains five interaction scenarios to be used for detecting

interactions between two dynamic behaviour requirements: SCR8, SCR1O, SCR1 1,

SCR12, and SCR13. However, additionally four plug-ins interaction scenarios were

inserted and used which are: SCR9, SCR14, SCR15, and SCR16.

To detect interactions between two dynamic behaviour requirements, the analyst first

looks at trigger events charts in Figure 6.2 and the linked events table shown in Table 6.5

and identifies unique pairs of requirements that are triggered by the same trigger event or

by linked trigger events. This resulted in the following pairs of requirements:

S(R3, R9), S(R3, Rio), S(R9, RIO), L(R1, R3), L(R1, R9), L(Ri, Rio), L(R1, R4), L(R3,

114), L(R9, R4), L(R1O, R4), DL(R4, R5), L(R5, Ri3), DL(R5, Ri2), L(R12, Ri4), L(R5,

Ri), L(R5, R3), L(R5, R9), L(R5, RIO), L(R14, R4),and DL(R5, R14).

The following symbols have been used to describe the pairs of requirements:

• S(R, Ri): The two requirements Ri and Rj are triggered by the same trigger event

• L(R1, Ri): The two requirements R1 and Rj are triggered by linked trigger events such

that E1->Ej

• DL(R1, Ri): The two requirements R1 and Rj are sequentially related through B1 -> E

and also they are sequentially related through E -'> B1 (called dual linked events)

Now, the analyst has to analyze the requirements pairs listed above using the 9

interaction scenarios. This analysis resulted in the following interactions to be detected:

interaction between Ri2 and R5, interaction between Ri3 and R5, interaction between

R14 and R5, and interaction between R9 and RI. The details of these interactions are

described in Tables 6.iO-6.i3, respectively.

126

Table 6.10: Interaction between R12 and R5 in the lift system case study

Interaction ID Ii
Type of Interaction Interaction between two dynamic behaviour requirements

Interacting
Requirements

R12 and R5

Interaction Scenario
used

SCR12

Explanation of
Interaction

There is a contradiction between the value of the Action attribute of the
dynamic behaviour requirement (R12) and the value of the of the Action
attribute of the dynamic behaviour requirement (R5). The action of R12
will override the action of R5. A possible interaction situation could be the
following: After the doors are opened, a user keeps pressing the open door
button for a long time and hence the lift doors are unable to close after d
time units.

Table 6.11: Interaction between R13 and R5 in the lift system case study

Interaction ID 12

Type of Interaction Interaction between two dynamic behaviour requirements

Interacting
Requirements

R13 and R5

Interaction Scenario used SCR12
Explanation of
Interaction

There is a contradiction between the value of the Action attribute of the
dynamic behaviour requirement (R13) and the value of the of the Action
attribute of the dynamic behaviour requirement (R5). The action of R13
will override the action of R5. A possible interaction situation could be the
following: After the doors are opened, a user puts anything like a rock to
block the process of closing the doors and hence the lift doors are always
kept open and hence the lift doors are unable to close after d time units.

Table 6.12: Interaction between R14 and RS in the lift system case study

Interaction ID 13
Type of Interaction Interaction between two dynamic behaviour requirements

Interacting
Requirements

R14 and R5

Interaction Scenario
used

SCR12

Explanation of
Interaction

There is a contradiction between the value of the Action attribute of the
dynamic behaviour requirement (R14) and the value of the of the Action
attribute of the dynamic behaviour requirement (R5). The action of R14
will override the action of R5. A possible interaction situation could be the
following: After the doors are opened, a user uses the lift to move furniture
and puts many things which overload the lift. Consequently the lift doors
will not close and will remain open. If that user does not remove some
furniture out, then the lift doors are kept open and hence the lift doors are
unable to close after d time units.

127

Table 6.13: Interaction between R9 and RI in the lift system case study

Interaction ID 14
Type of Interaction Interaction between two dynamic behaviour requirements

Interacting
Requirements

R9 and RI

Interaction Scenario
used

SCR12

Explanation of
Interaction

There is a contradiction between the value of the Action attribute of the
dynamic behaviour requirement (R9) and the value of the of the Action
attribute of the dynamic behaviour requirement (RI). The action of R9 will
override the action of Ri. A possible interaction situation could be the
following: The lift is at floor K with doors opened and are about to close
the doors in less than a second. Someone outside the lift system presses the
call button to call the lift. According to RI, the lift should be called and
give him sufficient time to ride the lift. However, according to R9, which
will override the action of RI. The call is ignored because the lift is at floor
k with its doors opened, and hence the call from this floor is ignored and
the doors start closing not giving the user, who pressed the call button,
sufficient time to ride the lift.

6.5 Discussion of the Results

6.5.1 Reduction in Number of Comparisons

IRIS can reduce the number of comparisons that needs to be performed by an expert to

informally detect interactions between the given set of requirements.

In the lift system case study, IRIS needed to perform 75 pair-wise comparisons as

follows:

• 10 comparisons to detect interactions according to main interaction category 'D

(number of all possible pair-wise comparisons according to Table 6.2)

• 45 comparisons to detect interactions according to main interaction categories

and 0 (number of all possible pair-wise comparisons according to Table 6.2 and

Table 6.3)

128

• 20 comparisons to detect interactions according to main interaction category

© (number of comparisons between two dynamic behaviour requirements

triggered by the same event or linked events as explained in Section 6.4.7.4)

If a human expert would have to pair-wise compare all of the lift system requirements

informally, s/he would have needed 91 comparisons. This means that IRIS has achieved a

17.6% reduction in number of comparisons.

Although this 17.6% cannot be translated into the same percentage reduction of time and

effort due to the overhead associated with applying IRIS, it still shows that there is a

reduction in time and effort especially when an IRIS-trained developer conducts the case

study and the number of requirements is high.

6.5.2 Comparing IRIS Results with the Results by Heisel et al. in [18, 150]

In section 6.4, IRIS was applied to detect interactions at the requirements level between

14 requirements of the lift system. The case study had the following numbers:

Number of Requirements 14

Number of detected interactions using IRIS 7

Number of performed comparisons using IRIS 75

Number of comparisons an expert would have to do
to compare all requirements

91

To discuss and evaluate the obtained results, we compare them with the results by Heisel

et al. in [18, 150].Heisel et al. [18, 150] reported results on detecting interactions

between requirements of the lift system. In [18, 150], Heisel et al. have detected 6

interactions between the 14 requirements of the lift system versus 7 interactions that were

detected using IRIS. IRIS was not only able to detect all the interactions reported by

Heisel et al. it also found an interaction between R14 and R8 which was missed by Heisel

129

et al. IRIS was able to detect this additional interaction as it analyses system axioms

and dynamic behaviour requirements with human involvement which the approach by

Heisel et al. [18, 15 0] lacks.

6.6 Summary

This chapter presented the application of the IRIS to the lift system case study from the

control domain. In general, the lift system had a set of 14 requirements. IRIS was

successful in detecting 7 interactions between the lift system requirements. To examine

the accuracy of the detected interactions, IRIS was compared to the results reported by

Heisel et al. in [18, 150]. IRIS was able to detect all the interactions that are reported in

literature by Heisel et al. [18, 150] and found an additional interaction between R14 and

R8 which the approaches described in [18, 150] failed to detect. Moreover, IRIS achieved

a 17.6% reduction in the number of comparisons that an expert would have to perform to

compare all the 14 requirements of the lift system which indicates reduction in time and

effort.

130

CHAPTER SEVEN: APPLYING IRIS IN THE TELECOMMUNICATIONS

DOMAIN - THE TELEPHONY FEATURES CASE STUDY

7.1 Introduction

This chapter presents the application of IRIS in the telecommunications domain. This

case study was conducted using a set of 8 telephony features that were provided by the

feature interaction contest held in 2000 [19]. The 8 telephony features are implemented

on top of the Plain Old Telephony System (POTS) [151]. IRIS was applied to detect

interactions between the 8 telephony features and hence IRIS is applied to detect

interactions at the features level.

IRIS was able to detect 21 interactions in this case study. To validate these results, a

comparison is made with other results reported by researchers using different approaches

in the Second Feature Interaction Contest held in 2000 (FIWOO) [19]. Moreover, IRIS

achieved a 17.9% reduction in the number of comparisons that a human expert would

have to do to compare all 8 telephony features.

The structure of this chapter is as follows: Section 7.2 presents a description of the 8

telephony features used in the case study. Section 7.3 shows how IRIS was customized to

be applied in the telephony features case study. Section 7.4 shows the application of IRIS

to detect interactions among the 8 telephony features along with the results obtained from

each step of IRIS. Section 7.5 presents a discussion of the obtained results along with a

comparison of these results with other results reported in the FIWOO contest. Finally,

Section 7.6 presents the chapter summary.

131

7.2 The Telephony Features

The second feature interaction contest was held in conjunction with the Sixth

International Workshop on Feature Interaction in Telecommunications and Software

Systems (FIWOO) [19]. In this case study a set of 8 features given in the contest is used

for interaction detection with IRIS as shown in Table 7.1.

Table 7.1: A description of the telephony features used in the case study

Feature Name
Feature

.

Abbreviation
Feature Informal Definition

Call Forward on
Busy Line CFBL

All calls to a subscriber line are redirected to a predefined
number when the subscriber line is busy.

Teen Line TL During a pre-set time of the day, this feature restricts all outgoing
calls from the subscriber's telephone unless a PIN is provided.

Terminate call
Screening TCS

All incoming calls to the subscriber's telephone are screened
against a screening list. If the originator of an incoming call
matches an entry in the list, the call is terminated.

Call Waiting CW This feature allows the subscriber to be notified of an incoming
call while s/he is busy and to accept the new call by putting the
original call on hold. Then s/he is able to toggle between the two
calls.

Three Way Calling 3WC This feature allows a user already connected to another user to
bring a third party into the call. The subscriber can setup a
connection to the new party by putting the current partner on
hold, connecting to the third party and joining lines. The 3WC is
terminated by any side going on hook.

Reverse Charge RC Allows the subscriber to be charged for all calls in which the
subscriber is the terminating party.

Ring Back when
Free

RBF When a call attempt is made to a busy line with this feature
active, the caller is informed that s/he will be called back when
the other person is free. Once the subscriber terminates his/her
call, a connection to the stored numbers will be established.

Voice Mail VM This offers the possibility to leave a message if the called party is
busy or not answering.

132

7.3 Customizing IRIS for the Telephony Features Case Study

7.3.1 Plug-ins used in the Telephony Features Case Study

1. The descriptions of the features provided by the contest organizers for the 2nd

feature interaction contest [19] were very detailed and addressed all the questions

that might be asked about the behaviour and design of the features. Therefore,

only interaction scenarios plug-ins were inserted into IRIS at hook H8, and are

used to provide thorough interaction detection. Since all features are dynamic

behaviour features, four plug-ins interaction scenarios have been used: SCR9,

SCR14, SCR15, and SCR16. These plug-ins are applied as part of IRIS step 6.

7.3.2 Assumptions used in the Telephony Features Case Study

1. IRIS is being applied to detect interactions at the features level.

2. Informal definitions of the telecommunications features are used. Low-level

design or implementation details are not considered in this case study as they are

beyond the scope of IRIS (See section 4.5 regarding the limitations of IRIS).

7.4 Applying IRIS to Detect Interactions in the Telephony Features Case Study

7.4.1 Step 1: Features Classification

In the first step the features are organized into system axioms or dynamic behaviour

features. Since all the features in this case study describe the dynamic behaviour of the

system, they are classified as dynamic behaviour features.

7.4.2 Step 2: Features Attributes Identification

In this step, each dynamic behaviour feature is analyzed to identify the values of its

attributes. Table 7.2 presents the values of the attributes of the dynamic behaviour

features used in this case study.

133

Table 7.2: Dynamic behaviour attributes identification for telephony features

ID Description Pre-state Trigger
Event

Action Next
state

CFBL
All Calls to a subscriber Line are
redirected to a predefined number
when the subscriber line is busy.

Busy
Call

Redirect the
iinnccoommiinngg call to a
predefined number

Busy

TL

During a pre-set time of the day, this
feature restricts all outgoing calls
from the subscriber's telephone
unless a PIN is provided

Idle lii
Time T in
restricted
time zone

Call
attempt

Ask for PIN. If the
PIN is ok connect
otherwise
disconnect

busy or
idle

TCS

The originators of all incoming calls
to subscriber's telephone are
screened against a screening list. If
the originator of an incoming call
matches an entry in the list, the call
is terminated,

Idle

Call request
III calling
party is
matching an
entry in TCS
list

Terminate call Idle

CW

This feature allows the subscriber to
be notified of an incoming call
while busy and to accept the new
call by putting the original call on
hold. He is able to toggle between
the two calls.

Busy
Call
request

The user can accept
the new call putting
the original on hold
then he can toggle
between them.

Busy

3WC

This feature allows a user already
connected to another user to bring a
third party into the call. The
subscriber can setup a connection to
the new party by putting the current
partner on hold, connecting to the
third side and joining lines. The
3WC is terminated by any side
going on hook.

Busy
Flash
signal fl
call attempt

Connect to the
third party and
then join both
calls

Busy

RC
Allows the subscriber to be charged
for all calls in which the subscriber
is the terminating party.

Idle
Call request
fl called
party answer

Charge called
part y

Busy

RBF

When a call attempt is made to a
busy line with this feature active,
the caller is informed that he will be
called back when the other person is
free. Once the subscriber terminates
his call, a connection to the stored
numbers is established.

Busy
Call
request

Store number and
automatically call
it back when
phone is free

Busy

VM
This offers the possibility to leave a
message if the called party is busy
or not answering.

Idle

busy

 answer)

Call request

(Call request)
111 NOT

(called party
 answer)

Call request

Allow the caller to
leave a message

Idle

busy

Where fl represents a logical AND

134

7.4.3 Step 3: Trigger Events Extraction

In this step the developer identifies and extracts all the different trigger events of the

dynamic behaviour features listed in Table 7.2. The output of this step resulted in a list of

5 different trigger events which are listed in Table 7.3. Note that a call attempt indicates a

user initiating a phone call while call request indicates a user receiving a phone call.

Table 7.3: Trigger events extraction table for the telephony features case study

Event ID Event Description Features Triggered by this Event

El Call request CFBL, TCS, CW, RC, RBF, VM

E2 Call attempt TL, 3WC

E3 B matches an entry in TCS list TCS

E4 Flash signal 3WC

E5 Called party answer RC

7.4.4 Step 4: Linked Events Identification

In this step, the developer identifies linked trigger events. The results of this step in the

telephony features case study are presented in Table 7.4.

Table 7.4: Linked events identification table for the telephony features case study

Event ID Event Description Linked to Mathematical
Representation

El 4Cal1 request E3, E4, E5
El E3
El > E4
El '->E5

E2 Call attempt E4, E5
>

E2 E4E2 -> E5

E4 Flash signal El, E2
-.'>

E4 ElE4 --> E2

E5 Called party answer E4 E5 -.> E4

Where E1 > E indicated that event E is linked to event E

135

7.4.5 Step 5: Trigger Events Charts Representation

In this step, graphical trigger events charts are used to group and graphically represent

dynamic behaviour features from Table 7.2 that are triggered by the same trigger events.

Figure 7.1 shows the trigger events charts obtained in the telephony features case study.

Note that the upside-down triangle in E5 is a negation of event E5: If E5 is false and El

happens then VM will be activated. This is a special case because the VM requires El to

happen and ES must not occur.

111 1331
E3

E2

TCS

Idle Terminate call

3WC

Ask for PIN.
If not COITCCt

Connect to 3n1
party then join
both calls

E4 hh1E2

E5
VM

3WC

Connect to 3rd
Party men join Busy
both calls

RC

Charc the
called party

Allow the
caller to leave
a message

Figure 7.1: Trigger events chart for the telephony features case study

136

CFBL

El

III NOT E5

VBusy Redirect incoming
phone to predefined

phone number

TCS

III E3
 10.

III ES

Idle Terminate call

cw

Busy

Accept new call putting
original on hold then
toggle between them

Busy

RC

Idle
Charc the
called party

RBP

Busy Store calling number
then call back when fie

Busy "

VM

Busy
Allow the caller
to leave a meSsag Busy OR

VM

Allow the
caller to leave
a message

Figure 7.1-Continued: Trigger events chart for the telephony features case study

137

7.4.6 Step 6: Interaction Detection

7.4.6.1 Summary of the Detected Interactions

According to the interaction taxonomy presented in Chapter 3, there are 9 main

interaction categories under which all interaction scenarios reside. However, in the

telephony features case study, there are no system axioms or resources that have been

identified. All the features used in this case study are dynamic behaviour features. Hence,

only the main interaction category © "Interactions between Two Dynamic Behaviour

Features" is relevant in this case study.

Table 7.5 presents a summary of the detected interactions. As can be seen in Table 7.5,

IRIS was able to detect 21 interactions among the set of 8 telephony features used in the

case study. However, IRIS missed 2 interactions. A discussion about the obtained results

is provided in Section 7.5. To provide a better understanding of how these results were

obtained, a detailed description is given in the next subsections on the application of the

interaction scenarios used for detecting interactions.

Table 7.5: Summary of detected interactions in the telephony features case study

CFBL TL TCS CW 3WC RC RBF VM

CFBL X SCR15 SCR8 SCR15 SCR15 SCR8 SCR8

TL SCR15 X SCRI3

TCS SCR15 SCR15 SCR15 SCR15

CW SCR15 SCR8 SCR8

3WC SCR15 SCR15 SCR15

RC SCR8 SCR8

RBF SCR15

VM

Table Symbols:
using the ith interaction scenario

detected interaction
SCRi: Interaction detected
X: Missed or wrongly

138

7.4.6.2 Interactions According to Main Interaction Category ©

The interaction category ©, "Interactions between Two Dynamic Behaviour Features",

contains interaction scenarios aimed at detecting interactions between two dynamic

behaviour features. The basic core of IRIS contains five interaction scenarios to be used

under this category: SCR8, SCR1O, SCR11, SCRI2, and SCR13. However, 4 additional

interaction scenarios plug-ins were used which are: SCR9, SCR14, SCR15, and SCR16.

To detect interactions between two dynamic behaviour features, the developer first looks

at trigger events charts in Figure 7.1 and the linked events table shown in Table 7.4 and

identifies unique pairs of features that are triggered by the same trigger event or by linked

trigger events. This resulted in the following pairs of features:

SL(CFBL, TCS), S(CFBL, CW), SL(CFBL, RC), S(CFBL, RBF), S(CFBL, VM),

SL(CW, TCS), SDL(RC, TCS), SL(RBF, TCS), SL(VM, TCS), SL(CW, RC), S(CW,

RBF), S(CW, VM), SL(RBF, RC), SL(VM, RC), S(RBF, VM), SDL(TL, 3WC),

DL(CFBL, 3WC), DL(TCS, 3WC), DL(CW, 3WC), DL(RC, 3WC), DL(RBF, 3WC),

DL(VM, 3WC), L(TL, RC),

The notations S(R1, Ri), L(R1, Ri), and DL(R1, R) have the same definitions given in

Chapter 6. The other notations are defined as follows:

• SL(R, Ri): The two requirements R1 and Rj can be triggered by the same trigger event

or they can be triggered by linked trigger events such that B1 > Ej

• SDL(R1, Ri): The two requirements R1 and Rj can be triggered by the same trigger

event or they can be sequentially related through B1 > B and also they can be

sequentially related through E > E1 (called dual linked events)

139

Now, the analyst has to analyze the requirements pairs listed above using the 9

interaction scenarios.

A summary of the results of the analysis of the telephony features is listed in Table 7.5.

To better understanding these interactions, Table 7.6 presents each interaction along with

the scenario that has been used to detect it and an explanation.

Table 7.6: Explanation of telephony features case study interactions

Interaction Detection
Scenario

Explanation

CFBL&TCS SCR15 A has TCS with B on the screening list. A has CFBL to C. A is busy talking to
D. B calls A and hence B is forwarded to C when it should have been screened
and rejected. Hence CFBL has bypassed TCS. This is because TCS is
activated only when A has idle prestate.

CFBL&CW SCR8 A has CFBL to B. A has CW. A is busy talking to C. D calls A. The system
faces a next state non-determinism situation on which state it should transfer
to (CW state or CFBL state).

CFBL&3WC SCR15 A has 3WC and CFBL to B. A is busy talking to C. A flashes and talks to D
then joins both calls with C and D. E Calls A. E gets a busy signal instead of
being forwarded to B. This is because A is in a 3WC state which will not
allow the activation of CFBL. Hence 3WC has bypassed CFBL.

CFBL&RC SCR15 A has RC and CFBL to B. A is busy talking to C. ID calls A. The system
forwards incoming call to another number and A is not charged. Hence
CFBL has bypassed RC..

CFBL&RBF SCR8 A has RBF and CFBL to B. A is busy talking to C. ID calls A. The system
faces a next state non-determinism situation on which state it should transfer
to (RBF state or CFBL state).

CFBL&VM SCR8 A has VM and CFBL to B. A is busy talking to C. D calls A. The System
faces a next state non-determinism situation on which state it should transfer
to (VM state or CFBL state).

TL&3WC SCR15 A has TL and 3WC. B calls A and A answers. A uses the 3WC to place
another call to anyone else without having to enter the TL PIN. A was able to
do so because TL is activated only when the system has an idle prestate.
Hence 3WC has bypassed TL.

TL&VM SCR13 A has VM and TL. A picks the phone to call VM. A has to enter the TL PIN
first. Hence, VM has been negatively impacted by the TL in terms of delay
until A enters the required PIN (IF A does not enter the PIN then the TL will
override the VM and prevents A from accessing his voice mail)

140

Table 7.6-Continued: Explanation of te1ehonv features case study interactions
Interaction Detection

Scenario
Explanation

TCS&CW SCR15 A has CW and TCS with B on the screening list. A is busy talking to C. B
calls A and he gets through and is put on hold although he should have been
screened. Hence CW has bypassed TCS. This is because TCS works only
when A is in an idle prestate.

TCS&3WC SCR15 A has TCS with B on the screening list. C has 3WC. B calls C. C flashes and
uses 3WC to call A and then joins both calls from A and B. B is now talking
to A although he should have been screened. Hence 3WC has bypassed TCS.

TCS&RBF SCR15 A has RBF and TCS with B on the screening list. A receives a call from B
and transits to TCS state to initiate a rejection niessage. At that time, A
receives a call from C but RBF is not activated as the system is in TCS state.
Hence TCS has bypassed RBF.

TCS&VM SCR15 A has VM and TCS with B on its screening list. A is busy talking to C. B calls
A and VM is activated to allow B to leave a message. Hence VM bypassed
TCS because TCS is activated only when the system has an idle prestate.

CW&3WC SCR15 A has CW and 3WC. A is talking to B and C. D calls A. CW is not activated
since the system is in 3WC state. Hence 3WC has bypassed CW.

CW&RBF SCR8 A has CW and RBF. A is busy talking to B. C calls A. There is a system state
non-determinism on which state the system should transfer to (CW or RBF).

CW&VM SCR8 A has CW and VM. A is busy talking to B. C calls A. There is a system state
non-determinism on which state the system should transfer to (CW or VM).

3WC&RC SCR15 A has 3WC. B has RC. A is busy talking to C then A flashes to use 3WC to
call B. A is still being charged for that call although B has RC. This is
because the RC works only when the system prestate is in basic call state.

3WC&RBF SCR15 A has 3WC and RBF. A is busy talking to B and C using 3WC. D calls A.
RBF is not activated and D number is not stored because the system is in
3WC prestate. Hence 3WC has bypassed RBF.

3WC&VM SCR15 A has 3WC and VM. A is busy talking to B. A flashes to make another call
to the VM message centre. However, VM is not activated because there is no
transition available from a 3WC state to a VM state and hence VM does not
work. Hence 3WC has bypassed VM.

RC&RBF SCR8 A has RC and RBF. A is busy talking to B. C calls A. The system faces a
next state non-determinism situation on which state it should transfer to (RC
state or RBF state).

RC&VM SCR8 A has RC and VM. B calls A. The system faces a next state non-determinism
situation on which state it should transfer to (RC state or VM state).

RBF&VM SCR15 A has RBF and VM. A is connected to the message centre to hear his voice
mail. This means that the system is in a voice mail state. B calls A. RBF does
not start because the system is a VM state not basic call busy state. Hence
VM has bypassed RBF.

141

7.5 Discussion of the Results

7.5.1 Reduction in Number of Comparisons

The developer has to perform 23 comparisons of features using IRIS as explained in

Section 7.4.6.2.

When a human expert informally pair wise compares the 8 features used in this case

study, s/he would need to carry out 28 comparisons. This means that the application of

IRIS resulted in 17.9% fewer comparisons. This percentage cannot be translated to the

same percentage of reduction in time and effort, but it still indicates a reduction of time

and effort.

7.5.2 Comparing IRIS Results with Other Results Reported in the Literature

Section 7.4 showed the application of IRIS to the telephony features case study. In order

to evaluate the efficiency of the results obtained from applying IRIS to the set of 8

telephony features, these results are compared with results obtained by other approaches

used by contestants in the second feature interaction contest held in 2000, FIWOO [191.

Table 7.7 shows the results reported by Samborski [142], by Plath and Ryan [152], by

Nakamura et al. [153] and by Hall [141]. Note that the submission by Plath and Ryan,

Samborski, and Hall scores very well whereas the submission by Nakamura comes last.

142

Table 7.7: Interactions reported by different contestants in the FL WOO contest

CFBL TL TCS CW 3WC RC RBF VM

CFBL
HPN HPN HPN HPN HPN HPSN HPN

TL H HPNS HPN HN

TCS HPN HPNS HPNS P

CW HPNS HPNS HP

3\VC HPN HPNS HPN

RC HPN PN

RBF HPNS

VM

Table Symbols:
by Plath and Ryan S: Interaction detected by Samborski
by Hall. N: Interaction detected by Nakamura et al.

P: Interaction detected
Fl: Interaction detected

Table 7.8: Comparing IRIS results to others results from the FIWOO contest

IRIS P N H S

Common detected interactions 21 22 21 22 8

Missed interaction 2 1 2 1 15

The outcome of the comparison of IRIS with other results in the literature is shown in

Table 7.8. The following explain the results in more details:

1. The row common detected interactions in Table 7.8 indicates the number of

interactions detected by a specific approach provided that only interactions are

counted that were confirmed by at least one other approach.

143

2. A specific approach is said to have missed an interaction, as indicated in the

row missed interactions in Table 7.8, if this interaction is detected by at least two

other contestants and this specific approach failed to detect it.

3. IRIS is the only approach that uses semi-formal methods. All other approaches

reported in Table 7.7 use formal methods.

4. As can be seen from Table 7.8, IRIS missed only 2 interactions which is a very

good result considering that it does not use formal methods. The best contestant

missed 1 interaction while the worst one missed 15 interactions.

5. As seen from Table 7.5, the two missed interactions had the TL feature as one of

the interacting features. The problem with TL is the wait period between the user

going off hook and the user entering a valid PIN. It is not clear how to treat this

period between going off hook and entering the PIN. This period of time can be

treated as a teen line (TL) state or it can be treated as a regular busy state. If this

period of time is considered as a TL state then the interaction between CFBL and

TL and the interaction between TL and RBF could have been detected using

SCR15 as CFBL or RBF would not be triggered because the system is not in a

basic call state. However, because we assumed that the system is in a regular

basic call state, the two interactions were missed.

6. The interaction between TL and 3WC was detected by IRIS using SCR15 because

the bypass would be from 3WC bypassing TL and hence the problem encountered

in the point number 5 above does not apply to this interaction. Also, The TL and

VM interaction was detected by IRIS because there is an obvious negative impact

that can be detected using the interaction scenario SCR1 3.

144

7.6 Summary

This chapter presented the application of IRIS to a telephony features case study from the

telecommunications domain. The telephony features case study had a set of 8 features

that belong to the category of dynamic behaviour features. The application of IRIS

resulted in the detection of 21 interactions among the 8 telephony features. IRIS only

missed 2 interactions. To evaluate the efficiency of these results, IRIS was compared to

the results reported by other approaches in the FIWOO contest and it was able to achieve

very good results compared to these formal approaches. Also IRIS achieved a 17.9%

reduction in the number of comparisons that a human expert would have to carry out to

informally detect interaction among the set of 8 telephony features used in this case

study.

145

CHAPTER EIGHT: APPLYING IRIS IN THE POLICIES DOMAIN - THE

SMART HOMES CASE STUDY

8.1 Introduction

This chapter presents the application of IRIS in the policies domain. Hence IRIS is

applied to detect interactions at the policies level.

The policy research literature [154-157] has recognized that there are interaction issues

between policies and has referred to it as policy conflicts. However, so far very little

research has been done to address the problem of policy conflicts. For example, [158]

defines policies in a hierarchical way to prevent policy conflicts. However, if a policy in

the hierarchy changes, policies can still conflict. The work in [159, 160] promote the use

of meta-policies, i.e., policies about creating policies, as a way to prevent conflicts. The

work in [161] acknowledges the inevitability of policy conflicts and suggests a

negotiation approach for their resolution. The work in [162] describes the use of policies

in the telecommunications domain. It suggested the use of a feature interaction manager

where policies are used to control the composition of services and features in telephony

features, therefore avoiding the problem of feature interactions. The work in [163]

proposed a policy architecture for enhancing telephony features and even promoted the

use of policies as the features of the future. The work in [68] addresses the problem of

interactions in policies but from a social perspective to try to understand what social

factors (e.g., stakeholders roles) would cause interactions between two policies.

Most of the work done so far has not comprehensively addressed the problem of policy

interactions. For example, the work in [162] and [163] has been limited towards the use

of policies in the traditional telecommunications domain. The work in [159] and [161]

146

only look at the prevention of policy interactions and not their detection. However, so

far no prevention technique can guarantee that no interactions will occur. Furthermore, so

far there has not been a precise definition of when two policies are considered interacting.

Even though policies are heavily used in defining user preferences in smart homes, no

work has been done so far on investigating policy interactions in this domain.

In this case study, IRIS was applied to detect policy interactions in smart homes among

35 user policies.

This chapter is structured as follows: Section 8.2 presents the concepts of features and

policies and a novel view on their relationship especially in smart homes. Section 8.3

presents a description of the smart homes features used in the case study. Section 8.4

shows how IRIS was customized to be applied in the smart homes case study. Section 8.5

shows the application of IRIS to detect interactions as well as the results obtained from

each step. Section 8.6 presents a discussion on the obtained results along with a

comparison of these results with other results reported in the literature. Finally, Section

8.7 presents a summary of the chapter.

147

8.2 Features and Policies

During the Feature Interaction Workshop (FIW VII) held in 2003 [30], it became obvious

that there is a growing interest in policies and their interactions. However, the differences

and interrelationships between policies and features were still very unclear. In this

section, a new view on the relationship between features and policies is presented.

8.2.1 Understanding Features and Policies

A feature is defined as a coherent and identifiable bundle of system functionality that

helps characterize the system from the user perspective [150]. Features are built by

system developers as user-requested expansions of a base system. Features have been

attractive as they allow the developers of long-lived systems to enrich system

performance by adding features over time on top of the base system. An example of a

feature in the telecommunications domain is Call Forward on Busy Line (CFBL). CFBL

is a feature that, when active, will forward an incoming phone call to a busy subscriber to

a predefined phone number.

A Policy is defined as information that is used to modify the behaviour of the system

[159]. Policies are created by different stakeholders (e.g., normal user, administrator,

manager) to reflect personal, organizational or system goals. The attractiveness of

policies stems from the fact that people can express their preferences by setting their own

policies to customize the system with greater flexibility. An example of a policy set by a

user is: "If someone gets out of bed between 10pm and 7am then the lights in the

bedroom and the hallway switch on at initially 50% of illumination ramping up to 100%

over 1 minute and the bathroom fan is switched on. After leaving the bathroom, the

bathroom light and the bathroom fan automatically switch off. After the person gets back

148

into bed the bedroom light is dimmed from 100% to 50% over 1 minute and then

switched off".

There is a major difference between features and policies. The user has very limited

control, if any, over the behaviour of a feature. He can activate or deactivate the feature

or supply a certain value for a parameter of the feature. But s/he cannot customize the

feature to work in a certain way to meet his/her needs. For example, consider the feature

Teen Line (TL) from the telecommunications domain which restricts outgoing calls from

the phone during a predefined time period unless a PIN is provided. The only control that

a user has over this feature is to activate/deactivate it, specify the restricted time frame,

and change the PIN. But the user cannot customize this feature to allow outgoing calls in

case of emergencies, such as fire, to allow anyone to call 911. However, such

customization is possible with policies. For instance, the user can set the policy: "The

system shall override the Teen Line PIN restriction when the fire alarm is triggered".

8.2.2 Relationship between Features and Policies

As defined earlier, a feature is a bundle of system functionalities. This means that each

feature provides different functionalities to the system. For example, the windows control

feature is a feature that allows the control of windows within a smart home and contains

the following functionalities:

0,1: The windows can be opened/closed at any time by occupants using a remote control.

O2: The system shall open/close the windows between time Xl and time X2

0,3: The system shall open/close the windows when day/night begins

where O: the operation i associated with feature w (windows)

149

Now, a policy is information that is used to allow the modification of system

behaviour. Policies achieve this modification and customization of system behaviour

through the invocation of one or more functionalities within one or more features. For

example, consider the following policy set by an occupant in a smart home: "Open the

windows between 5:00 pm and 6:30 pm". This policy invokes only one functionality,

°w2, in the windows control feature and executes the action of opening the windows

when the clock of the system indicates 5:00 pm and closes them again at 6:30 pm.

The relationship between features and policies can be described from an object oriented

perspective: A policy is a specific Run that the user wants the system to execute to exhibit

a specific behaviour using values that accommodate his/her special needs. Now, the

system is composed of a set of features. Each feature can be thought of as an Object.

Also, each feature will have different functionalities in it (e.g., the windows control

feature). These functionalities can be considered as Methods.

System boundaries

Featurel (objectl) '\

Invoke:
Feature 1. Functionality I (Var 1/1:00)
Feature2. Functioiiality2 (Var2/45)

Var I: datatype

> Functionality I
(method I)

Feature2 (object2)

Var I: datatype
Var2: datatype

Functionality I
(method I

 > Functionality2
(method2)

Figure 8.1: Object-oriented description of relationship between features and policies

150

A user can then set a run with specific values that invokes one or more methods from

the same or different objects replacing the parameters in these methods with the values

provided by the user in the run. A similar concept describes the relationship between

features and policies. The user can set a policy (a run) with specific values to replace

parameters in the functionalities. This policy will invoke one or more functionalities

(methods) from the same or different features (objects) replacing the parameters within

these functionalities with the values provided by the user in the policy to achieve its task.

The diagram in Figure 8.1 illustrates this point.

8.2.3 Features and Policies in a Smart Home Architecture

After defining features, policies, and their relationship, we now want to describe how

features and policies look like in a smart home architecture. Figure 8.2 presents an overall

architecture showing policies, features and physical elements of smart homes. Physical

elements are responsible for carrying out the physical actions of the different

functionalities when triggered (e.g., actuators, appliances, air conditioning, heating, light

bulbs, etc).

The policy layer contains all the policies of the smart home including policies set by the

occupants (user policy) or policies that are set by the system administrator and developer

(system policy). The feature layer includes all the features within the smart home.

Finally, the physical elements layer contains all the physical elements that are connected

to the smart home network. Usually, all physical elements are connected to a central

network where the master control software coordinates all the operations of the physical

elements.

151

User

User Policy System Policy

: P5

Policy Layer

Invoked features
functionalities

Feature
Layer

Master
Control

Physical Elements
Layer

Network

Figure 8.2: Features, policies, and physical elements within smart homes

When a user has a certain preference for the behaviour of one or more physical elements

he defines a user policy in the policy layer describing his preference. This user policy

then invokes the functionalities controlling the behaviour of the affected physical

elements. The invoked functionalities pass on the user preferences described in the user

policy to the master control in the physical elements layer. Finally, the master control

activates the required physical elements according to the user-defined behaviour.

8.2.4 Simple Policies and Compound Policies

Smart homes are controlled by users setting different policies according to their

preferences. However, the complexity of these policies can vary greatly. Therefore, we

introduce the concepts of simple policy and compound policy. A simple policy is a policy

that causes a direct invocation of only one functionality in only one feature. A compound

policy is a policy that causes an invocation of more than one functionality within the

152

same or different features. In other words, a compound policy can be seen as the

concatenation of two or more simple policies. Consider a policy that states "Close the

water tap when the water level reaches 75% of the sink in the kitchen". This policy is

considered a simple policy because it directly invokes only one functionality which is

P11.1 in the Water Overflow Control Feature (see section 8.3). On the other hand, the

policy "Close the water tap when the water level reaches 75% of the sink in the kitchen

and call the main occupant of the house on his tell phone", is considered a compound

policy because it invokes two functionalities, namely: functionality: (1) "Close the water

tap when the water level reaches 75% of the sink in the kitchen", and (2) "Call the main

occupant of the house on his cell phone" in the communication feature.

According to the above discussion, detecting policy interactions in general can be

achieved by detecting simple policy interactions. This even can provide more precise

results than detecting interactions between two compound policies. This is because

detecting interactions at the simple policy level can detect interactions within a single

compound policy by detecting interactions between two simple policies in the body of

this compound policy.

Since by definition a simple policy invokes only one functionality in one feature,

detecting interactions between functionalities is equivalent to detecting interactions

between simple policies. Therefore, the remainder of this chapter uses the terms

functionality and simple policy interchangeably.

8.3 Smart Homes Features

Before IRIS can be applied to the smart homes case study, the features of a smart home

have to be defined. Smart homes can contain many different features, some of which are

153

not very common due to their high cost and technical difficulties. Furthermore, many

features are designed to help people with specific disabilities and therefore are not

installed in all smart homes. This case study investigates only the common features that

are likely used in most smart homes. Figure 8.3 shows an overview of these features.

Feature 1: Intruder Alarm Feature

This is a security feature. The occupants can activate/deactivate the intruder alarm from

inside the house using the alarm switch. The intruder alarm feature, when active, can be

triggered by a magnetic reeds sensor indicating that a window has been opened, by the

main door lock sensor indicating that the main door lock has been opened, by a Passive

Infra Red (PIR) sensor indicating movement in some areas, or by pressure pads indicating

that a person stepped on a predefined area.

Feature of a smart home

'1' '1' 'I, I 1'
Security Entertainment Environmental Communication Appliances
Features Features Control Features Features Control Features

Fl: Intruder
Alarm

F2: Vacation
Control

. F3: Main
Door Control

174: Audio!
Visual
Control

FS: Audio
Level

Control

176: HVAC
Control

F7: Water
Temp. Control

. 178: Lights
Control

F9: Curtains
!Blinds
Control

F1O: Windows
Control

F1 1: Water
> Overflow

Control

F12: Remote
Access

. F13: Telephone

Figure 8.3: Overview of the features of a smart home

F14: Stove
Control

F15: Fan
Control

F16. Various
Appliances
Control

154

Feature 2: Vacation Control Feature

This feature can be used when the occupants are on vacation for an extended period of

time. It uses predefined time settings to automatically turn on TV and lights for 60

minutes in predefined areas. The feature is activated/deactivated by a switch from the

interior of the house.

Feature 3: Main Door Control Feature

This feature that locks the main door lock of the house using an electronic lock when the

main door is shut. The occupants can use an interior switch to unlock and open the main

door from the inside. For safety purposes the main door automatically unlocks and opens

when the Gas/Heat/Smoke sensor is triggered.

Feature 4: Audio/Visual Control Feature

This feature allows the occupants to control AN devices through remote controls or to

ask the system to turn certain AN devices on/off at predefined time settings.

Feature 5: Audio Level Control Feature

This feature allows the occupants to preset the audio level of different AN devices to

certain levels when they are turned on during the day or night. It also allows the

occupants to set a maximum audio level throughout the house that cannot be exceeded.

This maximum audio level is chosen by the occupant to avoid loud noise ,or disturbance

during the day/night.

155

Feature 6: Heating, Ventilation and Air Conditioning Control Feature

The Heating, Ventilation and Air Conditioning (HVAC) control feature controls the

temperature of the house. This feature increases/decreases the temperature inside the

house to a user-preset temperature when the thermostats' readings are different from this

preset temperature. This feature also allows the occupants to define a program to

increase/decrease the temperature of the house at predefined time intervals.

Feature 7: Water Temperature Control Feature

This feature controls the temperature of the hot water in the house. It maintains the

temperature of the hot water from the hot water tap in the kitchen at 45 °C and that of the

hot water tap in the bathroom at a temperature of 40 °C

Feature 8: Lights Control Feature

This feature controls the intensity of light inside the house. It increases/decreases light

intensity to correspond to the increase/decrease of a light dimmer. During the night, this

feature increases the light intensity in a certain part of the house to the maximum within 2

minutes when a positive PIR signal is received from that part. When the PIR signal is

negative for 15 minutes, the lights are automatically switched off. Finally, this feature can

be set to automatically turn on the lights according to a daylight sensor when the night

begins.

Feature 9: Curtains and Blinds Control Feature

This feature can be used to automatically open/close the curtains and blinds in a certain

area at predetermined time settings. It can also be set to automatically open/close the

curtains and blinds in a certain area according to a daylight sensor.

156

Feature 10: Windows Control Feature

This feature opens/closes the windows in predefined areas based on predefined time

settings.

Feature 11: Water Overflow Control Feature

This safety feature shuts down the water tap when the water reaches or exceeds 75% of

the total volume of the sink in the kitchen or the tub in the bathroom.

Feature 12: Remote Access Feature

This feature allows the occupants to remotely activate any feature within the smart home

from any location via the telephone. The occupants call the home phone number, and

when there is no answer after a user-defined number of rings a remote access module is

activated asking for a PIN to allow the remote control of home features.

Feature 13: Telephone Feature

This feature enforces the presence of a Plain Old Telephone Service (POTS) [151] or

Voice over Internet Protocol (VoIP) telephone line [164]. It has an answer machine

installed to record messages when receiving a phone call with no answer for a certain

number of rings.

Feature 14: Stove Control Feature

This safety feature can be used to shut down and prevent any activation of the stove

during predefined time periods. This feature is also used to shut down the stove when the

Gas/Heat/Smoke sensor is triggered.

157

Feature 15: Fan Control Feature

This feature automatically turns on the kitchen fan when the humidity sensor is triggered.

When the sensor signal is lost for 20 minutes while the fan is on, ,the fan is automatically

switched off.

Feature 16: Control of Various Appliances Feature

This feature allows occupants of the house to control various appliances like the food

processor, water boiler, etc. using remote controls.

8.4 Customizing IRIS for the Smart Homes Case Study

8.4.1 Plug-ins used in the Smart Homes Case Study

The domain of smart homes is relatively new. It contains numerous features and physical

network elements the functions of which are determined by user policies. The system is

reasonably complex and distributed, so several plug-ins were needed to customize IRIS

for this case study. The following plug-ins were used:

1. Since each feature in the smart homes is complex and describes many

functionalities in its body, the plug-in "Functionalities Identification" was used to

break down the complex textual description of each feature into atomic simple

functionalities. This plug-in is inserted into hook Hi as a complete step prior to

IRIS step i.

2. Several functionalities in the case study had many parameterized parts in their

textual descriptions. Hence, the plug-in "Parameters Assignment" was used to

replace these parameterized textual parts with parameters such as X or Y. This

plug-in is inserted also into hook Hi prior to IRIS basic core step 1.

158

3. The parameters identified from the execution of the plug-in "Parameters

Assignment" means that the textual requirements have parameters in their body

and they must be dealt with using the appropriate attributes. In order to do this,

the plug-in "Parameters" was used to enforce the use of the attribute

"Parameters". Recall that the attribute Parameters was an optional attribute and is

not used unless there are parameters in the textual description of requirements.

This plug-in is applied during step 2 of the basic core of IRIS.

4. The plug-in "Parameters Range" must be used in order to indicate the allowed

range of values that each parameter can have. The values assigned to each

parameter have a major influence on possible interactions between ftinctionalities.

This plug-in is applied during IRIS basic core step 2.

5. To detect all possible interactions between system axioms simple policies and

dynamic behaviour simple policies, the plug-ins interaction scenarios "SCR5",

"SCR6", and "SCR7" were inserted into hook H8. These interaction scenarios are

applied as part of the sixth step of IRIS.

6. To detect all possible interactions between dynamic behaviour simple policies,

four plug-ins interaction scenarios have been inserted as plug-ins into hook H8,

namely: SCR9, SCR14, SCR15, and SCRl6. These interaction scenarios are

applied as part of the sixth step of IRIS.

159

8.4.2 Assumptions used in the Smart Homes Case Study

In the case study described in this chapter, the following assumptions were made:

1. IRIS is being applied to detect interactions at the policy level.

2. Interaction detection between functionalities is equivalent to interaction detection

between user policies (see section 8.2.4).

3. Throughout the case study the two terms simple policy and functionality are

equivalent and are used interchangeably (see section 8.2.4)

4. The vacation control feature is assumed to turn on/off TV and lights at predefined

time settings. This limitation was imposed for simplicity.

5. Only the answer machine feature from the set of traditional telecommunications

features (Feature 13) was used because answer machine can be installed without

having to install a more comprehensive set of features.

6. The features used in the case study were defined by the investigator based on

several different resources (e.g., [165-168]) as no complete definitions for the

smart homes features were found in one resource.

7. All devices and sensors are connected to a central network controlled by the

master control software. This master control software is used to control and

coordinate all operations of the different devices based on user policies.

8. States are described using state variables. Within a certain state only variables of

interest to the policy under investigation are listed. This simplification is possible

since other state variables have no effect on the outcome of the interaction

detection step.

160

8.5 Applying IRIS to Detect Interactions in the Smart Homes Case Study

8.5.1 Using Plug-ins "Functionalities Identification" and "Parameters Assignment"

As mentioned in Section 8.4.1, the two plug-ins "Functionalities Identification" and

"Parameters Assignment" are applied at the beginning prior to the execution of the first

step of IRIS basic core. The application of the two plug-ins are presented together in this

subsection. It must be noted that the two plug-ins are independent and can be executed in

any order, i.e., it is possible to identify the functionalities within each feature first then

look for parameterized text and assign it to parameters. Also, it is possible to identify

parameterized text within features first and assign it to parameters then identify different

functionalities within each feature.

Each functionality (simple policy) is given a unique ID that starts with a P followed by

the number of the feature and the number of the functionality/simple policy (e.g. P3.2

stands for simple policy number 2 in feature 3).

Functionalities (simple policies) in the Intruder Alarm Feature

P1.1: Activated/deactivated by a switch from inside the house called alarm switch.

P1.2: Alarm is triggered when the feature is active and a magnetic reed sensor indicates

that a window is being opened

P1.3 Alarm is triggered when the feature is active and the main door lock sensor indicates

that the main door lock is being opened

P1.4 Alarm is triggered when the feature is active and a PIR sensor indicates movement

in Xl, where Xl: Location, X1= {Living room, Bedrooms, Hallway, Kitchen},

P1.5 Alarm is triggered when the feature is active and pressure pads indicate the presence

of a person in X2, where X2: location, X2= {Living room, Bedrooms, Hallway}

161

• Functionalities (simple policies) in the Vacation Control Feature

P2.1 Activated/deactivated by a switch from inside the house called vacation switch.

P2.2 Turns on TV for 60 minutes at X3, where X3: Time, X3=00:00-23:59

P2.3 Turns on lights for 60 minutes at X4 in X5, where X4: Time, X4=00:00-23:59 and

X5: Location, X5= {Living room, Bedrooms}

• Functionalities (simple policies) in the Main Door Feature

P3.1 Locks the main door lock of the house when the main door is shut.

P3.2 Occupants can unlock and opeii the main door from inside by interior switch

P3.3 Unlocks and opens the main door when the Gas/Heat/Smoke sensor is triggered.

• Functionalities (simple policies) in the Audio/Visual Control Feature

P4.1 Occupants can control all AN devices through remote controls

P4.2 Turns on/off X6 AN device at X7, where X6: AN device, X6{TV, CD, DVD}

and X7: Time, X7=00:00-23:59

• Functionalities (simple policies) in the Audio Level Control Feature

P5.1 Presets the audio level of audio device X8 to X9 when turned on, where X8: AN

device, X8={TV, CD, DVD} and X9: Audio level, X9 = {1..63}

P5.2 Occupants can set X1O as a maximum audio level throughout the houe, where X10:

Audio level, X10 = {1..63}

162

• Functionalities (simple policies) in the Heating, Ventilation and Air

Conditioning Control Feature

P6.1 Increases/decreases the ambient temperature inside the house to XI when the

readings from the thermostats are different from this preset temperature, where X1 1:

Temperature, Xli = {15. .35}

P6.2 Increases/decreases the temperature of the house to X12 at X13, where X12:

Temperature, X12 = {15..35} and X13: Time, X13=O0:00-23:59

• Functionalities (simple policies) in the Water Temperature Control Feature

P7.1 Maintains the temperature of the hot water from the hot water tap in the kitchen at

45 degree centigrade.

P7.2 Maintains the temperature of the hot water from the hot water tap of the bathroom at

40 degree centigrade.

• Functionalities (simple policies) in the Lights Control Feature

P8.1 Increases/decreases the light intensity to correspond to the increase/decrease of a

light dimmer.

P8.2 Increases the light intensity during night in X14 to the maximum within 2 minutes

when a positive PIR signal is received from X14, where X14: Location, X14 {Living

room, Bedrooms, Bathroom}

P8.3 Automatically shuts down the lights during night in XiS when a PIR signal is

negative for 15 minutes from X1 5, where XiS: Location, X15= {Living room,

Bedrooms, Bathroom, Hallway}

P8.4 Automatically turns on the lights according to a daylight sensor when the night

begins.

163

• Functionalities (simple policies) in the Curtains and Blinds Control Feature

P9.1 Automatically opens/closes the curtains and blinds in X16 at X17, where X16:

Location, X16= {Living room, Bedroom} and X17: Time, X17=00:00-23:59

P9.2 Automatically opens/closes the curtains/blinds in XI 8 according to daylight sensor,

where XI 8: Location, XI 8= {Living room, Bedroom}

• Functionalities (simple policies) in the Windows Control Feature

P10.1 Opens/closes the windows in X19 at X20, where X19: Location, X19= {Living

room, Bedroom} and X20: Time, X2000:OO-23:59

• Functionalities (simple policies) in the Water Overflow Control Feature

P11.1 Closes the water tap when the water reaches or exceeds 75% of the total volume of

the sink or the tub either in the kitchen or in the bathroom

• Functionalities (simple policies) in the Remote Access Feature

P12.1 Activates a remote access module when an incoming telephone call has not been

answered within X21 rings, where X21: number of phone rings, X21 = {2..8}

• Functionalities (simple policies) in the Telephone Feature

P13.1 Enforces the presence of a telephone line with either standard POTS or VOIP

P13.2 Activates an answer machine to record messages when receiving a call with no

answer for X22 rings, where X22: number of phone rings, X22 = {2..8}

• Functionalities (simple policies) in the Stove Control Feature

P14.1 Shut down and prevent any activation of the stove during X23 and X24, where

X23 and X24: Time, X23 and X24=00:00-23:59

164

• Functionalities (simple policies) in the Fan Control Feature

P15.1 Automatically turns on the kitchen fan when the humidity sensor is triggered

P15.2 Automatically switches off the kitchen fan when the humidity signal is lost for 20

minutes while the fan is on

• Functionalities (simple policies) in the Control of Various Appliances Feature

P16.1 Occupants can control various appliances like the food processor, water

boiler. . . etc. using remote controls

8.5.2 Step 1: Simple Policies Classification

The first step is used to organize the simple policies into system axiom simple policies

and dynamic behaviour simple policies. The results of the application of the first step are

shown in Table 8.1.

Table 8.1: Classification table for the smart homes case study

System Axioms P4.1, P5.2, P7.1, P7.2, P13.1, P16.1
Simple policies

Dynamic Behaviour P1.1, P1.2, P1.3, P1.4, P1.5, P2.1, P2.2, P2.3, P3.1, P3.2, P3.3, P4.2, P5.1,
Simple Policies P6.1, P6.2, P8.1, P8.2, P8.3, P8.4, P9.1, P9.2, P10.1, P11.1, P12.1, P13.2,

P14.1, P14.2, P15.1, P15.2.

165

8.5.3 Step 2: Simple Policies Attributes Identification

This step identifies different attributes within the smart homes policies. Table 8.2

contains attributes of system axioms whereas Table 8.3 contains attributes for dynamic

behaviour simple policies. It is worth saying that the execution of the two plug-ins

"Parameters" and "Parameters Range" resulted in adding two columns to Tables 8.2 and

8.3.

State variables were used to describe the attributes pre-state and next state of the system

in Table 8.3. For example, MainDoorLock=closed states that the main door lock is in a

closed state. Not every state will have a value assigned to it. The value DxR in the table

corresponds to a "don't care" value. The don't care value is necessary to represent certain

cases as in P6.2 where it does not matter what the value of the previous temperature is

because the objective of P6.2 is to increase/decrease the temperature to the predefined

setting regardless of the previous temperature.

Table 8.2: System axioms attributes identification table for the smart homes policies

ID Description Rule Condition Parameters Parameters
Range

P4.1
Occupants can control all AN devices

through remote controls
Control all AN devices
through remote controls

True - -

P5.2
Occupants can set X 1 as a maximum

audio level throughout the house
Set X 1 as a maximum audio
level throughout the house

True
Xl0:Audio

level
{ I ..63}

P7.1
Maintains the temperature of the hot
water from the hot water tap in the

kitchen to 45 oC

Maintains the temperature of
the hot water of the hot water
tap in the kitchen to 45 oC

True -

P7.2
Maintains the temperature of the hot
water from the hot water tap of the

bathroom to 40 oC.

Maintains the temperature of
the hot water of the hot water
tap of the bathroom to 40 oC.

True - -

P13.1
Enforces the presence of a telephone
line with either standard POTS or

VOW

A telephone line is always
present with either standard

POTS or VOlP.
True - -

P16.1
occupants can control various

appliances like the food processor,
water boiler. . .etc by remote controls

Control various appliances by
remote control

True - -

166

Table 8.3: Dynamic behaviour attributes identification table for the policies

ID Description Pre-state Trigger
Event

Action Next State Parameters Parameters
Range

P1.1

Security Mann is
Activated/deactivated by
a switch fi'oin inside the

house called alarm
switch.

SecurityAlarrn=

Activate/
deactivate

security alarm
switch

is pressed

Activate/
deactivate

security alann

SecurityAlann
= on/off

- -

P1.2

Alarm is triggered when
the feature is active and a
magnetic reeds sensor
indicates that a window

is being opened

SecurityAlann
= on,

Alannnot_set,
Windows(DxR)

closed

Window is
opened

Set security
alarm

SecurityAlann
won, Alann=set,
windows(DXR)

open

-

- -

P1.3

Alarm is triggered when
the feature is active and
the main door lock sensor
indicates that the main

door lock is being opened

SecurityAlann
= on,

Alarmnnot_set,
MainDoorLock

closed

Main door
lock is
opened

Set security
alarm

SecurityAlann
won, Alarrnset,
MainDoorLock

open
- -

P1.4

Alai-in is triggered when
the feature is active and a

PIR sensor Indicates
movement in X

SecurityAlann
on,

Alarmn=not_set,
PlRnegative

Movements
in XI

Set security
- alarm

SecurityAlann
0n, Alannset,
PIR positive

Xl:
Location

{LivRm,
BdRm,

Hall, kitch}

P1.5

Alarm is triggered when
the feature is active and
pressure pads indicate the
presence of person in X2.

Setu1t'A1atm
= on,

Alaim=noLset,
PressurePad=

pressure pad
in X2 is
pressed

Set security
alarm

SecurityAlann
won, Alarmset,
PressurcPad=

positive ositive

X2:

locationHall)
BdRm,

P2.1

Vacation Control is
Activated/deactivated by
a switch from inside the
house called vacation

switch

VacationControl
off/o i'

Activate!
deactivate
vacation

control switch
Is pressed

Activate!
deactivate
vacation

control

VacationControl
= on/off -

-

P2.2 Vacation control Turns on
TV for 60 mm. at X3

VacationControl
won, TV=off

Timn=X3 Turn on TV
for 60 mm.

VacationControl won, TV=on
X3: Time {00:00-

23:59)

P2.3
Vacation control turns on
lights for 60 minutes at

X4 in X5

VacationControl
=on,

Lights(X5)off
TimeX4

Turn on
lights for 60
mm. in XS

VacationControl
won,

Lights(X5)0n

X4:
Time,
X5:

Location

X4={00:00-
23:59)

X5= LivRm,
BdRm}

P3.1
Main Door lock feature

will Lock the main door
lock of the house when

main door shut.

MainDooiopen MainDoorLock Main door is
shut

Lock the main
door lock

MainDoor
closed

MainDoorLock
=closed

- -

P3.2

Occupants can unlock
and open the main door
from inside by interior

switch

MainDoom
=closed

MainDoorLock
closed

Unlock main
door switch
is pressed

Unlock the main
door lock and
open the main

door

MainDooi open
MainDoorLoek

=open
- -

P3.3

Unlocks and opens the
main door when the Gas!

Heat! Smoke sensor
triggers.

Main Door
=closed

MainDoorL ock
=closed

Gas/heat!
Smoke sensor
is triggered

Unlock the main
door lock and
open the main

door

MainDoor open
MainDoorLock

- -

P42 Turns on/off X6 A/V
device at X7

X6On=false/true Time=X7
Turn on/off
the A/V

device X6
X6OnTrue/false

X6: A/V
device,

X7: Time,

X6={TV,

CD, DVD}
X7=(0O:00-

23:59)

P5.1
Presets the audio level of
audio device X8 to X9

when turned on

X8On=False
X8Audio.
level =DxR

X8 is turned
Oil

Preset the
audio level
of X8 to X9

X8On=True,
X8Audio1eve1 _

Xl0

X8:A/V
device,
X9: level

X8{TV,
CD, DVD},
X9{1..63}

P6.1

Increases/Decreases the
temp. inside the house to

XI when the meading from
thennostats are different
from this preset temp.

Temn pDxR
Thermostats #

Xli

Increases/
Decreases the
temp. inside
the house to

XLI

Tem pX1 I
Xli:
Temp.

{15..35}

P6.2
Increases/decreases the
temperature of the house

to X12 at X13.
TemnpDxR TimeX 13

Increase!
decrease temp
of the house to

Xl2

Temp XI2

X12:

Temp.
X13:
Time

X12
{ 15.35}

X13{00:O
0-23:59)

167

Table 8.3 —Continued: Dynamic behaviour attributes identification table
ID Description Pre-state Trigger

Event
Action Next State Parameters Parameters

Range

P8.1

increases/decreases light
intensity to correspond to
the increase/decrease of a

light dimmer slider

Lightlntens
=DxR

Increase/
decrease of
the dimmer

slider

Increase/
decrease light
intensity to

match increase/
decrease of the

slider

Lightintens.
=DirnrnrnerSlider

-

P8 2

Increases the light
intensity during night in

X14 to a maximum
within 2 minutes when a
positive PIR signal is
received from X14.

Daylight--false

Lights(Xl4)0fl
Lightlntens(X14

)=O

Movement in
Xl4

increase the
light intensity
in Xl4 to a

max. within 2
minutes

Daylight---false

Lights(X14)=on
Lightlntens.(X14)

=nlax

Xl4: Location

{LivRm,
BdRm,

bathRin)

P8.3

Automatically shuts
down the lights during

night in XIS when a PlR
signal is negative for 15

minutes from Xl5.

Daylight=tidse
Lights(X15)=on

Lightlntens
(X15)DxR

No
movements
in X15 for
IS minutes

Shut down
the lights

Daylight--false
Lights(X15)=off
Lightlntens.(X15)

=0

XI5:
Location

{LivRrn,
BdRm,
bathRm,

hall)

P8.4

Automatically turns on
the lights according to a
daylight sensor when the

night begins.

Daylight--True
Lightsoff

Night begins Turn lights on
automatically

Daylight—false
Lights=on - -

P9.1
Automatically opens/
closes the curtains and
blinds in X16 at Xl 7.

CuilainsBlinds
(Xl 6)=close

/open
TimeX 17

Open/close
the blinds

and curtains
in X16

CurtainsBlinds
(xl 6) =open/

close

X16:
Location,
X17:
Time

XI 6{LivR
in, BdRm)
X17={00:0
0-23:59)

P9.2

Automatically open/close
the curtains and blinds in

X18 according to
daylight sensor

Daylight= false
/tiue,CurtainsBl-
inds(Xl8)close

/open

Day/night
begins

Open/close
curtains and
blinds in x18

Daylight= true /
false,

CurtainsBlinds
(xl 8)=open/ close

Xl8:
Location

{LivRm,
BdRm)

PIOA
Opens/closes the

in X19 at X20
Windows(X 19)
=close/open

TimneX20
Open/close
windows in

X19
Windows(X 19)—

open/close

X19..
Location,
X20: Time

x 19=(LivR
in, BdRm)windows
X20{00:0
0-23:59)

P11 1

Shuts down the water tap
when the water reaches
or exceeds 75% of the
total size of the sink or
the tub either in the

kitchen or the bathroom

Tap/shower-
Valve=open

Water level
75%

Shutdown
water

Tap/showerValve
closed

- -

P12.1

Activates a remote access
module when receives a
telephone call for X21
rings with no answer

Telep hone=idle
ReinoteAccess=

idle

Receive a call
request AND
no answer for
rings X21.

Activate
remote
access
module

Te1ephone=busy,
RenioteAccess=

Active

X2 1:
number

of phone
rings

(2.8)

P13.2

Activates an answer
machine to record

messages when receiving
a call with no answer for

X22 rings

Telephone=idle
AnswerMachine

=idle

Receive a call
request AND
no answer for
rings X22

Activate
answer
machine

Telephonebusy,
AnswerMachine

on

X22:
number
of phone

rings
(2.8)

P14.1

Shut down and prevent
any activation of the
stove during X23 and

X24.

Stove=DxR Time:--X23

Shutdown and
prevent any

activation of the
stove till X24

Stove=off
X23, X24
: Time

{00:00-
23:59}

P 14.2
Shutdown the stove when

the Gas/Heat/Smoke
sensor is triggered

Stove=DxR
Gas/heat/
Smoke sensor
is triggered

Shutdown
stove

Stove--off
. - -

P15.1

Automatically turns on
the kitchen fan when the

humidity sensor is
triggered

KitchenFan off
Humidity
sensoris
triggered

Turn on
kitchen fan

KitchenFanon
- -

P15.2

Automatically shutoff the
kitchen fan when the

humidity signal is lost for
20 mm. while fan is on

KitchenFanon

Humidity
sensor is

negative for
20 minutes

Turn off the
kitchen fan

KitchenFan off - -

168

8.5.4 Step 3: Trigger Events Extraction

In this step, the developer identifies and extracts all the different trigger events from

Table 8.3. The idea behind this step is to identify different simple policies that are

triggered by the same trigger event. The results of this step are shown in Table 8.4.

Table 8.4: Trigger events extraction table for the smart homes case study

Event ID Event Description Simple Policies Triggered by this Event

El
Activate/ deactivate security alarm switch is

pressed
P1.1

E2 A Window is opened P1.2

E3 Main door lock is opened P1.3

E4 Movements P1.4, P8.2

E5 Pressure pad is pressed P1.5

E6
Activate/ deactivate vacation control switch is

pressed
P2.1

E7 Time P2.2, P2.3, P4.2, P6.2, P9.1, P10.1, P14.1

ES Main door is shut P3.1

E9 Unlock main door switch is pressed P3.2

E1O Gas/heat/Smoke sensor is triggered P3.3, P14.2

Eli A/V device is turned on P5.1

E12 Thermostats # preset temperature P6.1

E13 Increase/ decrease of the dimmer slider P8.1

E14 No movements for 15 minutes P8.3

E15 Day begins P8.4, P9.2

E16 Night begins P9.2

E17 Water level ≥75% P11.1

E18 Receive a call request, and no answer P12.1, P13.2

E19 Humidity sensor is triggered P15.1

E20 Humidity sensor is negative for 20 minutes P15.2

169

8.5.5 Step 4: Linked Events Identification

As explained in Chapter 4, this step is important to identify linked trigger events and

hence examine the actions of the policies that might be triggered sequentially by linked

events. The results of this step are shown in Table 8.5.

Table 8.5: Linked events identification table for the smart homes case study

ID Event Description Linked to Mathematical Representation

El
Activate! deactivate

security alarm switch is
E2, E3, E4, E5, E6,

18 E8, E9, E13, E18

El<>E2, El<->E3, El<>E4, Ei<-->E5,
El<>E6, El <-> E8, El->E9, El<-->E13,

El->E18

E2 A Window is opened E9, E12, E18, E20 E2<->E9, E2--'>E12, E2->Ei8, E2>E2O

E3 Main door lock is opened
E2, E4, ES, E6,
Eli, E13, E14,

E18, E20

E3->E2, E3<>E4, E3<>E5, E3<>E6, E3-->El 1,
E3*>El3, E3>El4, E3->ElS, E3>E2O

E4 Movements
E2, E5, E6, ES, E9,

Eli, E13, E18
E4->E2, E4<->E5, E4->E6, E4->E8, E4-.>E9,

E4->Eli, E4->El3, E4->El8

E5 Pressure pad is pressed
E2, E6, ES, E9,
Ell,E13,El8

E5->E2, E5->E6, E5<->E8, E5->E9, E5->Eil,
E5->El3,E5->El8

E6
Activate / deactivate

vacation control switch is
pressed

E8, E9, E13, E14,
E18

E6<->E8, E6->E9, E6->El3, E6->El4, E6->Ei8

E7 Time Ei, where i=l..20 E7>Ei , where i1..20

E8 Main door is shut
E2, E9, E10, Eli,
El3, E14, E18

E8->E2, E8->E9, E8->E 10, E8-.>E11, E8<->E13,
E8-.>E14, E8>Ei8

E9
Unlock main door switch

is pressed
E3, E12, E13, E14,

E18
E9->E3, E9->E12, E9->E13, E9->E14,

E9->E18

ElO
Gas/heat/Smoke sensor is

triggered
E2, E3, E4, ES, E9,
E12,El8,E19

E10-->E2, ElO->E3, E1O-'>E4, E1O-'>ES,
E10>E9,ElO<->Ei2,EiO->El8,ElO->El9

Eli A/V device is turned on E18 Ell->E18

E12
Thermostats :p• preset

temperature
El8, E19, E20 El2>El8, El2->E19, El2>E2O

E13
Increase/ decrease of the

dimmer slider
E18 E13->E18

E14
No movements for 15

minutes
E18 El4>El8

E15 Day begins
El, E2, E3, E4, ES,

E9, Ell, Wi2,
E13, E18

E15-'>Ei, El5>E2, El5>E3, El5->E4,
E15->E5, E15->E9, El5>E1l,Ei5->Ei2,

E15-'>El3, El5>Ei8

E16 Night begins
El, E2, E3, E4, E5,
E9,E1l, E12, E13,

E14, E18

E16-El, E16->E2, El6E3, El6->E4,
E16E5,El6-E9,El6>Ell,El6-'>E12,

E16->El3, El6->El4, Ei6->Ei8

E17 Water level =75%
E4, ES, ElO, E18,

E19
E17->E4, El7->E5, E17>EiO, E17->E18,

E17->E19

E19 Humidity sensor is triggere E18 E19-')'Ei8

E20
Humidity sensor is

negative for 20 minutes
E18 E20->Ei8

170

8.5.6 Step 5: Trigger Events Charts Representation

The graphical representation by the trigger events charts facilitates the detection of

interactions between the dynamic behaviour simple policies. The result of this step is

shown in Figure 8.4.

1

4

6

P1.1

1 SecurityAl-
rmoff/on

Activate/ deactivat
security alarm

;SecurityAla-
m on/off

P1.3

E2

SecurityAlarin
=on,AlarmnoLsct
MainDoorLock

= closed

Set secur.iy,
alarm

SecurityAlarm
on, Aranset,

DoorLock open

P1.5

SecurityAlarm
n,AIarmnoLset,
PressurePad

negative

Set secury SecurityAlarm
on, Aramset,

'res.Pad= positive

P2.1

VacationCo- VacationCo-
1 deactivat ntrolonloff ntro1off/on I Vacation Control

P3.1

MainDoor=open
MainDoorLock
open

main door
Lock the >

MainDoor
closed

MainDoorLock
closed

P1.2

SecurityAlarm
=on,Alarm=not_se
WindowsUc1ose

E4

P1.4

SecurityAlarm
0n, Aramset,

windowsU= oper

SecurityAlarm
)n,AlarnnoLset,
PlRnegative

SecurityAlarm
0n, Arain=set,
PiR= positive

l'8.2

/Daylight false
Lights(X14)off
Lightlntens.(Xl 4)

\. =0

Increase light
ifltcn5itv to>
max. in 2 mm

Daylightfa1se \
Lights(X14)0n
Lightlntens.(Xl 4)

P3.3

EIO
> MainDoor

=closed
MainDoor-
Lockelosed

Unlock main
door lock &

open main door

MainDoor--open
MainDoorLock
open

P14.2

StoveDxR Shutdown the stov Stoveoff

Figure 8.4: Trigger events chart of the smart homes dynamic behaviour policies

171

Eli

PS.'

X8OnFaIse,
X8Audio_Ievel

DxR
Vieset the >
4udio level
of X8 to X9

X8On=True,
X8Audio_level

=X9

P8.1

Increase/ decrease

(Lightlnten\ light intensity to
DxR) match increase/ '

 _- decrease of slider

Lightintens
— Dimmer-

Slider

E7>

->

P3.2

P2.2

— .—

(VacationCo-
(ntrolon,
\ TV=off

Turn on TV
for 60 mm

—

Vacation Co-
ntrolon,)
TWon

— —

P2.3

VacationCo-
ntrolon

Lights(X5)=off
Turn on lights,
for 60 mm.

in X5

VacationCon- •\
tro1on,
gts(X5)/

P4.2

X6Ontiue
liaise

Turn on/off
the A/V
device X6

X6Ontrue
/false

P6.2

Temp=
DxR

Increase/
ecrease temp of
house to X12

Temp--X12

P9.1

CurtainBlinds
(x16) =close/

open

Open/close the
blinds and

curtains in XI

CuitainLI>\
inds (x16)

=open/ close)

E12
—

E15

E16

Windows
(X19)=

close/open
Open/close

windows in X19

—
Windows(X19) "

open/close)

P14.1

Shutdown &
prevent stove. >

activation till X24
Stove=off

ainDoor'\
I closed, Unlock an
KMainDoorLock open the

=c1osed__ main door

MainDoor=open
MainDoorLock
=open

P6.1

(Temp=
DxR

Increases/ Decreases
the temp. inside the >
houseto XII

—

Temp=Xll)
—

P8.3

Davli'htlàlse
LiohtsrXl 5)=oi
Liht1nten(X 15)

=DxR

Shut down
the lights

Daylightfalse
Lights(Xl 5)off

..ight!nten.(X14)=0

P8.4

Daylight
=True

Lights--off

Turn lights / Daylight
on ç false,

Lights--on

P9.2

Daylight
IhIse/true,

CurtainBhnd
(XI 8)= close/

onen

Open/c1ose\
curtains,blincfs

in X18

Daylight
= true/false
CurtainBlincl
(X18)= open/

clncEi

P9.2

— .—

Daylight
= false/trpe
CurtainB1ind
(X18)= close/ I

nnpn

UpeWcIo5o.
curtains,blinds

in X18

P11.1

E17 /shower- Shutdown water Tap/shower
__. lveopen Valve= c1os

E18>

E20

E19
-

P12.1

Telephone
idle,

RernoteAcc-
ess=idle

Activate rernot
access moduh(

Te1ephonebusy
RernoteAccess

Active

P13.2

=idle,

• (phone RemoteAcc-
Activate answ5

-Machine

Telephone=busy
AnswerMachine

=Active

P15.1

KitchenFan'\ Turn on . KitchenFan
off 1 kitchen fan' =on

P15.2

KitchenFan
0n

Turn ofT
kitchen fan

KitchenFan
off

Figure 8.4 — Continued: Trigger events chart of the smart homes dynamic behaviour
policies

172

8.5.7 Step 6: Interaction Detection

8.5.7.1 Summary of the Detected Interactions

In this step, the developer detects interactions between simple policies using the

interaction scenarios that are part of the basic core of IRIS (sixth step) or interaction

scenarios that are inserted as plug-ins in the sixth step of IRIS. The developer tries to find

interactions as explained in Section 4.3.7.

Table 8.6 presents the summary of all obtained results. The simple policy column

contains the simple policy under investigation while the interacting simple policies

column lists the simple policies that interact with the simple policy under investigation.

Note that when an interaction is detected between two simple policies (e.g. P1.1 and

P1.2), then this interaction is listed in the row of the first policy (P1.1) only and will not

be repeated as part of the interactions of the second policy (P1.2). The total number of

detected unique interactions is 83 interactions (as can been seen from the interactions in

Table 8.6).

173

Table 8.6: Results summary of detected interactions among smart homes policies

Policy Interacting policies Policy Interacting policies

P1.1 P1.2, P1.3, P1.4, P1.5, P3.2, P10.1, P12.1 P1.2 P3.2, P10.1, P12.1

P1.3 P3.2, P3.3, P12.1 P1.4 P3.2, P8.2, P12.1

P1.5 P3.2, P8.2, P12.1 P2.1 P2.2, P2.3, P10.1, P12.1

P2.2 P4.1, P4.2, P5.2, P9.1, P9.2, P10.1, P12.1 P2.3
P6.1,P6.2,P8.i,P8.2,P8.3,P8.4,

P3.1 P3.3, P12.1 P3.2 P6.1, P6.2, P12.1

P3.3 P6.1, P6.2, P12.1 P4.1 P4.2, P5.1, P5.2, P12.1

P4.2 P5.2, P12.1 P5.1 P5.2, P12.1

P5.2 P12.1, P16.1 P6.1 P6.2, P10.1, P12.1

P6.2 P10.1, P12.1 P7.1 No Interactions

P7.2 No Interactions P8.1 P8.2, P8.4, P12.1

P8.2 P12.1 P8.3 P12.1

P8.4 P12.1 P9.1 P9.2, P12.1

P9.2 P12.1 P10.1 P12.1

P11 1 P121 P121
P13.1,P13.2,P14.1,P14.2,P15.1,

P16.1

P13.1 No Interactions P13.2 No Interactions

P14.1 P16.1 P14.2 P16.1

P15.1 P16.1

8.5.7.2 Interactions According to Main Interaction Category (D

This interaction main category contains interactions that occur between two system

axioms. There are two interaction scenarios used to detect interactions under this main

interactions category: SCR1 and SCR2. The developer is required to examine the system

axioms table (see Table 8.2) developed in IRIS step 2. The developer has to pair-wise

compare all system axioms with the aim of finding interactions according to either SCR1

or SCR2.

174

According to Table 8.2, there are 15 comparisons necessary in order to examine all

system axioms in the smart homes case study. Table 8.7 provides an example of such an

interaction that was detected. Full results of interactions between two system axioms are

listed in Appendix E.

Table 8.7: Example of interaction between two system axioms using SCR1

Interaction ID 152
Type of Interaction Interaction between two system axioms
Interacting
policies

simple P4.1 and P5.2

SCR used SCR1
Explanation There is a contradiction between the value of the Rule of P4.1 and the value,

of the rule attribute of P5.2. The rule of P4.1 can override the rule of P5.2
and vice versa. An interaction scenario can be "what happens when the user
tries to use the remotes to go beyond the max audio level of the house?" If
the system allows the user to use the remote control to exceed the
maximum audio level then the P4.1 rule has overridden the P5.2 rule. But if
the system will not allow the user to use the remote to go beyond the
maximum audio level then the P5.2 rule has overridden P4.1 rule.

8.5.7.3 Interactions According to Main Interaction Categories © and ®

The two main interaction categories © and © have seven interaction scenarios: SCR3,

SCR4, SCR5, SCR6, SCR7, SCR3O, and SCR31. The developer has to compare pair-

wise every dynamic behaviour simple policy with every system axiom with the objective

of finding interactions according to any one of the seven interaction scenarios.

There are 174 comparisons necessary in order to detect all possible interactions between

a system axiom and a dynamic behaviour simple policy in the case of the smart homes

case study. Table 8.8 provides an example of an interaction detected between a system

axiom simple policy and a dynamic behaviour simple policy. The full results of detected

interactions are listed in Appendix B.

175

Table 8.8: Example of interaction between a system axiom and a dynamic
behaviour simple policy using SCR3O

Interaction ID 124
Type of Interaction Interaction between a dynamic behaviour simple policy and a system axiom

simple policy
Interacting simple
policies

P2.2 and P4.1

SCR used SCR3O
Explanation There is a contradiction between the value of the Action attribute of the

dynamic behaviour simple policy (P2.2) and the value of the Rule attribute
for the system axiom (P4.1). The action of P2.2 overrides the rule of P4.1.
A possible interaction scenario could be the following: A user gets home
while the vacation control P2.2 is active and the action of it is being
executed. The user tries to use the remote control to switch off the TV
(P4.1). According to the definition of the vacation control P2.2, the control
of the TV is now exclusively done by it and the remote control will not be
able to switch off the TV. Hence, the action of P2.2 has overridden the rule
ofP4.1.

8.5.7.4 Interactions According to Main Interaction Category

The third interaction main category contains interactions that would occur between two

dynamic behaviour simple policies. There are 5 basic core interaction scenarios used

under this main interaction category: SCR8, SCR1O, SCR11, SCR12, and SCR13.

Moreover, there are 4 plug-ins interaction scenarios used under this interaction main

category: SCR9, SCR14, SCR15, and SCR16. The developer compares every two

dynamic behaviour simple policies that are triggered by the same trigger event or by

linked trigger events.

There are 319 comparisons necessary in order to detect all possible interactions between

two dynamic behaviour simple policies (25 comparisons resulting from examining

dynamic behaviour simple policies triggered by the same trigger event plus 294

comparisons resulting from examining dynamic behaviour simple policies triggered by

linked trigger events). Due to the large number of comparisons, they have been listed in

Figure 8.5 where an L indicated linked events between the two simple-policies in the row

P
14

15

2.1

2.2

2.3

3.1

3.2

3,3

4.1

4.2

5.1

5.2

6.1

82

7.1

72

8.1

8.2

8.3

8.4

9.1

9.2

10.1

Ill

12.1

3.1

132

14.1

14.2

15.1

15.2

16.1

176

and column of that cell. Similarly an S indicates that the two policies in the

corresponding row and column simple policies are triggered by the same trigger event.

The developer has now to analyze the dynamic behaviour simple policies pairs indicated

in Figure 8.5 using the 9 interaction scenarios listed above.

Il 12 13 II 15 21 22 23 31 32 33 41 42 51 52 81 62 71 72 81 82 83 84 91 92 101 Ill 12.1 131 132 141 142 151 152 61

11 ILL L.L:LL 11 L . I IL L L,L, L I I

12 ILl ILILL I II I
11111 .11 L Li 1 II

1 1:1.1, IL 1 I I 1.IS

L L LI I1 I I L L

I I I L I L

SILL: OL IS

I I I S 1

L I IL

II LL I L.LL Li

I L I I I I IL L
I I I I I LL

IL 1 1.1 1 1 L

IL 1 1 1 1, IL I L,

.1 1 1 1 S 1 8111 151 1 1

LII.I,SIS1I ISILL

LL L I I ILL

-- LI'LIIL'I LIII
LL I L 1:11 1 IS L

1 1 1

IS I SI

I L L I

I I I I

IS IS

is:i. 1,1
II

L:LI L L

I:s;L LII

I I,

Figure 8.5: List of the comparisons needed to detect interactions between dynamic
behaviour simple policies in the smart homes case study

177

Table 8.9 provides an example of a detected interaction between two dynamic

behaviour policies triggered by the same trigger event and Table 8.10 provides an

example of a detected interaction between two dynamic behaviour simple policies

triggered by linked trigger events. All other interactions between two dynamic behaviour

simple policies are listed in Appendix B.

Table 8.9: Example of interaction between two dynamic behaviour simple policies
triggered by the same trigger event using SCR11

Interaction ID 163

Type of Interaction Interaction between Two Dynamic Behaviour Simple Policies

Interacting simple
policies

P6.2 and P10.1

SCR used SCR1 I

Explanation Both simple policies are triggered by E7 AND they have the same pre-
states AND there is a negative impact between the two actions of the two
simple policies. The action of P10.1 has a negative impact on the action of
P6.2. An example of an interaction scenario: "The system opens the
windows and at the same time tries to raise the temperature of the house". It
is obvious that if the temperature outside the house is too cold (or too hot)
then action of 10.1 has negative impact on action of P6.2.

Table 8.10: Example of interaction between two dynamic behaviour simple policies
triggered by linked trigger event using SCR12

Interaction ID 165
Type of Interaction Interaction between Two Dynamic Behaviour Simple Policies
Interacting simple
policies

P8.1 and P8.2

SCR used SCR12

Explanation These two simple policies are triggered by the linked events E4 and E13
where E4 -'> E13. The action of P8.1 overrides and cancels the action of
P8.2 before its completion. An example of an interaction scenario is the
situation when someone wakes up at night and tries to increase the light
through the light dimmer. According to P8.2 a person that wakes up at
night and walks into a specified part of the house causes the lights to
increase in that part to a maximum over the period of two minutes. But the
user can turn the light dimmer after 30 seconds to increase/decrease the
light intensity. In such a situation, P8.2 was triggered first by E13, i.e., the
system starts increasing the light over a period of two minutes. But then
that person changes the light dimmer to increase/decrease the lights and
thus triggering P8.1 which in turn overrides the action of P8.1 before its
completion.

178

8.6 Discussion of the Results

8.6.1 Reduction in Number of Comparisons

IRIS required the following 508 comparisons to be done:

• 15 comparisons necessary to detect interactions according to main interaction

category 1 (number of all possible pair-wise comparisons according to Table 8.2)

• 174 comparisons necessary to detect all possible interactions according to main

interaction categories 2 and 7 (number of all possible pair-wise comparisons

according to Table 8.2 and Table 8.3)

• 319 comparisons necessary to detect interactions according to main interaction

category 3 as discussed in Section 8.5.7.4.

A human expert, however, would need 630 comparisons to pair-wise compare all simple

policies of the smart homes case study. Thus we have achieved a 19.3% reduction in the

number of pair-wise comparisons.

8.6.2 Comparing IRIS Results with Other Results Reported in the Literature

The smart homes case study had the following number of features and simple policies as

presented in Table 8.11:

Table 8.11: statistics on the smart homes case study

Number of Features 16

Number of simple policies 35

Number of detected interactions using IRIS 83

This section evaluates the results from applying IRIS in the smart homes case study.

Accuracy shows how precise was the detected interactions and if any interactions were

missed. Unfortunately, there are no fully documented results in the literature with which

179

we could have compared our results. However, Kolberg et al. in [21] lists an

overview of some interactions that arise between services supporting networked

appliances in a smart home environment. This overview included some interaction

examples. All interaction examples mentioned in [21] were detected using IRIS.

8.7 Summary

This chapter proposed the use of the IRIS semi-formal approach to detect interactions in

the smart homes domain. A comprehensive view of the distinction between policies and

features was presented. A case study was carried out for detecting interactions among

policies in smart homes using the proposed semi-formal approach and was presented in

this chapter. The proposed approach was successfully customized and applied in the

smart homes domain. It was able to detect 83 interactions among 35 user policies using

only 508 pair-wise comparisons as apposed to 630 a human expert would have to do and

thus achieving a reduction of 19.3% in the number of comparisons. These results support

the chapter's main claim of being able to use our semi-formal approach, IRIS, to

successfully detect interactions between policies. Further, these results serve as the first

fully documented results of interactions between policies in the smart homes domain.

180

CHAPTER NINE: IRIS TOOL SUPPORT

9.1 Introduction

This chapter introduces IRIS-TS which stands for identifying Requirements Interactions

usingSemi-formal methods -Tool Support. IRIS-TS is a tool support for applying IRIS to

detect interactions between a set of requirements. For this reason, IRIS-TS was designed

and implemented as an add-on that can be added to DOORS [23] which is one of the

most famous and commonly used requirements management tools in both academia and

industry.

This chapter presents the general architecture of IRIS-TS. Section 9.2 describes a general

overview of the architecture and design of IRIS-TS. Section 9.3 then presents an

overview of a prototype that was created for IRIS-TS in DOORS. This section also

includes screen shots taken from applying the IRIS-TS prototype on the smart homes

case study. Finally, Section 9.4 presents the summary of this chapter.

181

9.2 Architecture of IRIS-TS

IRIS-TS is a tool support that is implemented as independent code files that can be

inserted as an add-on to DOORS to facilitate the detection of requirements interactions

using IRIS. DOORS is one of the most commonly used requirements management tools

for documenting and managing requirements for software systems. However, DOORS

does not have any sort of interaction detection support built in it. IRIS-TS is implemented

to be installed as an add-on to extend DOORS to support requirements interaction

detection using IRIS. In this section, we focus first on describing the general architecture

of IRIS-TS.

DOORS consists of modules that contain data and interfaces to show the data contents of

these modules. A module is the way that DOORS uses to store data. A module is like a

sheet on which data is written and stored. For example, in a specific software system that

uses DOORS, there will be a module that contains all the system requirements and a

module that contains all the tests for validating the final product. Each module consists of

Objects and Attributes which corresponds to rows and columns, respectively. Objects and

attributes are used to represent the infonnation stored within a module. For example, the

requirements module will contain an object (row) 01 that represents a requirement Ri.

The object 01 has attributes that describe requirement RI such as ID, Object text,

Created by, and Modified on. These attributes are part of the default set of attributes that

comes with DOORS. Figure 9.1 shows a screen shot of the module "Functional

Requirements" that has the requirements of smart homes and how the requirements are

stored in the module as objects (rows) and attributes (columns).

182

Type of
interface

Re Ed w I .e4 to ysls Ta Took

rdee ••Y teveio j ?&
Functional Re.orements
I Intruder pjarrr Feature

LI Acwed/oactr'
I.2misered4

t.3 Alarm istnggeredw
I.4 Alarm ist,eredrk.'

1.5 Aarm is triggered
2 V&s&n Cortrcl Feslise

2.1 Adtoer&tiveto

2.2 Turn on TV for 60 roe

2.3 lien on I#s for 60
3 Mali Door Feature

3,l Lock the in* door k

3.2 Occupants can irloc
3,3 tkkds the roan doc

4 0udofVloai COntral Featu V

I ID Qhect lord ., aed0r Ce0od

24 1.1 Actrvatedfdeactivated by a switch from inside the house called alarm 11 April 2035 Admmiotrato

cwitch

V

ttributes

25 1,2 Alarm is triggered when the feature is active and a magnetic reed
sensor indicates that a wndow is being opened

23 1.3 Alarm is triggered when the feature is active and the main door lock
sensor indicates that the main door lock is being opened

27 1.4 Alarm is triggered when the feature is achve and a PIR sensor
indicates movement in Xl, where Xl: Location, Xl: {Living room,
Bedrooms, Hallway, Kitchen}

28 1.5 Alarm is triggered when the feature is active and pressure pads
indicate the presence of a person in X2, where X2: location, X2:
Uving room, Bedrooms, Hallway)

name:Adwistiator fx3isk edit mode

11 April 2005 Administrator

11 April 2005 Administrator

11 April 205 Administrator

11 April 2005 Administrator

Figure 9.1: An example of modules, objects, and attributes

Object

The interface, or sometimes called the view, is the graphical representation that DOORS

uses to display the contents of the modules to the user. For example, in Figure 9.1,

DOORS uses the interface type "standard view" to display the contents of the module

Functional Requirement. Of course the interface itself is the whole screen.

The concept of attributes has been used in IRIS-TS to correspond to the requirements

attributes that are used as part of IRIS. Only this time, new customized attributes are

created in DOORS through the IRIS-TS code to represent the requirements attributes

being used in IRIS. For example, IRIS-TS when executed will create new attributes that

are applicable for all modules of DOORS such as "PreState", "Action", and "NextState".

The concept of modules has been used by IRIS-TS to represent the tables and graphs that

are generated through the different steps of IRIS. For example, IRIS-TS will create a

183

module called "Trigger Events Extraction Table" to correspond to the table created in

the trigger events extraction step in IRIS.

This brief introduction was important to understand the architecture of IRIS-TS which is

shown in Figure 9.2. As can be seen, the IRIS-TS is implemented as an add-on that can

be integrated into DOORS and communicate with its modules and interfaces. On the

other hand, the analysts does not have to deal with IRIS-TS code or the creation of the

new modules but rather he deals with the interfaces that are either used to display the

contents of the modules or created by IRIS-TS to display/request data for/from analyst.

DOORS

Add-in to DOORS

IRIS-TS

lommands
/Data

commands I
/Data

Modules

Req. Document

Existing Modules

4

Req. Classification
Table

4

.....L.,J System Axioms Attributes
Identification Table

Dynamic Behavior Attributes
Identification Table

Interface

'User Forms
Interface

Resources Attributes
Identification Table

-H Trigger Events
Extraction Table

4

-H Linked Events
Identification Table

Trigger
Events
Charts

New Modules
Created By IRIS-TS

Modules
Interface

Figure 9.2: Architecture of IRIS-TS

Analysts

184

The architecture of IRIS-TS can be explained in a high abstraction level as follows:

When the IRIS-TS is executed it will communicate with the module that has the

requirements of the system stored in it (which is shown in Figure 9.2 as the module Req.

Document). The communication carried out with the Req. Document module will be in

the form of data regarding the requirements stored in this module or commands to create

new attributes for requirements and store data in these attributes. IRIS-TS will also

communicate with the analyst to interactively execute the different steps of IRIS in an

ordered manner. During the execution of the different steps of IRIS, the tool will create

customized interfaces (windows) that either display or request data to/from the analyst.

The tool will also create new modules and assign customized attributes to these modules

to store the data obtained after the execution of each step of IRIS.

Commands/Data
to/from User Forms Interface

 61
IRIS-TS

1

User Forms Engine

 I

IRIS Engine

DOORS Modules
Management Engine

Commands/Data

to/from Modules

Figure 9.3: Internal structure of IRIS-TS

185

The way IRIS-TS manages these tasks is through the three engines in its interior as

shown in Figure 9.3. The IRIS Engine is the main engine in the tool and is responsible for

determining the next IRIS step to be carried out and what exactly needs to be done. If the

IRIS step being executed requires data or creation of attributes to store data in the main

Req. Document, then the IRIS engine will communicate with the Req. Document module

,through the "DOORS Modules Management Engine", to request data or create attributes

to store specific data. If the IRIS step being executed requires communicating with the

analysts to request or display data, then the IRIS engine will request that the User Forms

Engine creates an interface with the necessary data and/or fields that needs to be entered

by the analyst. The User Forms Engine will create the requested interface and send it to

the interfaces part of IRIS to be displayed to the analyst. Once the analyst provides the

adequate response, then that response and the data collected, when required, will be

returned to the IRIS engine to determine what needs to be done. The IRIS engine after the

execution of a complete step of IRIS will request from the DOORS Modules

Management Engine to create new modules to store the data/tables/graphs that was

created so that they can be used later. The DOORS Module Management engine, once it

receives a request for module creation or data manipulation in a specific module, will

issue the appropriate DOORS commands to carry out the request it receives.

186

9.3 A prototype of IRIS-TS

9.3.1 Implementation

As described in section 9.2, IRIS-TS was created as an add-on to DOORS. The IRIS-TS

tool was programmed using DOORS programming language DXL (DOORS eXtension

Language). The programming language DXL is a scripting language specially developed

for DOORS. DXL can be used provide many features, such as file format importers and

exporters, impact and traceability analysis and inter-module linking tools. DXL can also

be used to develop larger add-on packages such as IRIS-TS presented in this chapter.

This capability to extend or customize DOORS is available to users who choose to

develop their own DXL scripts. The DXL language is based on an underlying

programming language whose fundamental data types, functions and syntax are largely

based on C and C++. To support the needs of script writing, there are some differences.

In particular, concepts like main program are avoided, and mandatory semicolons and

parentheses have been discarded.

The way DXL is used is to either enter individual scripts in a specific window in DOORS

and run these scripts to see how they work, or the other alternative would be to develop

an add-on package that can be added to DOORS and with some specific scripts the DXL

script can appear as a menu on the top bar of DOORS. In this thesis, IRIS-TS was

developed as a complete add-on package that needs only to be installed in the add-on

subdirectory located inside the DOORS main installation directory. Figure 9.4 shows

how IRIS when installed as an add-on package would appear as a drop down menu in

DOORS.

187

To give an example of the implementation of IRIS-TS using DXL, Appendix F

presents part of the DXL code for executing the first step of IRIS to give a feeling of how

the DXL code, that was written for IRIS-TS, looks like. It is worth mentioning that the

complete DXL code of the tool is more than 70 pages using the format of Appendix F.

ki

File Edit View Insert IJni Analysis Table To

l5tardard view "I hAl levels

El Functional Requirements
E.. I Intruder Alarm Feature

1.1 Activated/deactivat'
1.2 Alarm is triggered wt
1.3 Alarm is triggered vf
1.4 Alarm is triggered wt
1,5 Alarm is triggered wi

El 2 Vacation Control Feature i•
• 2.1 Activated/deactivate
• 2.2 Turn on TV for 60 mir

2,3 Turn on lights for 60
El 3 Main Door FeatureD

3.1 lock the main door Ic
3.2 Occupants can unloc
3.3 Unlocks the main doc

4 Audio/Visual Control Featu
4.1 Occupants can contr
4.2 Turn on/off >16 A/V d

5 Audio Level Control Featur
5.1 Presets the audio le'
5.2 Occupants can set X

6 HVAC Control Feature
6.1 Increases/decreases
62 Increases/decreases

.J 7 Water Temperature Contrc
7.1 Maintain the temperr
7.2 Maintain the tempers

El B Lights Control Feature
8.1 Increase/decrease ti
82 Increase the light ml
8.3 Automatically strut at
8.4 Automatically turn or

Iii 9 Curtains and Blinds Control
01

 IRIS-TS

ObjeolTeol

22 1 Intruder Alarm Feature
24 1.1 Activated/deactivated by a switch from inside the house called alarm switch

25 1.2 Alarm is triggered when the feature is active and a magnetic reed sensor
indicates that a window is being opened

26 1.3 Alarm is triggered when the feature is active and the main door lock sensor
indicates that the main door lock is being opened

27 1.4 Alarm is triggered when the feature is active and a FIR sensor indicates
movement in Xl, where Xl: Location, Xl = {Living room, Bedrooms, Hallway,
Kitchen}

28 1.5 Alarm is triggered when the feature is active and pressure pads indicate the
presence of a person in X2. where X2: location, X2= {Living room,
Bedrooms, Hallway}

° 2 Vacation Control Feature
40 2.1 Activated/deactivated by a switch from inside the house called vacation

switch
32 2.2 Turn on TV for 60 minutes at X3, where X3: Time, X300.00-23:59

33 2.3 Turn on lights for 60 minutes at X4 in X5, where X4. Time, X4=00:00-23:59
and X5: Location, X5= {Living room, Bedrooms}

34 3 Main Door FeatureQ

35 3.1 Lock the main door lock of the house when the main door is shut

36 3.2 Occupants can unlock the main door from inside by interior switch
38 3.3 Unlocks the main door when the Gas/Heat/Smoke sensor is triggered

39 4 AudioNisual COntrol Feature
41 4.1 Occupants can control all AN devices through remote controls

IJoername: Administrator:Exclusive edit mode

Figure 9.4: IRIS-TS implementation in DOORS

188

9.3.2 Applying the IRIS-TS Prototype on the Smart Homes Case Study

To demonstrate and describe the IRIS-TS when it is executed in the DOORS

environment on an actual requirement document, this section presents screen shots taken

from applying IRIS-TS on the smart homes case study that was presented previously in

Chapter 8. For each step of IRIS, two screen shots are presented. The first screenshot

shows how IRIS-TS performs the IRIS step being executed. The second screenshot

shows the result that IRIS-TS has generated from performing the IRIS step being

considered. As can be seen from Figure 9.4, the developer will have to open the

Interactions drop down menu and choose "Detect using IRIS-TS". This will execute

IRIS-TS code to detect interactions between the requirements of the smart homes. The

requirements of the smart homes are stored as objects. Each requirement will have an ID

attribute which uniquely identifies it and an object text attribute that contains the textual

description of the requirement. In the following we present the screenshots of applying

IRIS-TS to detect interactions.

189

9.3.2.1 Requirements Classification using IRIS-TS

The first step of IRIS is requirements classification into system axioms, dynamic

behaviour requirements, or resources. This step is carried out as shown in Figure 9.5.

IRIS-TS will display a message for each requirement and ask the analyst to classify it as a

system axiom or a dynamic behaviour requirement or a resource.

Once finished displaying all requirements to the analyst to be classified, IRIS-TS will

create a new module to correspond to the requirements classification table created in IRIS

step I (see Section 4.3.2). The created module contains all the requirements along with

their classification stored in an attribute called classification. The results of this table is

shown in Figure 9.6

l&sdard slew

Functienin Requirements .

I Intruder Atron,Feature

1,1 Acthured/dctreat'
1,2 Alarm is triçgered wi

1.3 Alarm Is Ii 060r0d wit
1. Alarm is triggered wI,

1.5 Alarm i trl35ered ml,
2 tacahon Control Feature

2.1 Actrosted/deact,s'ato

2,2 Turn on TV for 5,0 rotc

2.3 Turn on lights For 60
-1 3 Main Door Featsoel

3.1 Lock the main door Ic

3.2 Occupants can uohx
3.3 the main doc

s 4 Au,0o/Vsuat COntrol Featu
4,1 Occupants can contr

4.2 Turn on/OffX6A/td
di 5 Audio Level Control Featur

5.1 Presets the audio le'
5.2 Occupants can sets

6 HYAC Control Feature
6,1 Increases/decreases

6.2 Increases/decreases -

7 Water Temperature Co,trs

7.1 Maintain the tempers
7.2 Mlerctafts the tempers

8 Light Control Feature

8.1 Increase/decrease II
6.2 Increase the light rot
8.3 Automof scaly shut dm

5.4 Automatically turn or
Curtains and Binds Control
0I

tisernamem Mmninntiatur

<C] p ilY'

22 1 Intruder Alarm Feature

24 1.1 Activated/deactivated by a switch from inside the house called alarm svetch

25 1.2 Alarm is triggered when the feature is active and a magnetic reed sensor
indicates that a window is being opened

26 1.3 Alarm is triggered when the feature is active and the main door lock sensor
indicates that the main door lock is being opened

27 1.4 Alarm is triggered when the feature is active and a PIR sensor indicates
movement in Xl, where Xl. Location, X1= {Living room, Bedrooms, Halfway,
Kitchen

28 1.5 Alarm is triggered when the feature is active and pressure pads indicate the

Requsernenl

Alarm is tupoemed when he feature in achy, and a mnaanehc reed sensor inr,dicahes that a

In Ctaos8led as

1evr; Syr,lemdiomrn Resource Fninh

1. 55 opened

25 3.1 Lock the main door lock of the house when the main door is shut

26 3.2 Occupants can unlock the main door from Inside by interior switch

38 3.3 Unlocks t39 he main door when the Gas/Heat/Smoke sensor is triggered

4 Audio/Visual COntrol Feature

42 4.1 Occupants can control all AN devices through remote controls

 41
toctussne edit trade

Figure 9.5: Performing requirements classification using IRIS-TS

190

IOflndl mod lW* 1 flffuncfional currenfb.O
Fa E41 View 1—rt wk Vi,ieyma TbIw Tools mnt0000b000

V

tiuMew

i Fir5onwi Seamy" -
unmade, Ale

1.1 SOny
i.2Alarrnl

1.3 Al.. ,
1.4 Al— I

1.5 AJea

,71 2 VeniSon CO
2,1 Actal

2.2 Ten 0
2.3 Tan

- 3 Main Do. Fn
3.1 Lxkit

3.2 Occ'5'
3.3 Urdecl

4 VSon,l
4.1 Occup,
4.2 lena

- 5AmxAoLeyie
5.1 P,on&

5.2 Occi,V
Al-SAC Con6n,

6.ulrorea

6.2 Incree
7 Water Ten'

7,1 ManSe

7.2 Merte

Uneryonon: Amradutn

Vies

43 5 Audio Level Control Feature

44 5.1 Presets the audio level of audio device X8 to X9 when turned on, where XB
AN device, (8aTV, CD. DVD} and K9' Audio level, X9 = {l 63}

46 5.2 Occupants can set X1 as a maximum audio level throughout the house,
where XlO. udio level, X1O ={l..63}

47 6 HVAC Control Feature

48 6.1 Increases/decreases the ambient temperature inside the house to Xii when
the readings from the thermostats are different from this preset temperature,
where Xli: Temperature, Xli = {15..35}

45 6.2 Increases/decreases the temperature of the house to X12 at X13. where X1
Temperature, X12 {15 35} and X13 Time, X13=00 00-23.59

° 7 Water Temperature Control Feature

51 7.1 Maintain the temperature of the hot water from the hot water lap in the kitchen
at 45 degree centigrade

52 7.2 Maintain the temperature of the hot water from the hot water tap of the
bathroom at 40 degree centigrade

53 8 Lights Control Feature

54 6.1 Increesefdecrease the light intensity to correspond to the increaseldecreese of
alight dimmer

on 'Eanhneoien,nnle

N/A

Dynamic
Behavior

System

Axiom

N/A

Dynamic
Behavior

Dynac
Behavior

N/A

System
Axiom

System
Axiom

N/A

Behavior

/

Figure 9.6: Results of requirements classification using IRIS-TS

9.3.2.2 Requirements Attributes Identification using IRIS-TS

The second step of IRIS is attributes identification for system axioms, dynamic behaviour

requirements and resources. In the smart homes case study, IRIS-TS will start displaying

messages to the analyst asking him to identify the attributes of the system axioms first

(Rule and Condition) and then to identify the attributes of the dynamic behaviour

requirements (Prestate, Trigger Event, Action, and Next State). Note that the attributes ID

and Description are obtained automatically for the original requirement module. Also, the

attributes Parameters and Parameters range were not implemented in IRIS-TS.

For the sake of aiding the analyst to be consistent in using the same terminologies for

defining the attributes, a drop-down buffer is available with each attribute to list all

previously entered attributes during the execution of IRIS-TS.

191

Once IRIS-TS finishes all requirements attributes identification, it will create two

new modules with attributes corresponding the requirements attributes to save all the data

collected from the analyst. These two modules correspond to the system axiom attributes

identification table and dynamic behaviour attributes identification table created in step 2

of IRIS (see Section 4.3.3).

Figures 9.7 and 9.8 shows screenshots for messages to the analyst to enter values for the

system axiom and dynamic behaviour requirements attributes respectively. Figures 9.9

and 9.10 shows screenshots for the created modules for the system axiom attributes

identification and dynamic behaviour attributes identification, respectively.

I Fonnet module 'ISnou'i Homeoffunctional Requirements current 0.0 DOD'

Fe Ed: View Insert ijnic Analysis Table Toots Interactions Kelp

f5tandard ,,,,J AIIlv.rIs ..:J. .t/; Av =

vi Functional Requirements .

/1 1 Intruder Alarm Feat
I. 1 Acts'ated/dee
1.2 Alarm 15 tr9eL
1.3AIarms1rger
1.4 Alarm is t,9er
1.5 Alarm 6trr5e

vi 2 Vacation Control Fe
2.1 Actroated/dea'
2.2 Tun on TV for
2.3 Turn on iits I

3 Mien Dour Featseet
3,1 Lock the man

1 3.l Occupants ca,
3.3 Unlocks the nr

4 AUdrVaI Cc,hrrj
4,1 Occupants Car

1 4,2 Turn on/ol'fXO
- S AudiO Level Control I

5.1 Presets the or
--5.2 Occupants car

6 HVA(Control Featc,
5.1 Increases/den

• 6.2 Increanes/cInci
7 Water Temperature

7.1 Mntain the IC

7.2 Mierctucn the U
- 8 Lots Control Featuu

8.1 Increane/dncrr
8.2 Increase the I,

Usornarne: Administrator

ID I flbeciTeco

47 6 HVAC Control Feature

48 6.1 Increases/decreases the ambient temperature inside the house to X1 when
the readings from the thermostats are different from this preset temperature,
where X1 1: Temperature, X1 = {15..35J

49 6.2 Increases/decreases the temperature of the house to X12 at X13. where
X12 Temperature, X12 = {15.35} and X13 Time. Xi 3=00:00.23:59

50 7 Water Tern erature Control Feature

51 7.1 Mai
at

52 7.2 Mai
bati

8Llgl

54 8.1 Incr Cnndtinro frue

Reqsrsernerct

Occupants can control aIA,V devices IlOOntib remote ccottcolu

Rule Econot at AN devices tkwough remote conirclo

of

p in the kitchen

p of the

 ase/decrease

55 8.2 Incr Outi I Done within 2

Location, X14m (Living room, Bedrooms, bathroom}
56 8.3 Automatically shutdown the lights during night in XiS when a PIR signal is

negative for 15 minutes from X15, where XiS: Location, X15= {Liining room,
Bedrooms, bathroom, halfway}

57 8.4 Automatically turn on the lights according to a daylight sensor when the night
begins

ocheUe cr91 mode

Figure 9.7: Performing system axioms attributes identification using IRIS-TS

192

File Edit View In

1Stwdardew -11

Analysis Table Tools Interactions Help

-s Fraritloeral Reqs*eeneets

I Intruder Alarm Peat
1.1 Activatedfde
1.2 Alarm is trigg&
l,3 Alarm triçger
1.4 Alarm is trigge

1.5 Alarm is trViQr

2 8oa11oo Central Fe,
2,1 Adhated/dear
2.2 Tan or, TAt a'
2,3 Tan oriitnI

r-3 Moo Dear Featoani
3,lLocicthe main .

3.2 Occupants c&
3,3Unlocs the oo

04 Audio/Visual COntrol

4.I Occupants ca
1.2 Torn nA/Off 110

1,0 S Audio Level Control
5.1 Presets the ,r
5.2 Occupants car

6 -tOAC Cra,trol Feats.

6.1 Increases/den
6.2 Increases/deer

7 Water Temperature

7.1 Maintain the tr
7,2 Maintain the I,

- B Lights Central Feats.
8.1 1ncrease/decri
6.2 Increase the t S'

Userriarne: Administrator

Atleveb ..i
ID

: 'kJ1!

4 § HVAC Control Feature

48 6.1 Increases/decreases the ambient temperature inside the house to X1 when
the readings from the thermostats are different from this preset temperature,
where X1 1: Temperature, X1 r {15..35}

49 6.2 Increases/decreases the temperature of the house to X12 at X13, where
X12. Temperature, X12 = {15. 35} and X13. Time, X1 3=00 00-23.59

50 7 Water Temperature Control Feature

,

Reoeeewnt.

Alarm is triggered when the leature in wove and the mart, door lock sensor indicates that the mart, door lock is beers opened

PreState: fecoaid/iarnnon,Alaram.nci_aer. rEloakock-olosed

TrgerEeerit: jMaOoorLock is ucesord

Action. ISet tectally alarm

NestStste: Secor arns.ra,.Alaram-set. M*dIeerLeds.r,erred

Li

Bedrooms, bathroom. h-aflntay}
57 8.4 Automatically turn on the lights according to a daylight sensor when the nigh

begins

41
Eulssivrt er18 mode

Figure 9.8: Performing dynamic behaviour attributes identification using IRIS-TS

File Edit View Insert Lrk ArAwsi Table Tools Irteracturo H

view AI levels

- System Axionmi
1 Occupants can control at A/Vt
2 Occupants can set X 1 as a es
3 Maintain the temperature of tf
4 Maintain the temperature of II

UcernAow Admciotratar

Figure 9.9: Results of system axioms attributes identification using IRIS-TS

ID Objecilent

r

41 Occupants can control all AN devices through remote
controls

46 Occupants can set X1O as a maximum audio level
throughout the house, where X1O: udlo level, X1O or

(1..63)

51 Maintain the temperature of the hot water from the
hot water tap in the kitchen at 45 degree centigrade.

Maintain the temperature of the hot water from the
hot water tap of the bathroom at 40 degree centigrade

Exclusive edit ovide

Atoor,j'lon -

Control all AN devices True
through remote
controls

Set XSO as a maximum
audio level throughout
the house

Maintain the
temperature of the hot
water from the hot
water tap at 45 e0

Maintain the
temperature of the hot
water from the hot
water tap 40 °C

True

True

True

193

FIn EdO thesi Insow Or-i- Matysis Table Sash lreraotlrro

0yeswn60ea/oorAttrb.,tcildootWlcc
I ActivatedIdeactivarted by as.
2m Is 5dw60nt1ss10
3 Olsen is triyaered ni-en the in
4OmlstnQeredohentisste

S AIsres is 1r1605rvd whey the 1.
6 Ac6vated/d estroated bye on
-7 Turn onTV for 6Onai.ites etc
8 Torn on bl-as for 60 ni-site, a

'Otnsk the main door lock olthe
ID OccLEiargs can unlock the ma
1 Urfr&o the wait door When

12 Ticts on/off 066/V deisoe at
13 Presets the audo level of so
54 Inoremes/deoreesra the sent
IS Iocreoens/dscrssses the tern
16 tncreasefdeooeane the Içht s
I? Increase the 60ht sitenuty di
to Aiticenatosly shut down the
IV Actonatcaty turn on the 10h
20 Aitninatiosly opeo/clons the
21 ooaornatosly open/close the
22 Otsen/dosa the witdoss it T:
23 Close the water tap when the
24 Activate a renote access inn
25 Activate an answer maci-tel

26 Slot down and preveot any
27 Sle.kdonst the stoves/tenth
28 Aoeosnaboaly torn on the lkAc
29 Aiooenatsisly soi-ivhe nil the

24

25

213

27

28

Art,vated)deaivtivated bye switch from rn,idr the
house celled alarm ewabth

Alarm Ia triggered when the feature is active and
a magnetic reed sensor indicates that a condom is
being opened

Pmsrm is triggered when the feature is active an4
the main door lock sensor indicates that the main
door lock is being opened

Alarm is triggered when the feature is active said
a FIR sensor indicates movement in Xl, where
>:i Location, X1 {Laotng room, Bedroom,

Hallway, Fitchen)

Alarm is triggered when the feature is active and
pressure pads indicate the presence of a person in
X2, where X2 location, X2w (Lissng room,
treofrn,rns, Hallway)

40 Aotivated/sleartiveted bye switch Irons inside the
house called vacation switch

tinsel odo*lstaator ochesnre edo srinde

EevurstyAlas000
waft-n

SecoicityAlerm

Alarcn000=ioot_u
et, wiaslowsLj
=closed

peourityAlorm

Alaraannotj

MaunCloorLock
=cloned

SecurityAlarm

#dainwnots

at,
plRonnEatoon

SecurityAlsa'm

Alaramnnots

Presesory Pants
=negative

VacationCootr
olnoff low

le,itltale

&trnwte/Ete.eot ActinatelD SecsorityAlarmn

nate security motivate on/off
alarm switch enormity
on pressed a/arm

Window is Set SecurityAlarm

opened security on, Alaramnet,
alarm WindowsQ

=opened

MeonDonrkoclo Set SecurityAlermn
is opened security on. Alaramoset,

alarm Main DoorLoclow
opened

Movements Set SecrmrotyAlorm

security on, Alaram=set,
a/arm PlRopnnitmve

Presmre Pr-4 Set SeourityAlsrm
is pressed security on. Aiaraan=aet,

a/arm PressucePadop

Ouit Ieee

Actovate/Deart
ivate vaC&tiOu

Actirate/D VacootionControl
motivate nosoloff

Figure 9.10: Results of dynamic behaviour attributes identification using IRIS-TS

9.3.2.3 Trigger Events Extraction using IRIS-TS

The Trigger events extraction step is automatically done with no input from the analyst.

IRIS-TS will examine the dynamic behaviour attributes identification (Figure 9.10) and

automatically extracts all unique trigger events and links them to the requirements they

trigger. After that, IRIS-TS will create a new module to correspond for the trigger events

extraction table created in step 3 of IRIS (see Section 4.3.4). The created module will

contain all unique trigger events and the requirements that each of the trigger events

trigger (Figure 9.11).

194

6Cu;00000I OM :Øfi5

Fk 15 00,4 1,.W 5y6 07YO08 Ta#0 1008o 709,4000,0,4 770w

[jaw xst•e Y '. '3''
 Ji J; : Vti

I 4Ct*6keceactwate 000,10> a
2 Wo07w .opena9l
3 M,00000.tod,. oponed
4 MonanopSo
5 P0.0,0,00.40 P000004
6 0o5408e1t,400troot. o0000
7 Tpne

6 MOO-c00. 00156
9094006,nop do atthopoo,

lo5oolneallSoo>4a 07,400850
II 4/8 dao,oeat,,rodon
2 llw,n>stata 0) III
131r00000de00000 08 the It

40,0, v 009,0,115 to, IS.
I500d bo0,4

6 2,0> beWK

70000.0 Ipo01 >755.
8>0>7,080 ool 02Q.100t, andfl
I) 0000090> oontop 6700951704
20 0, Itt> 0.0000 6 n.o,.6n.

>ecn8: *608,0,010.

ID WoomIt .0,04.060195.' >

1 Activate/Deactivate security alarm switch is
pressed

1 2 Window is opened

3 3 MainDoorLock is opened

4 Movements

5 5 Pressure Pad Is pressed

6 6 ActivatelDeactivate vacation control switch Is
pressed

7Time

8 8 MainDoor Is shut

9 Unlock main door switch Is pressed

10 10 Gas!HeatiSmoke sensor is triggered

11 11 AN device Is turned on

12 12 Thermostats <> Xli

15 13 increase! decrease of the dimmer slider

14 14 No movements In X 1 for 15 minutes
15 15 Night begins

16 16 Day begins

'7 17 Water level >75%

Ropiop,0, T0.95.d09 *01, Ene.1

06204

625

0626

6207,655

P.18

0640

0652.0653 642.R40.655.663,
P.71

0635

0636

0626.676

0644

0648

0654

0656

7057

0660

0664

Figure 9.11: Results of trigger events extraction

9.3.2.4 Linked Events Identification using IRIS-TS

The linked events extraction step is performed by having IRIS-TS examining the trigger

events module that was created in the previous step (Figure 9.11). Then, IRIS-TS

displays messages to the analyst asking him to determine if the event under investigation

is linked to other events. The analyst can choose from a drop down menu that contains all

other available events and the analyst can choose as many as he wants. Once IRIS-TS

finishes receiving input from the analyst, it will create a module that corresponds to the

linked events table created in IRIS step 4 (see section 6.3.5). Figure 9.12 shows the

execution of the linked events identification while Figure 9.13 shows the created module

by IRIS-TS that corresponds to the linked events identification table of step 4 of IRIS.

195

I Iorm4lrnxidufe 15Maqjldwoe8lrunctiondt PcquiremertI8' cuneett O.P DO3iS 111dJ*4alr.M' i

Fie Odd %eei Insert Lrdi ?sistns TobA Tools 19,00

;°4.s 85

1510 doedot o ,j Al 04 & J tn 'ii

poontesiA R,0090rgo
Ilr6eisdee Al— Pest

LI A000sfedfdee
1.2 Al— 00 ,
l.3Am8trg00
1.4 Olson, A 001690
1.5 Alarm lsIrise

2 6'oo&rn Control Fm
2.1 Aolostedldea
2.2 Tony on TV For
2.3Tumrinhr0,'

3 Moho £000, FeOtonel
'-3,l Lock the man '

o 3.2 O,60nit 050
3.3L0'todit the ec

i- 4 60601990051 CO'6rd
4.1C1i40468car
4.2 Tony on/oil ill

S hood, Leu4. Control

5.1 Poet hem'
5.2 000p7snto nor

61'n%cCOlFeetul
'h.11ooressenldeo
6.2 mci esosy/dro

lWotvelniryerutcee
7.1 Maintain the',

• 7.2 MorOse, the is
(-'8 Lhts Control Foals,

* 8.1 lncresse/decri -

• 8.2 Increone the 6

47 6 HVAC Control Feature

48 6.1 lncreases/decrntsen the ambient temperature inside the house to X1 when
the readings from the thermostats are different from this preset temperature,
where X1 Temperature, X1 = {1 5-351

49 6.2 Increases/decreases the temperature of the house to X12 at Xl 3. where

50 7,1 185

51 7,

52 7,

so

54

8

8.

56 8

in the tc4noey'

if the even* has MULTIPLE hobo (mine than one Ink) than one the bopse ADD to odd
0 000h Use the MiS/Dons lor the lad Irli to finish 6, modiplo Ink s for 1to4 event

We event has ONLY ONE Irk than we the bn64m,A5010014E

6 the eunrd hat 506* thee isis the lotion NO UNK

The Eosr4 El .thulv a/Des ste eec yoloem coAch

Ledi dt the sot

erred

I the kitchen

the

'/decrease

'1 in2

Add *41/Dove No Led'
14

56 8.3 4uwlil*.1il6allJ 311U1 ULIOoII LIlA llIIL5 OUIItl tllIIl Ill 7* I .,i S'A At I d rho, signal is
negative for 15 minutes from X1 5, where Xl 5. Location, X15= (Living room,
Bedrooms, bathroom, hallway}

57 8.4 Automatically turn on the lights according to a daylight sensor when the night
begins

U,eoosnne todnrystrolor Ludrinue sodlorode

Figure 9.12: Performing linked events identification

U Home in dFyenlcldl,e,ltf tiieVmeeF!etiO,O,/DOOR(

Ode Ejsi 5500 Ir550t eA 6,001658 IthIe 2004. thOsosotor. 554.

- 601/0.0/vt iv CV 0, Cli

t.end.ndi9e,o J1aueue8 :J.o ,io4 ' ,"
LOOs.*uon16derhaosnthl

El
202
303
4 E4

• Sno
'606
71'
000
919
'unto
11011
12012
13013
14 III
15(15
16016
17017
stEtO
19019
70120

Unsoconon Oodonmt,s500

1 El Aut,oaie*Desctivate e50000y alarm switch is pressed

2 E2 Window is 0050nd

3 E3 MsinDo,rLock is tossed

4 E4 Movements

5 ES Pneosucn Pet is Pressed

6 ES Act,vste000e.ctieste eji±ion control ewitrh is rinsed

7 E7 Time

8 E8

9 E9

10E10

11 Eli

112E12

13E13

14 E14

115E15

16 E16

17 E17
18 El 8 Roomer a call reqrieot. and no answer for 621 tongs

19 El 9 Humidity sensor or triggered

20 E20 Humidity sensor is negatire for lOcomotes

MainiDser is shut

Unlock rosin door snitch is pressed

flgsiflsattSinoke sensor is tnggernd

A,'IP drei,e is turned on

Thermostats 00 Xli

tnureasel decrease of the dimmer tUdor

No movements in XiS for 15 minutsO

Night begins

MY bo0ms

Water level ii 75%

4J

Tot

03. 8,7, 84, 03, 19, 88, ES, 113, E18

01, ES, 812. 1111, 820

El. 52, 14. 68, 06, Eli. 113. 114. 618, E21)

El, 82, 13, 03, 16, 18, 19, Eli, £13, E18

11, 62, 8,3, 14, 15, ES, 68, Eli, E13, E18

El, ES, 8.4, 885, 18, 18, E13, 114 118

El, 62, 83, 14, 05, 10, 18, 03, 010, Eli, ElI.
813, 814. E15, 516, 117, E18. E19, £20

El, 12, ES, EN, ES, Eli), Eli. 111, ElI, 818

M. E3, ElI, 813. ElI 818

El, ES, 14, 63, 63, 112, 618, E18

818

110, 118, 519, 50)

El, 03, 10, Ei8

618

El, E3, ES, 84, 15, Eu, Eli, ElI, 113, 110

El, 82,53,84, ES, E9, Eli, ElI, 113, 114, 118

14, ES, 110, 118, 118

Not Linked

818

E18

Figure 9.13: Results Linked events identification

Figure 9.14: Results Trigger Events Charts Representation

196

9.3.2.5 Trigger Events Charts Representation using IRIS-TS

The final step in IRIS-TS automatically, without any input from the developer, generates

the trigger events charts and saves them in a module called trigger events charts module.

Figure 9.14 shows a sample of the generated trigger event charts for event E4. It is worth

saying that in Figure 9.14 the button Toggle Length will display the complete text in the

diagram or, when repressed, will display a clipped portion of the text to provide uniform

non-overlapping display.

p dutpui DOO

9.4 Summary

This chapter presented IRIS-TS which is a tool support that was created as an add-on to

DOORS to detect requirements interactions. IRIS-TS was implemented using the

DOORS DXL programming language. To show how IRIS-TS works, screenshots are

presented from the execution of IRIS-TS on the smart homes policies. These screenshots

show that IRIS-TS facilitated the execution of IRIS and provided some automation for

the execution of IRIS.

197

CHAPTER TEN: CONCLUSIONS AND FUTURE WORK

10.1 Summary and Conclusions

Developing software systems has evolved over the years and one of the areas that is

considered to be a major key for the success of any new software being developed is

requirements engineering. The development of a clear and correct set of stakeholders

requirements will heavily contribute to the success of the software being developed.

However, in real life, there are always negative relationships and conflicts between

requirements which are termed as requirements interaction.

This thesis is devoted to tackle the problem of requirements interactions in software

systems. In this regard, a semi-formal approach called IRIS was developed to detect

requirements interactions in software systems. IRIS is a semi-formal systematic six step

approach that uses tables, graphs, interaction scenarios, and subjective judgment to detect

interactions in software systems. IRIS can also be customized by adding plug-ins to its

basic core to enhance its performance and make adaptable to any new software domain.

IRIS enjoys the advantage of reducing the number of necessary pair-wise comparisons

that have to be performed between requirements by discarding irrelevant comparisons

that will not lead to interactions. Hence, this can result in a clear reduction in the number

of comparisons and consequently reduction in time and effort.

As part of IRIS, a general requirements interaction taxonomy was developed to identify

when two requirements are considered interacting. This requirements interaction

taxonomy enjoys an in-depth level of details that was lacking in other taxonomies

reported in the literature. The requirements interaction taxonomy defines 9 main

interaction categories, 24 interaction subcategories, 37 interaction types, and 37

198

interaction scenarios where each interaction scenario has a corresponding interaction

detection guideline that describes how this interaction can be detected.

To validate the proposed IRIS approach, it was applied in three different case studies

from different domains. The results obtained by applying IRIS to these case studies have

been compared, when possible, to other results reported in the literature. IRIS scores very

well compared to other results taking into account that these other approaches used

formal methods compared to IRIS which is a semi-formal approach. Although the first

two case studies have been exercised by other approaches reported in the literature, the

third case study on smart homes can be considered as a main contribution because, to the

author's knowledge, no fully documented results for the smart homes case study

currently exist in the literature.

Finally, this thesis introduced IRIS-TS, which is a tool support for IRIS that was

developed to work within the commercial DOORS requirements management software.

IRIS-TS was developed using DOORS DXL which is a special programming language

for DOORS that enables users to build their own applications and integrate it in DOORS.

The developed code for IRIS-TS would add a separate drop down menu in DOORS main

tool bar that enables the user to choose to detect interactions between requirements that

are stored in DOORS. IRIS-TS will provide a step by step application of the different

steps of IRIS and generate the necessary tables and graphs to facilitate the detection of

interaction between requirements.

199

10.2 Future research

The future research areas should focus on maturing the work done in this thesis and also

introducing new ideas that extend the work presented in this thesis.

Future research should focus on the following four areas: Experimental measurement for

the effort required to apply IRIS, the development of a framework for interaction

detection that combines IRIS with already existing informal and formal approaches, the

application of IRIS in new case studies especially in the World Wide Web domain, and

finally further development of IRIS-TS. In the following a highlight is given on each of

these points.

10.2.1 Experimentation with IRIS

Currently there is a joint research project between the author and fourth year

undergraduate students at the Department of Computer Science at the American

University in Sharjah. The aim of this project is to provide experimental data regarding

the application of IRIS to detect interactions between telephony features. The data will be

used to measure IRIS effectiveness.

10.2.2 Development of a three layer framework

The development of a 3-layer framework is one major extension to this thesis. The three

layers will be: Informal detection using expert systems, Semi-fonnal detection using

IRIS, and formal detection using a formal language. Aside form studying each layer, the

three layers are interconnected to define the potential of cost, effort, and time savings.

200

10.2.3 Application of IRIS to new Case Studies

The application of IRIS to new case studies is essential to gain more maturity for the

approach. The new case studies will help also in designing new plug-ins that can be used

by others when applying IRIS in new domains. Finally, new case studies will provide

documented interaction results that can be used by developers when developing new

software systems to avoid these interactions as early as possible. Currently, there is an

interest to apply IRIS in the World Wide Web domain. Future plans include applying

IRIS to detect non-functional requirements interactions in the TPC-W Benchmark which

is a bench mark used for validating the creation of new B-commerce web sites.

10.2.4 Further Development of IRIS-TS

As it can be seen from Chapter 10, IRIS-TS will execute the first five steps of IRIS and

develop the required tables and graphs required to detect interactions in the sixth step of

IRIS. However, the tool stops at this point and does not provide any support for the sixth

step of IRIS. The reason for that was the reliance on the developer to look at the correct

figures and tables and use the interaction scenarios to decide if the two requirements

under investigation are interacting. Future plans include the development of a support

system to perform the sixth step in DOORS using IRIS-TS. The support will display the

correct tables and figures for the two requirements under investigation and choose and

display the set of interaction scenarios that are appropriate and can be used with the two

requirements being investigated.

Another future improvement of IRIS-TS is to allow the developer to add plug-ins easily

through a special window interface and then add these plug-ins automatically to all steps

being executed by IRIS-TS.

201

REFERENCES

[1] J. 0. Palmer and N. A. Fields, "An Integrated Environment for Requirements

Engineering," IEEE Software, vol. 9, pp. 80-85, 1992.

[2] I. Bray, An introduction to requirements engineering. Harlow: Addison-Wesley,

2002.

[3] J. A. Goguen and M. Jirotka, Requirements engineering: social and technical

issues. London: Academic Press, 1994.

[4] E. Hull, K. Jackson, and J. Dick, Requirements engineering. London: Springer,

2002.

[5] I. Sommerville and P. Sawyer, Requirements engineering: a good practice guide.

Chichester, Eng. ; New York: Wiley, 1999.

[6] U. Nikula, J. Sajaniemi, and H. Kalviainen, "A State-of-the-Practice Survey on

Requirements Engineering in Small- and Medium-Sized Enterprises," TBRC

Research Report 1, Telecom Business Research Center Lappeenranta,

Lappeenranta University of Technology. 2000.

[7] C. McPhee and A. Eberlein, "Requirements engineering for time-to-market

projects," Ninth Annual IEEE International Conference and Workshop on the

Engineering of Computer-Based Systems, pp. 17-24, 2002.

[8] K. E. Emam and A. Birk, "Validating the ISO/IEC 15504 Measure of Software

Requirements Analysis Process Capability," IEEE Transactions on Software

Engineering, vol. 26, pp. 541-566, 2000.

202

[9] L. Jiang, A. Eberlein, and B. H. Far, "A Methodology for-RE Process

Development," 11th IEEE International Conference and Workshop on the

Engineering of Computer-Based Systems (ECBS), Czech Republic, pp. 263-272,

24-27 May 2004.

[10] M. Shehata, A. Eberlein, and J. Hoover, "Requirements Reuse and Feature

Interaction Management," 15th International Conference on Software & Systems

Engineering and their Applications (ICSSEA'02), Paris, December 3-5, 2002.

[11] W. N. Robinson, S. D. Pawlowski, and V. Volkov, "Requirements interaction

management," ACM Computing Surveys (CSUR), vol. 35, pp. 132-190, June

2003.

[12] N. G. Leveson, Safeware, System Safety, and Computers: Addison-Wesley Pub.

Co. Inc., 1995.

[13] P. Gibson, "Feature requirements models: Understanding interactions," in

Featutre interactions in telecommunication networks IV, P. Dini, R. Boutaba, and

L. Logrippo, Eds. Amsterdam: lOS press, June 1997, pp. 46-60.

[14] B. Boehm, P. Bose, F. Horowitz, and M. J. Lee, "Software requirements

negotiation and renegotiation aids: a theory-W based spiral approach," ICSE-1 7

Workshop on Formal Methods Application in Software Engineering Practice, pp.

243-253, 1995.

[15] B. Boehm and H. In, "Identifying quality-requirement conflicts," Proceedings of

the Second International Conference on Requirements Engineering, Los Alamitos,

CA, USA, pp. 218-228,1996.

203

[16] J. Ellsberger, A. Sarma, and D. Hogrefe, SDL :formal object-oriented

language for communicating systems, 2. ed. London: Prentice Hall, 1997.

[17] M. Heisel and J. Souquières., "A heuristic algorithm to detect feature interactions

in requirements.," in Language Constructs for Describing Features, S. Gilmore

and M. Ryan, Eds.: Springer-Verlag London Ltd, 2000/2001, pp. 143-162.

[18] M. Heisel and J. Souquières., "Detecting Feature Interaction - A heuristic

approach," First FIREworks Workshop, GenTnany, pp. 30-48, May 1998.

[19] M. Kolberg, E. Magill, D. Marples, and S. Reiff-Marganiec, "Second Feature

Interaction Contest," in Feature Interactions in Telecommunications and Software

Systems, M. H. Calder and E. H. Magill, Eds.: lOS Press, 2000, pp. 293-3 10.

[20] E. J. Cameron, N. D. Griffeth, Y.-J. Ling, M. E. Nilson, W. K. Schnure, and H.

Velthuijsen, "A feature interaction benchmark for IN and beyond," Proceedings of

2nd International Workshop on Feature Interactions in Telecommunications

Software Systems, Amsterdam, Netherlands, pp. 1-23, 1994.

[21] M. Kolberg, E. H. Magill, and M. Wilson, "Compatibility Issues between

Services Supporting Networked Appliances," IEEE Communications Magazine,

vol. 41, pp. 136 - 147, 2003.

[22] S. Reiff-Marganiec and K. J. Turner, "Feature Interaction in Policies," Computer

Networks, vol. 45, pp. 569-584, March 2004.

[23] Telelogic DOORS, http://www.telelogic.comlproducts/doorsers/doors/, Last

Viewed On May 21, 2005

204

[24] N. Griffeth, R. Blumenthal, J.-C. Gregoire, and T. Ohta, "Feature Interaction

Detection Contest of the Fifth International Workshop on Feature Interactions,"

Computer Networks, vol. 32, pp. 487-510, 2000.

[25] N. Griffeth and Y.-J. Lin, Feature Interactions in Telecommunications Systems.

St. Petersburg, Florida, USA: lOS Press Inc., 1992.

[26] L. G. Bouma, H. Velthuijsen, and IEEE Communications Society, Feature

interactions in telecommunications systems. Amsterdam: lOS Press, 1994.

[27] K. E. Cheng and T. Ohta, Feature Interactions in Telecomunications III. Kyoto,

Japan: lOS Press Inc., 1995.

[28] K. Kimbler and L. G. Bouma, Feature Interactions in Telecommunications and

Software Systems V. Lund, Sweden: lOS Press, 1998.

[29] M. Calder and E. Magill, Feature Interactions in Telecommunications and

Software Systems VI. Glasgow, Scotland: lOS Press Inc., 2000.

[30] D. Amyot, Feature Interactions in Telecommunications and Software Systems

VII. Ottawa, Canada: lOS Press Inc, 2003.

[31] P. Dini, R. Boutaba, and L. Logrippo, Feature Interactions in

Telecommunications Networks. Montreal, Canada: lOS Press Inc,, 1997.

[32] IEEE Digital Library, http://www.ieee.org, Last Viewed On May 21, 2005

[33] ACM Digital Library, http://www.acm.org, Last Viewed On May 21, 2005

[34] CITESEER Digital Library, http://www.citeseer.com, Last Viewed On May 21,

2005

205

[35] D. Amyot and L. Logrippo, "Directions in Feature Interaction Research," in

Computer Networks, Volume 45, Issue 5: ElseVier Sceince Direct, pp. 563-685,

August 2004.

[36] M. Calder, M. Kolberg, E. H. Magill, and S. Reiff-Marganiec, "Feature

interaction: a critical review and considered forecast," Computer Networks, vol.

41, pp. 115-41,2003.

[37] D. 0. Keck and P. J. Kuehn, "The feature and service interaction problem in

telecommunications systems: a survey," IEEE Transactions on Software

Engineering, vol. 24, pp. 779 - 796, October 1998.

[38] Y. Wakahara, M. Fujioka, H. Kikuta, H. Yagi, and S. I. Sakai, "A Method for

Detecting Service Interactions," IEEE Communications, vol. 31, pp. 32-37,

August 1993.

[39] J. Mierop, S. Tax, and R. Janmaat, "Service Interaction in an Object-Oriented

Environment," IEEE Communications, vol. 31, pp. 46-51, August 1993.

[40] K. Kimbler, E. K.uisch, and J. Muller, "Feature Interaction Among Pan-European

Services," in Feature Interactions in Telecommunications Systems, L. G. Bouma

and H. Velthuijsen, Eds. Amsterdam: lOS Press, May 1994, pp. 73-85.

[41] D. D. Dankel, M. Schmalz, W. Walker, K. Nielsen, L. Muzzi, and D. Rhodes,

"An Architecture for Defining Features and Exploring Interactions," in Feature

Interactions in Telecommunications Systems, L. G. Bourna and H. Velthuijsen,

Eds. Amsterdam: lOS Press, May 1994, pp. 258-271.

[42] E. Kuisch, R. Janmaat, H. Mulder, and I. Keesmaat, "A Practical Approach to

Service Interactions," IEEE Communications, vol. 31, pp. 24-31, August 1993.

206

[43] D. 0. Keck, "A Tool for the Identification of Interaction-Prone Call

Scenarios," Proceedings of the 5th International Workshop on Feature

Interactions in Telecommunications and Software Systems, pp. 276-290, 1998.

[44] K. Kimbler and D. Sobirk, "Use Case Driven Analysis of Feature Interactions," in

Feature Interactions in Telecommunications Systems, L. G. Bouma and H.

Velthuijsen, Eds. Amsterdam: lOS Press, May 1994, pp. 167-177.

[45] I. Sommerville, Software engineering, 6th ed. Harlow, England; New York:

Addison-Wesley, 2000.

[46] L. Doldi and L. Doldi, Validation of Telecom Systems with SDL: John Wiley &

Sons, June 2003.

[47] P. H. J. V. Eijk, C. A. Vissers, and M. Diaz, The Formal Description Technique

Lotos: Results of the Esprit/Sedos Project: North-Holland, April 1989.

[48] J. D. Hay and J. M. Atlee, "Composing Features and Resolving Interactions,"

A CM International Symposium on the Foundations of Software Engineering

(FSE), pp. 110-119, November 2000.

[49] K. Braithwaite and J. Atlee, "Towards Automated Detection of Feature

Interactions," in Feature Interactions in Telecommunications Systems: 105 press,

1994, pp. 36-59.

[50] B. Kelly, M. Crowther, J. King, R. Masson, and J. DeLapeyre, "Service

Validation and Testing," in Feature Interactions in Telecommunications Systems

III, K. E. Cheng and T. Ohta, Eds. Amsterdam: lOS Press, October 1995, pp.

173-184.

207

[51] J. Bredereke, "Families of Formal Requirements in Telephone Switching," in

Feature Interactions in Telecommunication Networks VI, M. H. Calder and E. H.

Magill, Eds. Amsterdam: lOS press, May 2000, pp. 257-273.

[52] P. Zave, "Architectural solutions to feature-interaction problems in

telecommunications," Proceedings of 5th International Workshop on Feature

Interactions in Telecommunications Software Systems, 29 Sept.-1 Oct. 1998,

Lund, Sweden, pp. 10-22, 1998.

[53] P. Zave and M. Jackson, "A Component-Based Approach to Telecommunication

Software," IEEE Software, vol. 15, pp. 70--78, 1998.

[54] P. Zave and M. Jackson, "New feature interactions in mobile and multimedia

telecommunication services," in Feature Interactions in Telecommunications

andSoftware Systems VI, M. Calder and B. Magill, Eds. Amsterdam: lOS press,

May 2000., pp. 51-66.

[55] P. Zave and M. Jackson, "Distributed feature composition: A virtual architecture

for telecommunication services," IEEE Transactions on Software Engineering

XXIV, vol. 10, pp. 831-847, October 1998.

[56] Y. Iraqi and M. Erradi, "An experiment for the processing of feature interactions

within an object-oriented environment," in Feature Interactions in

Telecommunication Networks IV, P. Dini, R. Boutaba, and L. Logrippo, Eds.

Amsterdam: lOS Press, June 1997, pp. 298-312.

[57] C. Prehofer, "An object-oriented approach to feature interaction," in Feature

Interactions in Telecommunication Networks IV, P. Dini, R. Boutaba, and L.

Logrippo, Eds. Amsterdam: lOS Press, June 1997, pp. 313-325.

208

[58] G. Utas, "A pattern language of feature interactions," in Feature Interactions

in Telecommunications and Software Systems V, K. Kimbler and L. G. Bouma,

Eds. Amsterdam: lOS Press, September 1998, pp. 98-114.

[59] L. Blair and J. Pang, "Aspect-Oriented Solutions to Feature Interaction Concerns

using AspectJ," in Feature Interactions in Telecommunications and Software

Systems VII, D. Amyot and L. Logrippo, Eds. Amestrdarn: lOS Press, 2003, pp.

87-104.

[60] D. Amyot, L. Charfi, N. Gorse, T. Gray, L. Logrippo, J. Sincennes, B. Stepien,

and T. Ware, "Feature Description and Feature Interaction Analysis with Use

Case Maps and LOTOS," in Feature Interactions in Telecommunications and

Software Systems VI, M. Calder and E. Magill, Eds. Amestrdam: lOS Press, 2000,

pp. 274-289.

[61] C. Prehofer, "Plug-and-Play Composition of Features and Feature Interactions

with Statechart Diagrams," in Feature Interactions in Telecommunications and

Software Systems VII, D. Amyot and L. Logrippo, Eds. Amsterdam: lOS Press,

2003, pp. 43-58.

[62] K. Berkani, R. Cave, S. Coudert, F. Klay, P. LeGal!, F. Ouabdesselam, and J.-L.

Richier, "An Environment for Interactive Service Specification," in Feature

Interactions in Telecommunications and Software Systems VII, D. Arnyot and L.

Logrippo, Eds. Arnestrdam: lOS Press, 2003, pp. 25-41.

209

[63] A. Metzger and C. Webel, "Feature Interaction Detection in Building Control

Systems by Means of a Formal Product Model," in Feature Interactions in

Telecommunications and Software Systems VII, D. Amyot and L. Logrippo, Eds.

Amsterdam: lOS Press, 2003, pp. 105-122.

[64] A. Metzger, "Feature interactions in embedded control systems," Computer

Networks, vol. 45, pp. 625-44, 2004.

[65] K. J. Turner, "Formalising the Chisel Feature Notation," in Feature Interactions

in Telecommunication Networks VI, M. H. Calder and E. H. Magill, Eds.

Amsterdam: lOS press, May 2000, pp. 241-256.

[66] K. Turner, "Modelling SIP services using CRESS," Formal Techniques for

Networked and Distributed Systems (FORTE XV), Berlin, Germany, pp. 162-

177, Nov. 2002.

[67] K. J. Turner, "Representing New Voice Services and Their Features," in Feature

Interactions in Telecommunications and Software Systems VII, D. Amyot and L.

Logrippo, Eds. Amsterdam: 105 Press, 2003, pp. 123-140.

[68] S. Reiff-Marganiec and K. J. Turner, "Feature interaction in policies," Computer

Networks, vol. 45, pp. 569-84, 2004.

[69] P. Zave, H. H. Goguen, and T. M. Smith, "Component coordination: a

telecommunication case study," Computer Networks Journal, Elsevier Science

Publishers, vol. 45, pp. 645-664, 2004.

[70] P. Zave, "Ideal Address Translation: Principles, Properties, and Applications," in

Feature Interactions in Telecommunications and Software Systems VII, D. Amyot

and L. Logrippo, Eds. Amsterdam: lOS Press, 2003, pp. 257-274.

210

[71] J. H. Choi, H. S. Kim, W. J. Lee, and Y. R. Kwon, "A Petri-Nets Based

Approach for Detecting Feature Interactions in Telecommunications Services,"

12th Int'l Conference on Computer Communication (ICCC), Seoul, pp. 596-601,

August 1995.

[72] J. Bredereke, "Detection of feature interactions in intelligent networks by

verification," Software-Concepts and Tools, vol. 17, pp. 121-39, 1996.

[73] J. Bredereke, "Formal criteria for feature interactions in telecommunications

systems," The IMP TC6 Conference on Intelligent Networks and New

Technologies, London, UK, pp. 68-83, 1996.

[74] C. Klein, C. Prehofer, and B. Rumpe, "Feature Specification and Refinement with

State Transition Diagrams," in Feature Interactions in Telecommunications

Networks and Distributed Systems IV, P. Dini, Ed. Amestrdam: lOS Press, 1997,

pp. 284-297.

[75] M. Faci and L. Logrippo, "Specifying features and analysing their interactions in

a LOTOS environment," in Feature Interactions in Telecommuniactions Systems,

L. G. Bouma and H. Velthuijsen, Eds. Amestrdam: lOS Press, 1994, pp. 136-151.

[76] J. Blom, B. Jonsson, and L. Kempe, "Using temporal logic for modular

specification of telephone services," Proceedings of 2nd International Workshop

on Feature Interactions in Telecommunications Software Systems, pp. 197-213,

1994.

[77] J. P. Gibson, "Towards a feature interaction algebra," Proceedings of 5th

International Workshop on Feature Interactions in Telecommunications Software

Systems, 29 Sept.-1 Oct. 1998, Lund, Sweden, pp. 217-31, 1998.

211

[78] P. Gibson, G. Hamilton, and D. Wry, "A taxonomy for triggered interactions

using fair object semantics ,," in Feature Interactions In Telecommunications and

Software Systems VI, M. Calder and E. Magill, Eds. Amestrdam: lOS Press, 2000,

pp. 193-210.

[79] A. Felty and K. Namjoshi, "Feature specification and automatic conflict

detection," in Feature Interactions in Telecommunications and Software Systems

VI, M. Calder, B. Magill, Eds. Amsterdam: lOS Press, May 2000, pp. 179-192.

[80] S. M. Rochefort and H. J. Hoover, "An exercise in using constructive proof

systems to address feature interactions in telephony," in Feature Interactions in

Telecommunication Networks IV, P. Dini, R. Boutaba, and L. Logrippo, Eds.

AMestrdam: lOS Press, June 1997, pp. 329-341.

[81] M. Frappier, A. Miii, and J. Deshamais, "Detecting feature interactions in

relational specifications," in Feature Interactions in Telecommunication Networks

IV, P. Dini, R. Boutaba, and L. Logrippo, Eds. Amestrdam: lOS Press, June 1997,

pp. 123-137.

[82] M. Bostrom and M. Engstedt, "Feature interaction detection and resolution in the

Delphi framework," in Feature Interactions in Telecommunications Systems III,

K. B. Cheng and T. Ohta, Eds. Amestrdam: lOS Press, October 1995, pp. 157-

172.

[83] M. Calder and A. Miller, "Generalising Feature Interactions in Email," in Feature

Interactions in Telecommunications and Software Systems VII, D. Amyot and L.

Logrippo, Eds. Amestrdam: lOS Press, 2003, pp. 187-204.

212

[84] A. Lee, "Formal Specification—A Key to Service Interactions Analysis,"

Eight Conference on Software Engineering for Telecommunication Systems and

Services (SETSS 1992), pp. 62-66, March 1992.

[85] A. Y. H. Lee, "Formal Specification and Analysis of Intelligent Network Services

and their Interaction." Australia: Ph.D. Thesis, University of Queensland,

December 1992.

[86] M. Butler, "Feature interaction analysis using Z," Technical Report, Broadcom

Eireann Research, Dublin, 1993.

[87] R. J. Hall, "Feature combination and interaction detection via foreground/

background models," Computer Networks Journal, Elsevier Science Publishers,

vol. 32, pp. 449--469, 2000.

[88] M. Plath and M. Ryan, "Defining features for CSP:Reflection on the feature

interaction contest," in Language construct for defining featuris, S. Gilmore and

M. Ryan, Eds.: Springer verlag, 2000, pp. 202-216.

[89] G. Bruns, P. Mataga, and I. Sutherland, "features as service transformers," in

feature interactions in telecommunications and software systems, K. Kimbler and

W. Bouma, Eds. Amsterdam: lOS press, September 1998, pp. 85-97.

[90] J. Blom, "Formalisation of requirements with emphasis on feature interaction

detection," in Feature Interactions in Telecommunication Networks IV P. Dini, R.

Boutaba, and L. Logrippo, Eds. Amestrdam: lOS Press, June 1997, pp. 61-77.

213

[91] P. K. Au and J. M. Atlee, "Evaluation of a sate-based model of feature

interactions," in Feature Interactions in Telecommunication Networks IV, P. Dini,

R. Boutaba, L. Logrippo, Eds. Amestrdam: lOS Press, June 1997, pp. 153-167.

[92] J. Bergstra and W. Bouma, "Models for feature descriptions and interactions," in

Feature Interactions in Telecommunication Networks IV, P. Dini, R. Boutaba, and

L. M. S. Logrippo, Eds. Amestrdam: lOS Press, 1997, pp. 31--45.

[93] T. F. LaPorta, D. Lee, Y.-J. Lin, and M. Yannakakis, "Protocol feature

interactions," FORTE-PSTV, pp. 59-74, 1998.

[94] A. Khoumsi, "Detection and resolution of Interactions between Services of the

telephone Network," in Featutre interactions in telecommunication networks IV,

P. Dini, R. Boutaba, and L. Logrippo, Eds. Amestrdam: lOS press, June 1997, pp.

78-92.

[95] A. Khoumsi and R. J. Bevelo, "A detection method developed after a thorough

study of the contest held in 1998," in Feature Interactions in Telecommunications

and Software Systems VI, M. Calder and B. Magill, Eds. Amsterdam: lOS press,

May 2000, pp. 229-240.

[96] Y. Inoue, K. Takami, and T. Ohta, "Method for Supporting Detection and

Elimination of Feature Interaction in a Telecommunication System," Int'l

Workshop Feature Interactions in Telecommunications Software Systems, pp. 61-

81, December 1992.

[97] Y. Inoue, K. Takarni, and T. Ohta, "Automatic Detection of Service Interactions

in Telecommunications Service Specifications," IEEE Int'l Conference on

Communications (ICC), New Orleans, pp. 1835-1840, May 1994.

214

[98] Y. Harada, Y. Hirakawa, and T. Takenaka, "A Design Support Method for

Telecommunication Service Interactions," GLOBECOM '91, Phoenix, Ariz., pp.

1661-1666, December 1991.

[99] Y. Harada, Y. Hirakawa, T. Takenaka, and N. Terashima, "A Conflict Detection

Support Method for Telecommunication Service Descriptions," IEICE Trans.

Comm., vol. E75-B, pp. 986-997, October 1992.

[100] M. Nakamura, Y. Kakuda, and T. Kikuno, "Feature interaction detection using

permutation symmetry," in Feature Interactions in Telecommunications and

Software Systems V, K. Kimbler and L. G. Bouma, Eds. Amestrdam: lOS Press,

September 1998, pp. 187-201.

[101] J. G. Thistle, R. P. Maihame, and H.-H. Hoang, "Feature interaction modelling,

detection and resolution: A supervisory control approach," in Feature Interactions

in Telecommunication Networks IV, P. Dini, R. Boutaba, and L. Logrippo, Eds.

Amsterdam: lOS Press, June 1997, pp. 93-107.

[102] K. Y. Chan and G. v. Bochmann, "Methods for Designing SIP Features in SDL

with Fewer Feature Interactions," in Feature Interactions in Telecomunications

and Software Systems VII, D. Amyot and L. Logrippo, Eds. Amestrdam: lOS

Press, 2003, pp. 59-76.

[103] B. Mitchell, R. Thompson, and C. Jervis, "Phase Automaton for Requirement

Scenarios," in Feature Interactions in Telecommunications and Software Systems

VII, D. Amyot and L. Logrippo, Eds. Amestrdam: lOS Press, 2003, pp. 77-84.

215,

[104] S. Kawauchi and T. Ohta, "Mechanism for 3-way Feature Interactions

Occurrence and a Detection System Based on The Mechanism," in Feature

Interactions in Telecommunications and Software Systems, D. Amyot and L.

Logrippo, Eds. Amestrdam: lOS Press, 2003, pp. 313-328.

[105] A. D. Marco and F. Khendek, "eSERL: Feature Interaction Management in

Parlay/OSA using Composition Constraints and Configuration Rules," in Feature

Interactions in Telecomunications and Software Systems VII, D. Amyot and L.

Logrippo, Eds. Amestrdam: lOS Press, 2003, pp. 247-254.

[106] I. Aggoun and P. Combes, "Observers in the SCE and the SEE to Detect and

Resolve Service Interactions," in Feature Interactions in Telecommunication

Networks IV, P. Dini, R. Boutaba, and L. Logrippo, Eds. Amsterdam: lOS Press,

June 1997, pp. 198-212.

[107] F. J. Lin and Y. J. Lin, "A Building Block Approach to Detecting and Resolving

Feature Interactions," in Feature Interactions in Telecommunications Systems, L.

G. Bouma and H. Velthuijsen, Eds. Amsterdam: lOS Press, May 1994, pp. 186-

191.

[108] M. Nakamura, P. Leelaprute, K. Matsumoto, and T. Kikuno, "Detecting Script-to-

Script Interactions in Call Processing Language," in Feature Interactions in

Telecommunications and Software Systems VII, D. Amyot, Ed. Amestrdam: 105

Press, 2003, pp. 215-230.

[109] M. Nakamura, P. Leelaprute, K.-i. Matsumoto, and T. Kikuno, "On detecting

feature interactions in the programmable service environment of Internet

telephony," Computer Networks, vol. 45, pp. 605-624, 2004.

216

[110] P. Combes and S. Pickin, "Forn-ialisation of a user view of network and

services for feature interaction detection," Proceedings of 2nd International

Workshop on Feature Interactions in Telecommunications Software Systems,

Amsterdam, Netherlands, pp. 120-35, 1994.

[111] M. Plath and M. Ryan, "Plug-and-play features," Proceedings of 5th International

Workshop on Feature Interactions in Telecommunications Software Systems,

Amsterdam, Netherlands, Lund, Sweden, pp. 150-64, 1998.

[112] M. Calder and A. Miller, "Using SPIN for feature interaction analysis - a case

study," Model Checking Software. 8th International SPIN Workshop, 19-20 May

2001, Toronto, Ont., Canada, pp. 143-62, 2001.

[113] B. Stepien and L. Logrippo, "Representing and verifying intentions in telephony

features using abstract data types," in Feature Interactions in Telecommunications

Systems III, K. E. Cheng and T. Ohta, Eds. Amestrdam: lOS Press, October 1995,

pp. 141-155.

[114] C. Capellmann, P. Combes, J. Petterson, B. Renard, and J. L. Ruiz, "Consistent

interaction detection - a comprehensive approach integrated with service

creation," in Feature Interactions in Telecommunication Networks IV, P. Dini, R.

Boutaba, and L. Logrippo, Eds. Amestrdam: lOS Press, June 1997, pp. 183-197.

[115] J. Kamoun and L. Logrippo, "Goal-oriented feature interaction detection in the

intelligent network model," in Feature Interactions in Telecommunications and

Software Systems T' K. Kimbler and L. G. Bouma, Eds. Amestrdam: lOS Press,

September 1998, pp. 172-186.

217

[116] L. Du Bousquet, F. Ouabdesselam, J.-L. Richier, and N. Zuanon, "Feature

interaction detection using a synchronous approach and testing," Computer

Networks, vol. 32, pp. 419-31, 2000.

[117] L. d. Bousquet, F. Ouabdesselam, J.-L. Richier, and N. Zuanon, "Incremental

feature validation: a synchronous point of view," in Feature Interactions in

Telecommunications and Software Systems V, K. Kimbler and L. G. Bouma, Eds.

Amestrdam: lOS Press, Septmber 1998, pp. 262-275.

[118] D. P. Guelev, M. D. Ryan, and P. Y. Schobbens, "Feature Integration as

Substitution," in Feature Interactions in Telecommunications and Software

Systems, D. Amyot and L. Logrippo, Eds. Amsterdam: lOS Press, 2003, pp. 275-

294.

[119] M. Thomas, "Modelling and analysing user views of telecommunications

services," in Feature Interactions in Telecommunication Networks IV, P. Dini, R.

Boutaba, and L. Logrippo, Eds. Amestrdam: lOS Press, June 1997, pp. 168-182.

[120] W. Bouma, W. Levelt, A. Melisse, K. Middelburg, and L. Verhaard,

"Formalization of Properties for Feature Interaction Detection: Experiece in a

Real-Life Situation," Second Int'l Conference on Intelligence in Broadband

Services and Networks, pp. 393-405, Septmber 1994.

[121] A. Gammelgaard and J. E. Kristensen, "Interaction Detection, A Logical

Approach," in Feature Interactions in Telecommunications Systems, L. G. Bouma

and H. Velthuijsen, Eds. Amestrdarn: 105 Press, May 1994, pp. 178-196.

[122] P. Ladkin, "The Risks Digest," ACM SIGSOFT Software Engineering Notes, vol.

15, 1995.

218

[123] J. Mylopoulos, L. Chung, and B. Nixon, "Representing and Using Non-

Functional Requirements: A process-Oriented Approach," IEEE Transactions on

Software Engineering, Special Issue on Knowledge Representation and

Reasoning in Software Development, vol. 18, pp. 483-497., June 1992.

[124] A. Finkelstein, J. Kramer, B. Nuseibeh, L. Finkelstein, and M. Goedicke,

"Viewpoints: a framework for integrating multiple perspectives in system

development," International Journal of Software Engineering and Knowledge

Engineering, vol. 2, pp. 31-5 8, 1992.

[125] J. Mylopoulos, L. Chung, and B. Nixon, "Representing and using nonfunctional

requirements: a process-oriented approach," IEEE Transactions on Software

Engineering, vol. 18, pp. 483-497, 1992.

[126] J. J. Poorman, Data flow diagrams: Unraveling the mystery: The Project Office,

1988.

[127] R. Grosu, C. Klein, B. Rumpe, and M. Broy, "State Transition Diagrams," TUM-

19630, 1996.

[128] A. V. Lamsweerde and B. Letier, "Handling obstacles in goal-oriented

requirements engineering," IEEE Trans. Software Engineering, vol. 26, pp. 978-

1005,2000.

[129] J. Beck, A survey ofprogram slicing for software engineering: Research Institute

for Computing and Information Systems, University of Houston--Clear Lake

National Aeronautics and Space Administration National Technical Information

Service, 1993.

219

[130] S. Fickas, "A knowledge-based approach to specification acquisition and

construction," CIS-TR-85-1 3. University of Oregon,, Eugene, OR. 1985.

[131] S. Fickas and J. Anderson, "A proposed perspective shift: Viewing specification

design as a planning problem," Fifth International Workshop on Software

Specification and Design, Los Alamitos, CA, pp. 177-184,1989.

[132] W. N. Robinson, "Automated negotiated design integration: Formal

representations and algorithms for collaborative design," University of Oregon,

Eugene, OR. 1993.

[133] K. L. Heninger, "Specifying software requirements for complex systems: New

techniques and their application," IEEE Trans. Software Engineering, pp. 2-13,

1980.

[134] E. Cameron, "A Feature Interaction Benchmark for IN and Beyond," E.J.

Cameron et al., A Feature Interaction Benchmark for IN and Beyond, in Feature

Interactions in Telecommunications Systems, 10S press, pp. 1-23, 1994.

[135] P. Gibson, G. Hamilton, and D. Mery, "A Taxonomy for Triggered Interactions

using Fair Object Semantics," in Feature Interactions in Telecommunications and

Software Systems, E. Magill, Ed.: lOS Press, 2000, pp. 193-209.

[136] N. Gorse, "The Feature Interaction Problem: Automated filtering of Incoherences

& Generation of Validatation Test suites at the Design Stage," University of

Ottawa, Ottawa,Ontario,Canada, 2001.

[137] M. Frappier, A. Mili, and J. Desharnais, "Defining and detecting feature

interactions," Algorithmic Languages and Calculi, pp. 212-239, 1997.

220

[138] M. Shehata, A. Eberlein, and A. 0. Fapojuwo, "Feature Interactions between

Networked Smart Home Appliances," QSSE, 4th ASERC Workshop on

Quantitative and Soft Computing Based Software Engineering, Banff, Alberta,

Canada, pp. 50-54, February 16-17 2004.

[139] M. Shehata and A. Eberlein, "Requirements interaction detection using semi-

formal methods," Proceedings 10th IEEE International Conference and Workshop

on the Engineering of Computer-Based Systems. ECBS 2003, 7-10 April 2003,

Huntsville, AL, USA, pp. 224-232, 2003.

[140] T. F. Bown, "The Feature Interaction Problem in Telecommunication Systems,"

the 7th SETS Conference, pp. 59-62, 1989.

[141] R. J. Hall, "Submission to the Second feature interaction contest," Technical

report, AT&T Labs Research 2000.

[142] EL Samborski, "Submission to the second feature interaction contest," technical

report, Loria labs 2000.

[143] J. Rumbaugh, I. Jacobson, and G. Booch, The Unified Modeling Language

Reference Manual: Addison-Wesley Professional, 2004.

[144] T. Pender, UML Bible: Wiley Inc., 2003.

[145] M. Fowler, UML Distilled: A Brief Guide to the Standard Object Modeling

Language: Addison-Wesley Professional, 2003.

[146] S. R. Schach, Object-oriented and classical software engineering, 5th ed. Boston:

McGraw-Hill, 2001.

[147] D. Amyot, "Use Case Maps as a Feature Description Notation," in FIREworks

Feature Constructs Workshop. Glasgow, Scotland, UK, May 2000, pp. 27-44.

221

[148] D. Amyot, R. Buhr, T. Gray, and L. Logrippo, "Use case maps for the capture

and validation of distributed system requirements," RE'99: Fourth IEEE

International Symposium on Requirements Engineering, Ireland, pp. 44-53, June

1999.

[149] R. J. A. Buhr and R. S. Casselman, Use Case Maps for Object-Oriented Systems:

Prentice Hall, 1995.

[150] M. Heisel and J. Souquières., "A heuristic algorithm to detect feature interactions

in requirements.," in Language Constructs for Describing Features, M. Ryan,

Ed.: Springer-Verlag London Ltd, 2001, pp. 143-162.

[151] L. Harte and R. Flood, Introduction to Public Switched Telephone Networks

(PSTN), Local Loop, Switching, DSL, ATM, SS7, andAlN: Althos Publishing,

2003.

[152] M. Plath and M. D. Ryan, "Entry for FIW'OO Feature Interaction Contest,"

Technical Report, University of Birmingham 2000.

[153] M. Nakamura, T. Ding, J. Sincennes, X. Lu, and L. Logrippo, "Submission to the

second feature interaction contest," Technical report, University of Ottawa 2000.

[154] H. L. Lutfiyya, J. Moffett, and F. Garcia, Proceedings of 4th IEEE International

Workshop on Policies for Distributed Systems and Networks: IEEE Computer

Society, Italy, 2003.

[155] J. B. Michael, J. Lobo, and N. Dulay, Proceedings of the 3rd International

Workshop on Policies for Distributed Systems and Networks: IEEE Computer

Society, Los Alamitos, California, USA, 2002.

222

[156] M. Slornan, J. Lobo, and E. C. Lupu, Proceedings of the 2nd international

workshop on Policies for Distributed Systems and Networks: Springer Verlag

Lecture Notes in Computer Science, 2001.

[157] D. Verma, M. Devarakonda, E. Lupu, and M. Kohli, Proceedings of the 5th IEEE

International Workshop on Policies for Distributed Systems and Networks: IEEE

Computer Society, New York, USA, 2004.

[158] M. Amer, A. Karmouch, T. Gray, and S. Mankovskii, "Feature interaction

resolution using fuzzy policies," in Feature Interactions in Telecommunications

and Software Systems VI, M. Calder and E. B. Magill, Eds. Amsterdam: lOS

Press, Inc., 2000, pp. 94-112.

[159] E. C. Lupu and M. Sloman, "Conflicts in policy-based distributed systems

management," IEEE Transactions on Software Engineering, vol. 25(6), pp. 852-

869,1999.

[160] N. Damianou, N. Dulay, B. Lupu, and M. Slornan, "Ponder: A language

specifying security and managements policies for distributed systems," Technical

Report, Imperial College, London 2000.

[161] G. Yee and L. Korba, "Feature interactions in policy driven management," in

Feature Interactions in Telecommunications and Software Systems VII, D. Amyot

and L. Logrippo, Eds.: lOS Press, 2003, pp. 231-238.

[162] A. D. Marco and F. Khendek, "eSERL: Feature interaction in Parlay/OSA using

composition constraints and configuration rules," in Feature Interactions in

Telecommunications and Software Systems VII, D. Amyot and L. Logrippo, Eds.

Amsterdam: lOS Press, June 2003, pp. 247-254.

223

[163] S. Reiff-Marganiec and K. J. Turner, "A policy architecture for enhancing and

controlling features," in Feature Interactions in Telecommunications and

Software Systems VII, D. Amyot and L. Logrippo, Eds. Amsterdam: lOS Press,

2003, pp. 239-246.

[164] 0. Hersent, J.-P. Petit, and D. Gurle, Beyond VoIP Protocols: Understanding

Voice Technology and Networking Techniques for IF Telephony: John Wiley &

Sons Canada, Ltd, 2005.

[165] M. Edge, B. Taylor, G. Dewsbury, and M. Groves, "The Potential for 'Smart

Home' systems in meeting the care needs of older persons and people with

disabilities," Seniors'Housing Update, vol. 10, pp. 6-7, 2000.

[166] J. M. M. Ferreira, T. Amaral, D. Santos, A. Agiannidis, and M. Edge, "The

Custodian Tool: Simple Design of Home Automation Systems for People with

Special Needs," EIB Scientific Conference, Munich, Germany, 2000.

[167] R. L. Smith, Smart House: The coming revolution in housing: GP Publishing Inc,

1988.

[168] D. Briere and P. Hurley, Smart homes for dummies: 2nd edition, Wiley Publishing

Inc, 2003.

224

APPENDIX A: PUBLICATIONS

1. Mohamed Shehata, Armin Eberlein, Abraham Fapojuwo, "Managing Policy

Interactions in KNX based Smart Homes", Submitted for Publication,

International Journal on Network and Computer Application, Elsevier Pub. Co.

2. Mohamed Shehata, Armin Eberlein, Abraham Fapojuwo, "Using Semi-Formal

Methods For Detecting Interactions Among Smart Homes Policies", in

Preparation for submission to the International Journal of Computer Networks,

Elsevier Pub. Co.

3. Mohamed Shehata, Armin Eberlein, Abraham Fapojuwo, AbdAllah Mohamed,

"A Taxonomy for Identifying Requirements Interactions in Software Systems", in

Preparation for submission to the International Journal of Requirements

Engineering, Elsevier Pub. Co.

4. AbdAllah Mohamed, Gunther Ruhe, Armin Eberlein, Mohamed Shehata, "A

Basis for Managing Attributed Objects Inconsistencies", in Preparation for

submission to the International Journal of Information and Software Technology,

Elsevier Pub. Co.

5. Mohamed Shehata, Armin Eberlein, Abraham Fapojuwo, " Investigating the

Problem of Feature Interactions in Product Families", 2" Annual Engineering

Graduate Students Conference, pp. 71,May 2-3 2005, University of Calgary,

Calgary, Alberta, Canada.

6. Mohamed Shehata, Armin Eberlein, Abraham Fapojuwo, "IRIS: A Semi Formal

Approach for Detecting Requirements Interactions", ECBS 2004, 11th IEEE

225

International Conference and Workshop on the Engineering of Computer

Based Systems, pp. 273-281, May 24-27 2004, Brno, Czech Republic

7. Mohamed Shehata, Li Jiang, Armin Eberlein, "Requirements Interaction

Detection Process Guide", CCECE 2004, IEEE Canadian Conference on

Electrical and Computer Engineering, pp. 1753-1756, May 2-5, 2004, Niagara

Falls, Ontario, Canada.

8. Mohamed Shehata, Armin Eberlein, Abraham Fapojuwo, "The Use of Semi-

Formal Methods for Detecting Requirements Interactions", SE 2004, The

TASTED International Conference on Software Engineering, pp.230-235,

February 17-19 2004, Innsbruck, Austria

9. Mohamed Shehata, Armin Eberlein, Abraham Fapojuwo, "Feature Interactions

between Networked Smart Home Appliances", QSSE 2004, 4th ASERC

Workshop on Quantitative and Soft Computing Based Software Engineering, pp.

50-54, February 16-17 2004, Banff, Alberta, Canada

10. Mohamed Shehata, Armin Eberlein, Abraham Fapojuwo, "Detecting

Requirements Interactions: A Three-Level Framework", ASE 2003, Proceedings

of the 18th IEEE Conference on Automated Software Engineering, pp. 352-355,

October 6-10, 2003, Montreal, Canada

11. Mohamed Shehata, Armin Eberlein, "Requirements Interaction Detection using

Semi-Formal Methods", ECBS 2003, 10th IEEE Symposium and Workshops on

Engineering of Computer Based Systems Huntsville Alabama, pp. 224-232, USA

April 7-11, 2003

226

12. Mohamed Shehata, Armin Eberlein, "Issues in Requirements Reuse and

Feature Interaction Management", ICSSEA 2002 - 15th International Conference

on Software Systems Engineering and their Applications. Paris, France, Vol. 1,

No. 3-5, pp. 1-7, December 3-5, 2002

13. Mohamed Shehata, Armin Eberlein, "Requirements Interaction Management: A

Multi-Level Framework", SEA 2002 - The 6th lASTED International Conference

on Software Engineering and Applications. MIT, USA, pp. 88-93, November 4-6,

2002

227

APPENDIX B: FULL RESULTS FROM CHAPTER 3 ON THE

REQUIREMENTS INTERACTION TAXONOMY

This appendix presents the rest of the proposed interaction taxonomy presented in

Chapter 3. The examples used in each set of interaction scenarios are taken from the same

domain to provide more understanding and consistency within a single domain.

B.I. Two Interacting System Axioms'

Scenario ID SCR1
Type of Interaction lwolnteractingSystemAxioms - RuleRulelnteractions - Override
Detection Guideline IF ((RI .Rule OVERRIDES R2.Rule)) THEN (RI is interacting with R2 under the ti interaction type)
Example • Rl(Security) 'The library page on the website shall be always be under secure logon for members only using

(X=usernamelpassword) technique"
• R2(Usability) "All website pages are accessible by no more than 2 clicks from the menu bar'
• Interaction: What happen if a user, who is not signed in, wants to go to the library page? In this case the security

requirement RI overrides R2 and redirects him to a sign in page. This means that the user, assuming he is a member,
needs several clicks to go to the library page.

Parameters Effect If X is changed to automatic IP detection and the secure logon is granted to specific IPs then the interaction is
eliminated as the user who tries to go to the library page is validated using his IP address. Of course if the user tries to
access the library from an unknown machine then he has to go through the username/password validation.

Scenario ID SCR2
Type of Interaction lwolnteractingSystemAxioms - Rule-Rulelnteractions - Negativelmpact
Detection Guideline IF ((RI .Rule NEGATIVELY_IMPACTS R2.Rule)) THEN (Ri is interacting with R2 under the 12 interaction type)
Example • RI (Assurance) 'There shall be an input acceptability checking mechanism X to validate the input data before the system

exhibits any response"
• R2(Performance) "The response time of the system should be as minimal as possible and at all times should be equal to

(Y=0 —3.0 seconds)"
• Interaction: What happens if the input acceptability mechanism X is set to a very complex mechanism? This will cause

the system response time to increase dramatically which negatively impacts R2.
Parameters Effect If the input acceptability mechanism X is set to a simple mechanism then the system response time is reduced and the

negative impact is small or can be neglected.

The examples of interaction scenarios in this category are taken from the web e-commerce system which
is a representative of the web domain

228

B.2. A System Axiom Interacting with a Dynamic Behaviour Requirement

A System Axio
Interacting with 1 st layer

A Dynamic Behavior
requirement

Actio•n
Interactions

Re- Re-
Prestate Next state

lnterati ons interactions

SRT
0

to

-

211(1 layer

SCR6

31(1 layer

SCR3 SCR4 SCRS 4111 layer

Scenario ID SCR3
Type of Interaction SystemAxiomlnteractinqWithDynamicBehaviourRequirement -> Rule-Actionlnteractions --> Override

IF ((R1 Rule OVERRIDES R2.Action)) THEN {R1 is interacting with R2 under the t3 interaction type) Detection Guideline
Example • Ri: "The max temperature of hot water from boiler is 45 degrees in order to keep the boiler in safe operation"

• R2: Increase the temperature of the hot water to (X=55) degrees in outlet (Y=washing machine) when the washing
machine starts operating"

• Interaction: Obviously the Rule of Ri will override the action of R2 and will not allow the increase of the temperature to
55 degrees

Parameters Effect If X is changed to be a less or equal to 45 degrees then the interaction is eliminated

Scenario ID SCR4

Type of Interaction SystemAxiomlnteractingWlthDynamicBehaviourRequirement - Rule-Actionlnteractions - Negativelmpact
IF ((Ri Action NEGATIVELY_IMPACTS R2.Rule)} THEN (Ri is interacting with R2 under the t4 interaction type) Detection Guideline

Example • RI "Executive floor calls are of highest priority"
• R2 "The lift is called by pressing the call button and it should arrive within (X=2min) minutes otherwise an alternative car i

assigned to that floor"
• Interaction: If there are calls from the executive floor then the arrival of the lift is delayed until executive floor calls are

served. Hence the rule of Ri has negatively affected the action of R2 by delaying the arrival of the lift
Parameters Effect If X is changed to longer wait period then the interaction can be reduced

Scenario ID SCR5
Type of Interaction SystemAxiomlnteractingWithDynamicBehaviourRequirement - Rule-PreStatelnteractions - PreStateBlocking

IF ((Ri Rule BLOCKS R2.PreState)} THEN (Ri is interacting with R2 under the t5 interaction type) Detection Guideline
Example • R1 (maintenance) "To avoid system problems, the lift is subjected to regular maintenance on monthly bases"

• R2(operation) "When lift is on standby at floor (X=K) with doors closed and receives call from floor K, it opens its doors"
• Interaction: what happens when there is a maintenance going on with the lift at floor K and someone calls the lift from

floor K? Obviously it will not open its doors because the power is disconnected during maintenance to prevent
accidents. Hence the rule of Ri has prevented and blocked the lift from being in standby which is prestate of R2

Parameters Effect If X has changed to be the parking level of the lift, then the user will not have access to call the lift from this level. Of
course he can still call lift from other levels but in such case the interaction is not prestate blocking between Ri and R2.

2 The examples of interaction scenarios in this category are taken from the lift system which is a
representative of the control domain

229

Scenario ID SCRB
Type of Interaction SystemAxiomlnteractingWithDynamicBehaviourRequirement -> Rule-NextStatelnteractions -' NextStateDelay

IF ((Ri Rule DELAYS R2.NextState)) THEN {R1 is interacting with R2 under the t6 interaction type Detection Guideline
Example • Ri (Operation) "Executive floor calls always has (X=highest priority)"

• R2 (Operation) "When the lift passes by floor K and there is a call from this floor, the lift will stop at floor K"
• Interaction: What happens when the lift is passing by floor K and there is a call from floor K but there is always 5 calls

from executive floors. In this case, R2 next state will not be reached which is to stop at floor K until all executive calls
are served. Hence the rule of Ri has delayed the next state of R2.

Parameters Effect What happens when there is continues calls from exeàutive floors? This means that the lift won't go to floor K which
means that there is a severe delay to go next state of R2. But if X is changed to be highest priorities for 5 calls then the
lift must serve regular floors then the severity of the interaction is reduced.

Scenario ID SCR7
Type of Interaction SystemAxiomlnteractingWithDynamicBehaviourRequirement - Rule•NextStatelnteractions - NextStateBlocking

IF ((Ri.Rule BLOCKS R2.NextState)) THEN {Ri is interacting with R2 under the t7 interaction type) Detection Guideline
Example • Ri "for a lift at floor K, The lift doqrs eventually must close after a maximum of (x=i minute)"

• R2 "When something blocks lift doors, the lift interrupts the process of closing the doors and reopens them"
• Interaction: if a user keeps blocking the lift doors with his leg then after a 1 minute the rule of At is enforced and

prevents R2 from being able to reach its next state which is "Doors opened"
Parameters Effect If X is changed to be 1 hour or unlimited time then there is no interaction

230

B.3. A System Axiom Interacting with a Resource'

® A System Axiom
interacting

with a Resource

Iltlayer

SO
Rule-Availability

Interactions

$10
Rule-

Performince
Interactions

511
Rule-Interface
Interactions

00

SCR1O SCR2O S CR21

2nd layer

3111 layer

CR17 SCR1O 0 1 layer

Scenario ID SCR17
Type of Interaction SystemAxiomlnteractingWithResource - Rule-Availabilitylnteractions - FailureOl Resource
Detection Guideline IF {(R1 Rule violates Resource.Avallability) AND (Ri .Rule LEADS_TO_FAILURE Resource.Availability)) THEN (Ri is

interacting with Resource under t17 interaction type)
Example • Ri "The website shall be able to handle (X=5 hits/sec)"

• Resource.Availability "The application server must be available for processing requests more than 99.9% during
each week"

• Interaction: If the website receives heavy load, say 100 hits/sec. at a single instance then this might cause a failure tc
the application server. This is due to the fact that the website was not designed to receive such amount of request. I
this occurred frequently then the rule of Ri has caused failure rate of application server to exceed its constraint statec
in resource availability.

Parameters Effect If X is increased to a reasonable number then the interaction is eliminated.

Scenario ID SCR18
Type of Interaction SystemAxiomlnteractingWithResource -' Rule-Availabilitylnteractions -' TakingOverResource
Detection Guideline IF ((Ri Rule violates Resource.Availability) AND (Ri Rule LEADS_TO_TAKING_OVER Resource.Availability)) THEN

{R1 is interacting with Resource under t18 interaction type I
Example • Ri 'The system shall use X database server to store and retrieve data"

• Resource.Availability "The database server must be available for processing requests more than 99.9% during each
week"

• Interaction: Assuming that the database server is an old one that can handle only few requests simultaneously. Every
time an application server sends a few requests to database server, the database server gets busy and can't handle
new requests. If there is more than one application server accessing this database server then it is often unavailable
for other application servers.

Parameters Effect If the database server X is set to a new and powerful one then it becomes more available to all application servers
and won't appear as being taken over by just one application server

The examples of interaction scenarios in this category are taken from the web e-commerce system which
is a representative of the web domain

231

Scenario ID SCR19
Type of Interaction SystemAxiomlnteractingWithResource - Rule-Performancelnteractions -)' PerformanceDegradation
Detection Guideline IF ((Ri Rule violates Resource.Performance) AND (Ri Rule LEADSJO_PERFORMANCE_DEGRADATION

Resource. Performance)) THEN (Ri is interacting with Resource under 119 interaction type)
Example • Ri "The system shall use X techniques for encryption of transmitted financial data

• Resource. Performance "The response time of the application server is less than 3 seconds"
• Interaction: Assume that X is a very complex technique. Every time a user tries to submit financial data, the server

must encrypt the data using X and since X is very complex then its performance is degraded for any other requests
and it can also exceed the 3 seconds limit in the constraint of server performance

Parameters Effect If X is set to a normal encryption technique then the interaction is eliminated

Scenario ID SCR2O
Type of Interaction SystemAxiomlnteractingWithResource -' Rule-lnterfacelnteractions -' UnexpectedlnputKeysBehabvior
Detection Guideline IF ((Ri .Rule violates Resource.lnterface) AND (RI .Rule LEADS_TO_UNEXPECTED_INPUT_ BEHAVIOUR

Resource.lnterface)) THEN (RI is interacting with Resource under t20 interaction type
Example • Ri :"User can accept incoming calls on the net phone using (X= pressing number 9 number key, which is letter Y to

stand for YES) technique"
• Resource.Intertace "Standard input interface is provided for the net phone interface"
• Interaction: If there is an incoming call and the user is not familiar with this technique, the user might press the

regular keys for accepting new calls but it won't work so he might try different keys which might result for terminating
the incoming call unexpectedly

Parameters Effect Setting X to only standard techniques eliminate the interaction

Scenario ID SCR21
Type of Interaction SystemAxiomlnteractingWithResource -> Rule-Interfaceinteractions -> UnexpectedOutputDisplayBehabvior
Detection Guideline IF ((Ri Rule violates Resource.Interface) AND (Ri Rule LEADS_TQ. UNEXPECTED_OUTPUT_ DISPLAY

Resource.lnterf ace)) THEN (Ri is interacting with Resource under t21 interaction type)
Example • Ri:"The user is notified by incoming calls on his net phone using (X= switch the focus to the net phone incoming

message interface and keeps the user there until he provides a response) technique"
• Resource.lnterface "Standard output interface is provided for the net phone interface"
• Interaction: If the user is playing a game on the screen and there is an incoming call then the focus is switchec

automatically to the net phone and the user loses the game he is playing (which in sometimes might be more
important than the incoming call) which results in unexpected display behaviour.

Parameters Effect If X is set to sounding an alarm with a background visual alarm then there is no interaction as the user will not be
surprised by an unusual display behaviour

232

B.4. A Dynamic Behaviour Requirement Interacting with a Resource'

A Dynamic Behavior
Requirement interacting

with a Resource

1t layer

S12 513
Action-Availability Action-Performance

Interactions Interactions

S14
Action-Interface

Interactions

--

li
no
0

'

SCR2 SCR2G

2" layer

3rd layer

SCR22 SCR23 ISCR24
4111 layer

Scenario ID SCR22
Type of Interaction DynamicBehaviourRequirementlnteraclingWithResource 4 Action-Availabilitylnteractions -> FailureOfResource

IF ((Ri Action violates Resource.Availability) AND (Ri Action LEADS_TO_FAILURE ResourceAvailability)) THEN (Ri is
nteracting with Resource under 122 interaction type)

Detection Guideline

Example • Ri When the electricity consumption exceeds X KW/hr, start shutting down devices A then B then C then D in this
order until consumption reaches V KW/hr"

• Resource.Availability "The boiler shall be available more than 99.9% during each week"
• Interaction: Assume that the boiler Is device C in RI. If X is set to a small number then it is often that the system shall

shutdown the boiler to maintain the consumption rate and this will violate the resource availability constraint.
Parameters Effect If X is set to a large number or the boiler is not in the list of devices to be shutdown then there is no interaction

Scenario ID SCR23
Type of Interaction DynamicBehaviourflequirementlnteractlnqWithResource -3 Action-Availabititylnteractions -3 TakinqOverResource

IF ((Ri Action violates Resource.Availability) AND (Ri .Action LEADS_TO_TAKING_OVER Resource.Availability)} THEN
(Ri is interacting with Resource under 123 interaction type)

Detection Guideline

Example • R1:"During vacation, the vacation control system shall imitate the sound of occupants between times A to B using
(X=TV) device"

• Resource.Availability "The AN devices are available during daytime for personal use"
• Interaction: RI will cause the unavailability of TV between A-B and this violates the resource availability constraint or

having the TV available during daytime for personal use such as recording a show while away. In this case the TV is
unavailable as it cannot do the two things together.

Parameters Effect • If X was set to be an integrated/embedded audio circuit in the system then there is no interactions

Scenario ID SCR24
Type of Interaction DynamicBehaviourRequirementlnteractingWithResource - Action-Performancelnteractions -3

PerformanceDegradation
Detection Guideline IF ((RI .Action violates Resource.lnterf ace) AND (Ri .Action LEADS_TO_DEGRADATION Resource.Performance)}

THEN (RI is interacting with Resource under 124 interaction type)
Example • Ri "The user can set the CD player to play stream audio tracks from the internet between times A to B using

(X=dialup) connection"
• Resource.Performance "Audio/Video devices have performs using high definition quality standards"
• Interaction: The dialup connection has many drops in its performance. Hence, in this case the action of Ri shalt

affect the performance of the CD player and violates the resource performance constraints
Parameters Effect If X is set to high speed connection such as Ti connection then there is no interaction

' The examples of interaction scenarios in this category are taken from smart home system which is a
representative of the networked devices domain

233

Scenario ID SCR25
Type of Interaction DynamicBehaviourRequirementlnteractingWithResource -> Action-Interfaceinteractions -'

UnexpectedlnputkeysBehabvior
Detection Guideline IF {(R1 Action violates Resource.lnterface) AND (RI .Action LEADS_TO_ UNEXPECTED_INPUT_ BEHAVIOUR

Resource. Interface)) THEN (Ri is interacting with Resource under t25 interaction type)
Example • Ri 'To dial a voice activated number, user must pick the handset, press key (X= number key, which is an unusual

input key in this case) and say the voice sample of the desired number'
• Resource. lnterface "Standard input interface is provided for the smart home phone interface"
• Interaction: Assume a user picks the handset and press this key number, the telephone will not know if this number is

part of a dialled number or it should activate the voice dialling system and hence this input might result in an
unexpected behaviour'

Parameters Effect Assign X to a special key other than number keys

Scenario ID SCR26
Type of interaction bynamicBehaviourRequirementlnteractingWithResource -' Action-InterfaceInteractions

UnexpectedOutputDisplayBehabvior
Detection Guideline IF ((Ri.Action violates Resource.lnterface) AND (Ri Action LEADS_TO_ UNEXPECTED—OUTPUT— DISPLAY

Resource.lnterface)} THEN (Ri is interacting with Resource under 126 interaction type)
Example • Ri "When the user is talking on the phone, Alert him 5 seconds before the end of every minute using (X= displaying

a warning on the screen of the telephone set) technique"
• Resource.Interface "Standard output interface is provided for the smart home phone interface"
• Interaction: Consider a user who is storing a phone number while talking with someone on the phone. When the

minute is about to finish (55 seconds), the system alerts the user and causes him to lose all his data because of the
unexpected display behaviour which switches the normal screen to display the call time.

Parameters Effect If X is changed to be an audio alarm then there is no interactions

S CR28

234

B.5. Two Interacting Resources'

(l)Two Interacting
Resources 111 layer

$15
Availability-
Availabil ity
Interactions

$16
Performance.
Performance
Intera tions

S17
Interface-
Interface

In er1ctions

2nd layer

0 3,d layer

SCR27 SCR2
4th layer

Scenario ID SCR27
Type of Interaction lwointeractingResources - Availability-Availabilitylnteractions -> Dependability
Detection Guideline IF {(flesourcel Availability DEPENDS—ON Resource2.Availability)} THEN (Resourcel is interacting with Resource2

under t27 interaction type)
Example • Resourcel Availability 'lho (X=natural gas) boiler shall be available more then 99.9% every year"

• R2:'The natural gas regulator shall be available 100% every year'
• Interaction: lithe natural gas regulator fails, i.e., becomes unavailable, fo any reason and the natural gas is being

blocked then the boiler is not working and hence becomes also unavailable
Parameters Effect If X is changed to be Natural gas! electric boiler then this reduces the degree of dependability between the boiler

and the natural gas regulator

Scenario ID SCR2S
Type of Interaction lwolnteractingResources-* Performance-Performancelnteractions - PerformanceDegradation
Detection Guideline IF ((Resourcel Performance LEADS_TO_DEGRADATION Resource2.Performance)) THEN (Resourcel is

interacting with Resource2 under t28 interaction type)
Example • Resourcel Performance "The (X=Ti) Network Card, used to connect to the internet, provides best performance for

connection speed"
• Resource2:Performance "Audio/ devices performs using high definition quality standards"
• Interaction: The performance of a CD player, which plays stream audio from the internet, is related to the

performance of the Ti card. If the Ti card performance is degraded for any reason (e.g. loose connection, paths
congestion) then the CD performance is also degraded.

Parameters Effect If X is changed to be two network cards (i.e., connecting to the internet through two independent ways) then if the
performance of one card is degraded then the other can compensate for that and the CD player won't feel the
difference

Scenario ID SCR29
Type of Interaction Twolnteractin.qResources -' Interface-InterfaceInteractions -' Incompatibility
Detection Guideline IF {(Resourcel Interface INCOMPATIBLE_WITH Resource2.lnterface)) THEN (Resourcel is interacting with

Resource2 under t29 interaction type)
Example • Resourcel .lnterface"The TV has an X10 (which is a smart home communication protocol) compatible interface"

• R2:"The VCR has (X=KONNEX, which is a smart home communication protocol) compatible interface"
• Interaction: Obviously the two resources have incompatible interlaces and they cannot communicate directly with

each other
Parameters Effect If is changed to X1O then the interaction is eliminated

The examples of interaction scenarios in this category are taken from smart home system which is a
representative of the networked devices domain

S18
Action-Rule
Interactions

235

B.6. A Dynamic Behaviour Requirement Interacting with a System Axiom

® A Dynamic
ehavior Requiremen

Interacting with
System Axio

--

0
-,

5) .—,
c —
5)
.—

t

itt layer

\< d layer

3r(i layer

SCR3O SCR3I 4th layer

Scenario ID SCR3O

Type of Interaction DnamlcBehaviourRequirementlnteractingWithSystemAxiom - Action-Rutelnteractions —> Override
IF {(R1 Action OVERRIDES R2.Rule)) THEN (R1 is interacting with R2 under the t30 interaction type) Detection Guideline

Example • Ri "for (x=unllmited times), closing of the lift door can be prevented when the user presses an open-door button"
• R2 "The unserved calls are always served"
• Interaction: What happens when the user keeps pressing the open-door button? In this case the action of Ri will

override the rule of R2 and prevent the lift from serving unserved calls. A solution might be to force doors to close even
if user Is still pressing the open-doors button.

Parameters Effect If X is changed to be a specific number then eventually, the lift doors are closed and the lift will be able to serve
unserved calls.

Scenario ID SCR31
Type of Interaction DynamicBehaviourRequirementlnteractingWithSystemAxiom -?' Action-Rulelnteractions -' Neqativelmpact

IF ((Ri .Action NEGATIVELYJMPACTS R2.Rule)) THEN (Ri is interacting with R2 under the t31 interaction type) Detection Guideline
Example • Ri "When the lift is overloaded, then (X=the doors shall not close)"

• R2 "The lift system is equipped with portable split air conditioning unit to provide air conditioned environment"
• Interaction: What happens when the lift is overloaded? The action of Ri has a negative effect on rule of R2 as the open

doors negatively affect the air conditioning of lift.
Parameters Effect If X is changed to "Display an overload message and the lift shall not move" then this means that the doors are going to

close but the lift won't move which preserves the air conditioning of the lift while fulfilling the safety property of not
operating with an overload weight.

6 The examples of interaction scenarios in this category are taken from the web e-commerce system which
is a representative of the web domain

236

B.7. A Resource Interacting with A System Axiom7

® A Resource
Interacting

With a System Axiom

Scenario ID SCR32
Type of Interaction ResourcelnteractingWlthSystemAxiom 4 Availability-Rulelnteractions - Override
Detection Guideline IF ((Resourcel Availability OVERRIDES Ri Rule)) THEN (Resourcei is interacting with Ri under 132 interaction

type)
Example • Resourcel Availability "The database server is not available during (X=weekends) for maintenance purposes"

• Ri "Users can access their accounts (Y=at any time)"
• Interaction: The unavailability of the resource during the weekends will override the rule of Ri.

Parameters Effect If Y Is changed to be weekdays and week nights then the interaction is eliminated

Scenario ID SCR33
Type of Interaction ResourcelnteractingWlthSystemAxiom -> Performance-Rulelnteractions --> Override
Detection Guideline IF ((Resourcel Performance OVERRIDES RI .Rule)) THEN (Resourcel is interacting with Ri under t33 interaction

type)
Example • Resourcel Performance "The response time of the database server can take up to (X=io seconds)"

• Al "Any transaction on the website must not exceed 8 seconds"
• Interaction: The performance of the database server which might take up to 10 seconds overrides the rule Al.

Parameters Effect If X is changed to be less than 8 seconds then the interaction is resolved

Scenario ID SCR34
Type of Interaction ResourcelnteractingWlthSystemAxiom - Interface-Rulelnteractions -> Incompatibility
Detection Guideline IF ((Resourcel Interface INCOMPATIBLE—WITH Rl .Rule)) THEN (Resourcei is interacting with Resource2 under

t29 interaction type)
Example • flesourcel.lnterface"The interface of the website shall not include any online transactions pages"

• R2 "The website shall be designed for (Xonline shopping retailers""
• Interaction: Obviously the interface is incompatible with the website of an online shopping retailer as such an online

retailer will need financial transactions webpage for customers to pay for their buys.
Parameters Effect If X is changed to be a web site for online displaying data then there is no interaction

The examples of interaction scenarios in this category are taken from the web e-commerce system which
is a representative of the web domain

237

B.8. A Resource Interacting with a Dynamic Behaviour Requiremene

/
S23

Performance-
,

A Resource
teracting With a Dynam
ehavlour Requlrem

S22
Availability-Action

Interactions

111 layer

S24
nterface-Action
Interactions

0

0.
'p

I
9CR35

0

a
'P

fSCR3

I
=
C,

-o c

0•

21 layer

SCR37

3rd layer

411, layer

Scenario ID SCR35
Type of interaction ResourcelnteractingWlthDynamicBehaviourRequirement - Availability-Aclionlnteractions --> Override

IF {(Resourcel Availability OVERRIDES R1.Rule)} THEN (Resourcel is interacting with RI under t32 interaction
type

Detection Guideline

Example • Resourcel Availability "The database server is not available during (X=weekends) for maintenance purposes"
• Ri "At time (y= 6 a every Saturday, update the contents of the website"
• Interaction: The unavailability of the resource during the weekends will override the action of RI because there are

data needed from the database server in order to correctly update the website
Parameters Effect If Y is changed to be any time during weekdays and week nights then the interaction is eliminated

Scenario ID SCR36
Type of interaction ResourcelnteractingWlthDynamicBehaviourRequirement -> Performance•Actionlnteractions - Override

IF ((Resourcel Performance OVERRIDES Ri Rule)) THEN (Resourcel is interacting with Ri under t33 interaction
type

Detection Guideline

Example • Resourcel.Performance "The response time of the database server can take up to (X=10 seconds)"
• RI "after (Y=5 seconds), display the results of the operation"
• Interaction: The performance of the database server which might take up to 10 seconds overrides the action of RI

and will not allow it to display correct results.
Parameters Effect If Y is changed to be 10 seconds or more then the interaction is resolved

Scenario ID SCR37
Type of Interaction ResourcelnteractingWlthDynamicBehaviourRequirement -)' Interface-Actionlnteractions -' Incompatibility

IF {(Resourcel .lnterface INCOMPATIBLE-WITH R1.Rule)} THEN (Resourcei is interacting with Resource2 under
t29 interaction type)

Detection Guideline

Example • Resourcel .lnterface"The interface of the website shall include only (X=non interactive contents)"
• R2 "When the user enters a correct user name and password, then he is logged in and a welcome message is

displayed"
• Interaction: Obviously the interface is incompatible with the action as the interface will not support active contents.

Parameters Effect If X is changed to be interactive and non interactive then the interaction is eliminated

The examples of interaction scenarios in this category are taken from the web e-commerce system which is
a representative of the web domain

238

APPENDIX C: FULL RESULTS ON THE COMPARISON IN CHAPTER 3

ON COMPARING THE PROPOSED REQUIREMENTS INTERACTION

TAXONOMY WITH OTHER TAXONOMIES

This appendix contains specific and detailed results on the results of comparing the

proposed interaction taxonomy presented in Chapter 3 with already existing taxonomies

in the literature.

The SCR presented between brackets following individual numbers represents an

interaction scenario in the proposed interaction taxonomy. For example in Table C.1,

SCR8 next to 1 in the SUSC column indicates that the example number 1 is addressed by

the interaction scenario SCR8 in the proposed interaction taxonomy. Also numbers in

columns represent the example number in the corresponding taxonomy. For example, in

Table C.1, 3 refers example 3 presented in the corresponding taxonomy which is

Cameron et al. taxonomy.

239

Table C.1: Comparing proposed taxonomy to Cameron et aL taxonomy

Nature of interaction (first approach:
examples

5 categories, 22

Cause of interaction
(Second approach: 12 categories, 22

examples)
SUSC SUMC MUSC MUMC CUSY

Violations of
assumptions

Naming 8 (SCR8) 10 (SCR23 or
SCR26)

II (SCRI5)
I2(SCRI5)

Data availability I6 (SCR IO)

Administrative
domain

19 (missed)
20 (missed)

Call control I (SCR8)
3 (SCRI4)
4 (SCR 15)

14 (SCR8)
15 (SCR8)

Signalling protocol 13 (SCR 15)

Limitations on
network
support

CPE signalling 2 (SCR8 or
SCR23)

7 (SCR25)

Funct. of
Communications

5 (SCR23) 21 (missed)

Problems in
distributed
systems

Resource contention 2 (SCR8 or
SCR23)

Instantiation 4 (SCR15) 9 (SCR 15) 17 (SCR 16)

Timing and race 2 (SCR8 or
SCR23)

7 (SCR25) IS (SCRI6)

Feature support 6 (SCR15)
8 (SCR8)

Non-atomic
operations

22 (missed)

•SUSC= Single User Single Component SUMC= Single User Mu tiple Compot ent MUSC= Multiple User Sim gle Component
MUMC=Multiple User Multiple Component CUSYCustomer System

• Each cell will correspond to a category in first approach through its column and a category in second approach through its row, i.e.,
the cell that has number tin it, means that example number I was used to illustrate category SUSC of first approach and category
call control of the second approach

Table C.2: Comparing proposed taxonomy to Kolberg et aL taxonomy

Interaction Category Examples Used

Multiple Action Interaction (MAT) I (SCRl2)

Shared Trigger Interaction (STI) 2 (SCR23)

Sequential Action Interaction (SAl) 3 (SCRI I)

Missed Trigger interactions (MTI) 4 (SCRl3)

5 (SCRl6)

240

Table C.3: Comparing proposed taxonomy to Reiff-Marganiec et aL taxonomy

Interaction Category Examples Used

Conditional Goals 5.1 (SCRI)

Conditional Event-Condition-Action (ECA) - Shared Trigger 5.2 (SCRIO)

Conditional Event-Condition-Action (ECA) - Sequential Trigger 5.3 (SCR12)

Single Entity (SE) SE example (SCR12)

Multiple Entity Single Branch (MESB) MESB example (SCRI)

Single Entity Multiple Role (SEMR) SEMR example (SCRI)

Multiple Entity Single Role (MESR) MESR example (SCRI)

Multiple Entity Multiple Role (MEMR) MEMR example (SCRI)

Refinement 5.4 (SCR I)or(SCR2)

Preference Preference example (SCRI 1)

• Note that some categories did not include any examples for illustration such as Multiple Entities-Same Domain-Different
Branches (MEDB)

• The examples presented in some categories, such as the SE category, did not have a specific example numbering, so we refer to
it as only example because the example is included in the body text of the category

241

APPENDIX D: FULL RESULTS ON THE DEVELOPED PLUG-INS FOR IRIS

IN CHAPTER 5

This appendix contains details on the developed plug-ins for IRIS from Chapter 5. It is

worth mentioning that this appendix will not describe the plug-in interaction scenario

because all interaction scenarios are described in details ion Chapter 3 and Appendix B.

Hence, this appendix contains details for 8 plug-ins listed in Tables D.1-D.8 respectively.

Table D.1: The plug-in Functionalities Identification

Type: STEP

Body: What Name Functionalities Identification

Description This Plug-in is used when a single requirement is complex and
describes different functionalities. The goal of this plug-in is to
simplify the parent requirement and to separate the different
encapsulated functionalities into atomic functionalities that can be
easily handled

Construction The execution of this plug-in requires the following activities:
1. For each requirement, identify complex requirements that
performs more than one functionality

2. Break down the complex textual description of the
requirement into atomic functionalities such that each atomic
functionality can perform only one functionality

3. Go back to activity 1 until all requirements have been
addressed

When Problems this
plug-in
overcomes

1. Solving the problem of complex requirements
2. Unclear representation of different functionalities

encapsulated in one requirement
3. Lack of understanding of requirements due ambiguous
complex requirements

Expected
enhancements

1. Reduced requirements ambiguity
2. Improved interaction detection between different

functionalities within one requirement

How Instructions 1. This plug-in is applied prior to IRIS step 1

Sample of
application

This plug-in has been applied in a case study to identify
interactions between the requirements of smart homes. Refer to
Chapter 8 for an example application

Location
Since this is a STEP plug-in that is needed to be performed prior to the application of IRIS
basic core steps, then this step is hooked to the hook Hi

242

Table D.2: The plug-in Parameters Assignment

Type: STEP

Body: What Name Parameters Assignment
Description This plug-in is used to find any parameterized parts in the given

set of requirements. Then these parameterized parts are replaced
by parameters (e.g., X, Y .. .etc).

Construction The execution of this plug-in requires the following activities:
1. For all system axioms and dynamic behaviour requirements,

select a requirement for consideration, list it separately, and
read it carefully.

2. For the requirement under consideration, identify if it has a
parameterized part in its body.

3. Identify the parameterized part that needs to be replaced with a
parameter

4. Replace the parameterized part of the requirement with a
unique parameter (e.g., X or Y)

5. Go back to activity 3 until all requirements have been
addressed.

When Problems this
plug-in
overcomes

I. Unclear representation of parameterized requirements
2. Unclear representation of reused requirements
3. Lack of understanding of requirements

Expected
enhancements

1. Reduced requirements ambiguity
2. Reduced difficulty filling in the requirements tables in step 2

of the basic core of IRIS
3. Improved interaction detection due to interactions between the
parameterized parts of the requirements

How Instructions 1. This plug-in is applied prior to step 1 of IRIS basic core
2. This plug-in is applied after the plug-in Functionalities

Identification (if used)
3. This plug-in is applied to all requirements

Sample of
application

This plug-in has been applied in a case study to identify
interactions between the requirements of smart homes. Refer to
Chapter 8 for an example application

Location
Since this is a STEP plug-in that is needed to be performed prior to the application of IRIS
basic core steps, then this step is hooked to the hook Hi

243

Table D.3: The plug-in Parameters

Type: ATTR

Body: What Name Parameters
Description This plug-in corresponds to adding the attribute "Parameters" to

the set of attributes used for representing system axioms or
dynamic behaviour requirements

Construction The execution of this plug-in requires the following activities:
6. Add a new attribute called Parameters to the set of attributes
used for representing system axioms or dynamic behaviour
requirements

7. Add a new column called Parameters in the system axioms
and dynamic behaviour requirements attributes identification
tables created in the second step of IRIS to correspond to the
attribute Parameters that was created in activity 1

8. For each requirement in any of the tables created in the
second step of IRIS, list any parameters in the main body of
the requirements in the new column created in activity 2

9. The parameters listed in the new Parameters column as
described in activity 3 will be in the form of the parameter
and its data type

10. Go back to activity 3 until all requirements have been
addressed.

When Problems this
plug-in
overcomes

4. Solving the problem of parameterized requirements
5. Unclear representation of parameters in system axioms and
dynamic behaviour requirements attributes identification
tables

6. Unclear representation of the data types that parameters can
have in the requirements attributes data type

7. Lack of understanding of requirements due to using
unexplained parameters in the system axioms and dynamic
behaviour attributes identification tables

Expected
enhancements

5. Reduced requirements ambiguity
6. Correctly dealing with parameters and data types they can
have

7. Improved interaction detection due to interactions between
the parameterized parts of the requirements

How Instructions 2. This plug-in is applied during IRIS step 2
3. This plug-in must be applied in conjunction of the plug-in

Parameters Assignment
4. This plug-in is applied to all parameterized requirements

Sample of
application

This plug-in has been applied in a case study to identify
interactions between the requirements of smart homes. Refer to
Chapter 8 for an example application

L • Location
Since this is an ATTR plug-in that is needed to add the attribute Parameters to either system
axioms or dynamic behaviour, then this plug-in is hooked to the hooks H2 or H4

244

Table D.4: The plug-in Parameters Range

Type: ATI'R

Body: What Name Parameters Range
Description This plug-in corresponds to adding the attribute "Parameters

Range" to the set of attributes used for representing system
axioms or dynamic behaviour requirements

Construction The execution of this plug-in requires the following activities:
1. Add a new attribute called Parameters Range to the set of

attributes used for representing system axioms or dynamic
behaviour requirements

2. Add a new column called Parameters Range in the system
axioms or dynamic behaviour attributes identification tables
created in the second step of IRIS to correspond to the
attribute Parameters Range that was created in activity 1

3. For each requirement in any of the system axiom and
dynamic behaviour tables created in the second step of IRIS,
identify the range of values that each parameter, listed in the
parameters column, can has

4. The new Parameters Range column will contain all
parameters and the range of values they can have

5. Go back to activity 3 until all requirements have been
addressed.

When Problems this
plug-in
overcomes

1. Solving the problem of parameterized requirements
2. Unclear representation of what range of values that

parameters can have in system axioms and dynamic
behaviour requirements attributes identification tables

3. Lack of understanding of requirements due to using
unexplained parameters in the system axioms and dynamic
behaviour attributes identification tables

Expected
enhancements

1. Reduced requirements ambiguity
2. Correctly dealing with parameters and the range of values

they can have
3. Improved interaction detection due to interactions between

conflicting values that the parameters can have

How Instructions 1. This plug-in is applied during IRIS step 2
2. This plug-in must be applied in conjunction of the plug-in

Parameters Assignment
3. This plug-in is applied to all parameterized requirements

Sample of
application

This plug-in has been applied in a case study to identify
interactions between the requirements of smart homes. Refer to
Chapter 8 for an example application

oca i Location
Since this is an ATTR plug-in that is needed to add the attribute Parameters Range to either
system axioms or dynamic behaviour, then this plug-in is hooked to the hooks H2 or H4

245

Table D.5: The plug-in System Axioms Strategies

Type: STEP

Body: What Name System Axioms Strategies
Description This plug-in is a step plug-in to identify the system axioms

design and implementation strategies. This step generates a new
table called "System Axioms Strategies Identification Table" to
describe the available design and implementation strategies for
the system axioms

Construction The execution of this plug-in requires the following activities:
1. For each system axiom, read carefully and understand it
2. Based on the available knowledge from experts and
knowledge bases, identify the different design and
implementation strategies for the system axiom under
consideration

3. Construct a table that contains the information collected in
activity 2

When Problems this
plug-in
overcomes

1. Solving the problem of identifying interactions between
system axioms due to using conflicting design and
implementation strategies

Expected
enhancements

1. Improved interaction detection due to interactions between
conflicting design and implementation strategies

How Instructions 1. This plug-in is applied after IRIS step 2
2. This plug-in is applied to only system axioms

Sample of
application

This plug-in has not been applied in any one of the case studies
in this thesis.

oca " Location
Since this is a STEP plug-in that is needed to perform a certain step on the system axioms,
then this plug-in is hooked to the hooks H2 or H4.

246

Table D.6: The plug-in Availability

Type: ATTR

Body: What Name Availability

Description This plug-in corresponds to adding the attribute "Availability" to
the set of attributes used for representing resources
requirements. The use of this plug-in will also result in a new
column in the table created for the resources requirements which
will contain the values regarding the availability for each
resource requirement

Construction The execution of this plug-in requires the following activities:
1. Add the attribute Availability to the set of attributes required

to represent resources
2. Add a column in the resources attributes identification table

called Availability
3. In the new availability column, list availability constraints for
each resource requirements

When Problems this
plug-in
overcomes

1. Representing availability of resources and detecting
interactions that might arise from them

Expected
enhancements

1. Correctly dealing with constraints regarding the availability
of resources requirements

2. Improved interaction detection due to interactions resulting
from constraints on the availability of resources

How Instructions 1. This plug-in is applied during IRIS step 2
2. This plug-in is applied to only resources requirements
3. This plug-in is applied only when there are constraints

regarding the availability of resources

Sample of
application

This plug-in has not been applied in any one of the case studies
in this thesis.

Location Since this is an ATTR plug-in that is needed to add the attribute Availability to resources, then this plug-in is hooked to the hooks H6

247

Table D.7: The plug-in Performance

Type: ATFR

Body: What Name Performance

Description This plug-in corresponds to adding the attribute "Performance"
to the set of attributes used for representing resources
requirements. The use of this plug-in will also result in a new
column in the table created for the resources requirements which
will contain the values regarding the performance of each
resource requirement

Construction The execution of this plug-in requires the following activities:
1. Add the attribute Performance to the set of attributes required

to represent resources
2. Add a column in the resources attributes identification table

called Performance
3. In the new availability column, list performance constraints

for each resource requirements

When Problems this
plug-in
overcomes

1. Representing performance of resources and detecting
interactions that might arise from them

Expected
enhancements

1. Correctly dealing with constraints regarding the resources
requirements performance

2. Improved interaction detection due to interactions resulting
from constraints on resources performance

How Instructions 1. This plug-in is applied during IRIS step 2
2. This plug-in is applied to only resources requirements
3. This plug-in is applied only when there are constraints

regarding the performance of resources

Sample of
application

This plug-in has not been applied in any one of the case studies
in this thesis.

Location Since this is an ATTR plug-in that is needed to add the attribute Performance to resources, then this plug-in is hooked to the hooks H6

248

Table D.8: The plug-in Interface

Type: AUR

Body: What Name Interface
Description This plug-in corresponds to adding the attribute "Interface" to

the set of attributes used for representing resources
requirements. The use of this plug-in will also result in a new
column in the table created for the resources requirements which
will contain information regarding the interfaces of each
resource

Construction The execution of this plug-in requires the following activities:
1. Add the attribute Interface to the set of attributes required to
represent resources

2. Add a column in the resources attributes identification table
called Interface

3. In the new Interface column, list Interface constraints for
each resource when applicable

When Problems this
plug-in
overcomes

1. Representing Interfaces of resources and detecting
interactions that might arise from them

Expected
enhancements

1. Correctly dealing with constraints regarding the resources
Interfaces

2. Improved interaction detection due to interactions resulting
from constraints on resources Interfaces

How Instructions 1. This plug-in is applied during IRIS step 2
2. This plug-in is applied to only resources requirements
3. This plug-in is applied only when there are constraints

regarding the interfaces of resources

Sample of
application

This plug-in has not been applied in any one of the case studies
in this thesis.

Location Since this is an ATTR plug-in that is needed to add the attribute Interface to resources, then this plug-in is hooked to the hooks 116

249

APPENDIX E: FULL RESULTS FROM CHAPTER 8 ON THE DETECTED

INTERACTIONS IN SMART HOMES

This appendix presents all the detected interactions from applying IRIS in the smart

homes case study presented in Chapter 8. The aim is to provide clarification on how each

interaction was detected and an example scenario of interaction for illustration purposes.

Table E.1 uses the following abbreviations:

• ID: A unique interaction ID for each interaction

• Policies: Identify the two simple policies that interact

• Analysis: Lists what analysis procedure was used to detect the interaction

• Interaction: Lists an example scenario of a possible interaction, and suggests a

resolution. The scenario listed might not be the only possible interaction scenario

and there might be other situations in which the two policies interact. Similarly,

the solution is only a suggestion and the manufacturer and occupants might prefer

other solutions.

The procedure described in section 8.5.7 explains in details how interactions are detected.

This procedure was also used to detect the interactions listed in this appendix. Equal

priorities of all simple policies were assumed during the detection step.

250

Table E.1: Detected interactions using IRIS and suggested solutions

ID Policies Analysis Interaction

11
P1.1,
P1.2

Linked events
El, E2

Type: The action of P1.1 overrides the action of P1.2.
Scenario: A thief opens the window and once he is in, he quickly deactivates the alarm using the alarm switch thus
making the alarm appear as a system glitch.
Solution: Freeze the security alarm control panel as soon as alarm is triggered until a PIN is provided.

12
P1.1,
P1.3

Linked events
El, E3

Type: The action of P1.1 overrides the action of P1.3.
Scenario: A thief opens the door and once he is in, he quickly deactivates the alarm using the alarm switch thus
making the alarm appear as a system glitch.
Solution: Freeze the security alarm control panel when alarm triggers until a PIN is provided.

13
P1.1,
P1.4

Linked events
El, E4

Type: The action of P1.1 overrides the action of P1.4.
Scenario: A thief is in the house and once he sees the PIR, he quickly deactivates the alarm using the alarm switch
thus making the alarm appear as a system glitch.
Solution: Freeze the security alarm control panel when alarm triggers until a PIN is provided.

14
P1.1,
P1.5

Linked events
El, E5

Type: The action of P1.1 overrides the action of P1.5.
Scenario: A thief is in the house, once he feels the alarm is triggered by the pressure pads, he quickly deactivates the
alarm using the alarm switch thus making the alarm appear as a system glitch.
Solution: Freeze the security alarm control panel when alarm triggers until a PIN is provided.

15
P1.1, Linked events

El E9

Type: The action of P3.2 overrides the action P1.1.

Scenario: P1.1 activates the security alarm to secure the house, while P3.2 can still override P1.1 and the door car
oe opened. For example, if a thief is inside the house and wants to get out, he can just press the open door switch tc
get out. Another example, if an occupant opens the doors using P3.2 then it will falsely trigger the alarm.
Solution: If alarm is activated using P1.1, a PIN is required before executing P3.2.

16
P1.1,
P10.1

Linked events
El, E7

Type: The action of P10.1 negatively impacts the action of P1.1.
Scenario: Occupant schedules windows to open in a certain place at a certain time and while this action is executing
occupant without knowing that windows are opening, activates alarm and hence falsely triggers the alarm.
Solution: Ask the occupant to secure open doors and windows before executing P1.1.

17
P1.1,
P12.1

Linked events
El

Type: The action of P12.1 negatively impacts the action of P1.1.
Scenario: Occupant A comes home and deactivates alarm. Occupant B at work can't remember if he activated alami
or not, so he calls and activates alarm using remote access module. Occupant A opens a window and alarm triggers.
Solution: Information about the last deactivation of the security alarm is provided over the phone to the person who
wants to use the remote access module to set the alarm.

18
P1.2, Linked events

E2 E9

Type: The action of P3.2 overrides the action of P1.2.
Scenario: An occupant unlocks the main door using P3.2 while the alarm system is active. If this disables the alarm
to avoid a false trigger, and the main door is opened, then a thief could open a window in the basement at the same
time and the alarm will not be triggered. Thus P1,2 action is overridden by P3.2 action.
Solution: When P3.2 opens the door, then only the door is excluded from triggering the alarm.

19
P1.2,
P10.1

Linked events
E2, E7

Type: The action P10.1 negatively impacts the action of P1.2.
Scenario: lithe occupant sets a time when the windows open automatically while the security alarm is active then the
action of P10.1 will falsely trigger the alarm.
Solution: The occupant is notified to cancel scheduled windows opening times before alarm is allowed to be active.

110
P1.2,
P12.1

Linked events
E2, E18

Type: The action of P12.1 overrides the action of P2.1.
Scenario: A thief breaks into the house through a window. One second later, an occupant uses the remote access
module to cancel the alarm as he is on his way home. The alarm trigger looks like a system glitch and thief escapes.
Solution: If the alarm is triggered then the remote access module cannot disable the alarm system.

P1.3,
P3.2

Linked events
E3, E9

Type: The action of P3.2 negatively impacts the action of P1.3.
Scenario: Occupants open the main door using the interior main door switch while the alarm is active. This falsely
triggers an alarm.
Solution: The system shall ask for a PIN before opening the door if alarm is active.

112
P1.3,
P3.3

Linked events
E3, E10

Type: The action of P3.3 negatively impacts the action of P1.3.
Scenario: Steam and smoke from cooking causes the GIN/S detector to trigger while the alarm is active. The systen
opens the main door according to P3.3. Thus the intruder alarm triggers falsely.
Solution: Intruder alarm is disabled when the GIN/S detector triggers.

113
P1.3, Linked events

E3 E18

Type: The action of P12.1 overrides the action of P1.3.

Scenario: A thief breaks into the house through the door and the alarm is triggered. One second later, an occupan uses the remote access module to deactivate the alarm as he is on his way home. Then the thief can get away as the
alarm trigger looks like a system glitch.
Solution If alarm is triggered then the remote access module cannot disable the security alarm.

251

Table E.1- Continued: Detected interactions using IRIS and suggested solutions

14
P1.4,
P3.2

Linked events
E4, E9

Type: The action of P3.2 overrides the action of P1.4.
Scenario: An occupant unlocks the main door using P3.2 while the alarm system is active. To avoid false triggering o
alarm, the system disables the alarm then opens main door. If during this time a thief breaks in from the upper floor
and his movements are detected by a PIR, then alarm will not be triggered because it is temporarily disabled.
Solution: When P3.2 opens the main door, then only the main door is excluded from triggering the alarm.

115
P1.4,
P8.2

Same trigger
event E4

Type: The action of P8.2 negatively impacts the action of P1.4.
Scenario: An occupant sets the same part of the house (e.g. hallway) for both lights (in P8.2) and security (P1.4) tc
check for a positive PIR signal. The occupant gets up at night and the PIR sensor detects his movements thus the
system activates lights but also activates the alarm which in this case is triggered falsely by the occupant
Solution: Don not allow occupants to set the same area for tights increase and security check.

116
P1.4,
P12.1

Linked events
E4, E18

Type: The action of P12.1 overrides the action of P1.4.
Scenario: A thief breaks into the house and triggers the alarm by a positive PIR signal. But an occupant uses the
remote access module to deactivate the alarm as he is on his way home. Then the thief can get away as the alarir
trigger looks like a system glitch.
Solution If alarm is triggered then the remote access module cannot disable the security alarm.

117
P1.5,
P3.2

Linked events
ES, E9

Type: The action of P3.2 overrides the action of P1.5.
Scenario: An occupant unlocks the main door using P3.2 while the alarm system is active. To avoid false triggering o
alarm, the system disables alarm then opens main door. If during this time a thief breaks in from upper floor and his
movements are detected by pressure pads, then alarm will not be triggered because it is temporarily disabled.
Solution: When P3.2 opens the main door, then only the main door is excluded from triggering the alarm.

118
P1.5,
P8.2

'Type:

Linked events
E4, E5

The action of P8.2 negatively impacts the action of P1.4.
Scenario: An occupant sets the same part of the house (e.g. hallway) for both lights and security to check for PIR and
aressure pads signals. The occupant gets up at night and activates lights by PIR but also walks on the pressure pads
n the hallway thus triggers alarm by himself falsely.
Solution: Do not allow occupant to set the same area for lights increase and pressure pads security check.

119
P1.5,
P12.1

Linked events
ES, E18

Type: The action of P12.1 overrides the action of P1.5
Scenario: A thief breaks into the house and triggers the alarm by the pressure pads. But an occupant uses the
remote access module to deactivate the alarm as he is on his way home. Then the thief can get away as the alarrr
rigger looks like a system glitch.
Solution If alarm is triggered then the remote access module cannot disable the security alarm.

120
P2.1
P2.2

Linked events
E6, E7

Type: The action of P2.1 overrides the action of P2.2.
Scenario: If an occupant presses the deactivate switch while P2.2 Is executing, then P2.1 will cancel the action o
P2,2 before completion. Note that both functionalities are of equal priorities. This might be important if a child is the
one who deactivated the vacation control.
Solution: P2.1 Is of higher priority and a PIN is required before the actual deactivation of the vacation control.

121
P2.1,
P2.3

Linked events
E6, El

Type: The action of P2.1 overrides the action of P2.3.
Scenario: If an occupant presses the deactivate switch while P2.3 is executing, then P2.1 will cancel the action o
P2.3 before completion. Note that both functionalities are of equal priorities. This might be important if a child is the
one who deactivated the vacation control.
Solution: P2.1 is of higher priority and a PIN is required before the actual deactivation of the vacation control.

122
P2.1
P10.1

Linked events
E6, E7

Type: P 10.1 negatively impacts the action of P2.1.
Scenario: P10.1 is a security hole that negatively impacts the intended purpose of P2.1 which is to keep the house
safe during extended periods of absence. For example, an occupant activates vacation control (P2.1) as a protectior
of the house while away but P10.1 can still open windows and thus negatively impact the intended purpose of P2.1
Solution: Ask the occupant to cancel scheduled window opening before activating vacation control.

123
P2.2
P43

P2.2 interactsScenario:
with systerriacation
axiom P4.1

Type: The rule of P4.1 overrides the action of P2.2
The vacation control is on and P2.2 is executing. The occupant comes home and forgets to turn the

control off. The occupant then tries to use the remote control to turn the TV off. If the TV is turned off, ther
the rule P4.1 overrode the action of P2.2. If not then P4.1 is violated by P2.2.
Solution: The occupant must turn the vacation control off first before being able to use the remote control.

124
P2,2,
P4.2

Same trigger
event E7

Type: The action of P4.2 overrides the action of P2.2.
Scenario: An occupant sets the action of P2.2 to turn on the TV at time X for 60 minutes while the action of P4.2 was
set to turn off the TV at the same time X. A similar scenario can also occur if the defined times overlap.
Solution: Manual settings by occupants for TV, such as P4.2, are cancelled when the vacation control is active.

125
P22

P2.2 interacts
with systenhie
axiom P5.2

Type: The action of P2.2 overrides the rule of P5.2.
Scenario: An occupant sets the TV to volume. The next day he lowers the max audio level in P5.2 below V. Ther

activates the vacation control (thus activating P2.2) and leaves. When P2.2 starts the TV with the last setting 0
volume which is Y, it violates P5.2.
Solution: The vacation control starts the TV with a volume below the allowed max audio level. -

252

Table E.1- Continued: Detected interactions using IRIS and suggested solutions

126
P2.2,
P9.1

Same trigger
event E7

Type: The action of P9.1 negatively impacts the action of P2.2.
Scenario: P9.1 will be a security hole that negatively impacts the intended purpose of P2.2. For example, if the
predefined areas of curtain and blinds are the same as the location of TV and the predefined time is the same for
P2.2 and P9.1, then this will enable by-passers see that no one is watching TV.
Solution: Disable the opening of curtains and blinds when the vacation control is opening the TV. However when the
V is not on then curtains and blinds can be opened/closed to give impression that occupants are home.

127
P22 Linked events

E7 E15

Type: The action of P9.2 negatively impacts the action of P2.2.
Scenario: P9.2 will be a security hole that negatively impacts the intended purpose of P2.2. For example, if the
redefined area of curtains and blinds are the same as the location of TV and the predefined time is the same for

P2.2 and P9.1, then this will let anyone looking from windows know that no one home watching TV
Solution: Disable the opening of curtains and blinds when the vacation control is opening the TV.

128 P22
P10.1

Same trigger
eventE7

Type: The action of P10.1 negatively impacts the action of P2.2.
Scenario: The action of P10.1 will be a security hole that counteracts the intended purpose of vacation control P2.2
which is to keep the house safe during extended periods of absence. For example, an occupant activates vacation
control (P2.2) and windows control (P10.1) then leaves.
Solution: Disable the opening of windows when the vacation control is activated.

139
P2.2,
P12.1

Linked eventsScenario:
E7, E18

Type: The action of P12.1 overrides the action of P2.2
Occupant A activates vacation control (and thus P2.2) and leaves. Occupant B calls and use remote

access module (P12.1) to turn off the TV or even cutoff the power to it. Hence overriding the action of P2.2
Solution: Remote access module cannot control TV when vacation control is active

130
P2.3,
P6.1

Linked eventsScenario:
E7, E12

ype: The action of P2.3 negatively impacts the action of P6.1.
An occupant chooses low Temperature for P6.1 and also chooses to turn on all lights with high watts. The

ieat radiated from the light bulbs swill affect the decrease of temperature and requires more power for the HVAC.
Solution: With low temperature settings, use medium light intensity or low power lamps.

131
P2.3,
P6.2

Same triggerScenario:
3vent E7

ype: The action of P2.3 negatively impacts the action of P6.2.
An occupant chooses low Temperature for P6.2 and also chooses to turn on all lights with high watts. The

ieat radiated will affect the decrease of temperature and requires more power for the HVAC.
Solution: With low temperature settings, use medium light intensity or low power lamps.

132 P2.3,
P8.1

Linked eventsScenario:
E7,E13

ype: The action of P8.1 overrides the action of P2.3.
Vacation control is on and occupant comes home. P2.3 has finished (after 60 mm) and starts shutting of

ights while occupant uses light dimmer to increase the light intensity and the lights might not respond to this request.
Solution: Occupant must turn the vacation control off once s/he enters the house before getting control over lights.

133
P23
p82

Linked E4 events

ype: The action of P2.3 overrides the action of P8.2.
Scenario: The occupant comes home and forgets to deactivate vacation control (P2.3). At night P2.3 triggers and
witches on the lights for 59 mm. Then occupant gets up to go to bathroom hence triggering P8.2 which will increase
ight to the max over 2 minutes. But P2.3, after first minute, shuts down lights because the 60 minutes have elapsed.
Solution: Occupant must turn off the vacation control once s/he gets home before other policies are active again.

134
P2.3,
P8.3

Linked eventsScenario:
E7, E14

ype: The action of P8.3 overrides the action of P2.3.
An occupant has both P2.3 and P8.3 active. P2.3 triggers and switches the lights on. After 15 minutes P8.2

switches off lights because no one is home. Thus P8.3 switches off lights after 15 mm. (not 60 min as in P2.3).
Solution: Disable other light control policies when vacation control is activated.

135
P23 Linked vents

E7

Type: The action of P8.4 overrides the action of P2.3.
Scenario: P2.3 is triggered and switches on the lights for 60 mm. At the end of the 60 minutes, the system starts
hutting off the lights. At the same instant, the night begins and P8.4 starts to open lights while they are being shu
if. Therefore the lights are not shutoff and P3.2 action is not completed
Solution: Disable other light control policies when vacation control is activated.

136
P23

i'
Same S

Type: The action of P9.1 negatively impacts the action of P2.3.
Scenario: P9.1 will be a security hole that negatively impacts the intended purpose of P2.3. For example, if the
redefined area is the same for curtains and lights and the predefined time is also the same for P2.3 and P9.1, then
anyone looking from windows know that no one home opening/closing the lights.
Solution: Close curtains/blinds during times when vacation control is active and lights are about to be turned on/off.

137
P2.3,
P9.2

Linked events
E7, El 5

Type: The action of P9.2 negatively impacts the action of P2.3.
Scenario: P9.2 will be a security hole that negatively impacts the intended purpose of P2.3. For example, If the
redefined area is the same for curtains and lights and the predefined time is also the same for P2.3 and P9.2. Then
anyone looking from windows know that no one home opening/closing the lights.
Solution: Close curtains and blinds during times when vacation control is active and the lights are about to be tumec
n/off. However, curtains and blinds can be opened during other times to give impression that occupants are home.

138
P2.1,
P12.1

ype: The action of P12.1 overrides the action of P2.1
Scenario: Occupant A deactivates vacation control when she comes home. Occupant B is away and canno

Linked events 'emember if he activated the vacation control or not, so he calls and uses remote access module (1312.1) to turn or
cation control. Occupant A at home looses control over lights and TV.
lution: State last activation/deactivation information of security alarm over the phone to the person who wants tc

E6, E18 rsethe remote access module to set the alarm.

253

Table E.1- Continued: Detected interactions using IRIS and suggested solutions

139
P23
pi

Same trigger
event E

Type: The action of P10.1 negatively impacts the action of P2.3.
Scenario: P 10.1 will be a security hole that counteracts the intended purpose of vacation control P2.3 which is tc
keep the house safe while extended periods of absence. For example, an occupant activates vacation control (P2.3
and windows control (P10.1) then leaves.
Solution: Disable the opening of windows when the vacation control is activated.

140
P2.3,
P12.1

Linked events
E7, E18

Type: The action of P12.1 overrides the action of P2.3.
Scenario: Occupant A activates vacation control (and thus P2.3) and leaves. Occupant B calls and uses the remote
access module (P12.1) to turn off all lights in the home, hence overriding the action of P2.3.
Solution: Remote access module cannot control lights when vacation control is active.

141
P3.1,
P3.3

_inked events
E8, E10

Type: The action of P3.3 overrides the action of P3.1.
Scenario: The only occupant at home shuts the main door expecting it to lock automatically according to P3.1 and
leaves. One minute later, GIN/S triggers and opens door according to P3.3, thus leaving house vulnerable to anyone.
Solution: Only open the main door when there is someone inside (movements can be detected using PIR).

142
P3.1,
P12.1

Linked events
E8, E18

Type: The action of P12.1 is used to override the action of P3.1.
Scenario: Occupant A is leaving and shuts the doors behind her expecting it to lock automatically. While shutting
occupant B calls and opens the main door lock. Thus house is vulnerable.
Solution: Critical parts of the house like the main door cannot be controlled by remote access module.

143
P3,2,
P6.1

Linked events
E9, E12

Type: The action of P3.2 negatively impacts the action of P6.1.
Scenario: When occupants use P3.2 to open the main door while P6.1 is triggered trying to raise the temperature o
he house. The open door will affect the increase of temperature if left open for a long time.
Solution: Close the door after some time units to maintain the temperature of the home.

144
P3.2,
P6.2

Linked events
E7, E9

Type: The action of P3.2 negatively impacts the action of P6.2.
Scenario: When occupants use P3.2 to open the main door while P6.2 Is triggered trying to raise the temperature o
the house. The open door will affect the increase of temperature if left open for a long time.
Solution: Close the door after some time units to maintain the temperature of the home.

145
P3.2,
P12.1

Linked events
E9, E18

Type: The action of P12.1 overrides the action of P3.2
Scenario: Occupant A presses unlock door interior switch to unlock door. Occupant B calls and uses remote access
module to lock door, as he suspects it was left open. Occupant A tries to open the door but it does not respond.
Solution: The interior switch has higher priority and still opens the house's main door lock.

146
P3.3,
P6.1

Linked events
E10, E12

Type: The action P3.3 negatively impacts the action of P6.1.
Scenario: P6.1 tries to raise the house's temperature. GIN/S is triggered by mistake (e.g. battery fault or short circuit)
and opens the door according to P3.3. If left for a longtime, it will affect the ability of P6.1 to increase temperature.
Solution: Close door after some time units, but only if the GJH/S alarm has stopped.

147
P3.3,
P6.2

Linked events
E7, E12

Type: The action P3.3 negatively impacts the action of P6.2.
Scenario: P6.2 tries to raise the house's temperature. GM/S is triggered by mistake (e.g. battery fault or short circuit)
and opens the door according to P3.3. If left for longtime, it will affect the ability of P6.2 to increase temperature.
Solution: Close door after some time units, but only if the GIN/S alarm has stopped.

148
P3.3, Linked events

EIO E18

Type: The action of P12.1 overrides the action of P3.3.
Scenario: GIH/S triggers because of a fire and opens the main door and hence occupant A tries to get out. Occupan
B calls and uses the remote access module to close the main door (as he suspects it might have accidentally been
left open). Occupant A is then stuck inside.
Solution: Remote access module is disabled in case of emergencies, such as fire.

149
P4.1,
P4.2

P42 interacts
with system
axiom P4 1

Type: The action of P4.2 overrides the rule of P4.1
Scenario: Occupant A uses the remote control to switch on the TV while at the same time P4.2 is scheduled by
occupant B to turn off the TV. The TV shuts according to the action of P4,2 and hence P4.1 rule has been violated.
Solution: Assign higher priority for the system axiom P4.1.

150
P4.1,
P5.1

P5.1 interacts
with system
axiom P4.1

Type: P4.1 rule overrides the action of P5.1
Scenario: Some A/V devices (like TVs) take several seconds before they are actually on. If during this time, ar
occupant uses the remote control to raise volume very high (using P4.1), then the device will have different volume
setting when it is actually on than the preset sound level defined in P5.1. For example, a parent presets TV volume tc
start at volume X but a child increases volume (using P4.1) to the maximum before the actual start of the TV device.
Solution: Assign higher priority for the action of P5.1.

151
41,
P5,2

Two Interacting
system axion,

Type: The rule of P4.1 overrides the rule of P5.2.
Scenario: An occupant tries to use the remote control of an AN device to go beyond the maximum preset audio leve
of the house. Note that this might be a multi-user environment like parents and children.
Solution: Assign higher priority for the rule of P5.2.

254

Table E.1- Continued: Detected interactions using IRIS and suggested solutions

152
'41,
P12.1

P121 interacts
with System
axiom P4.1

Type: The action of P12.1 overrides the rule of P4.1.

Scenario: Occupant A uses the remote control to turn on the TV (using P4.1 ru le). Occupant B calls and uses the remote access module (P12.1) to turn off all AN devices (as he suspects he forgot to switch them off when he left).
Solution: State last activation information over phone before turning off any AN device.

153
P4.2,

P4.2 interacts
with systeirmember
axiom P5.2

Type: The action of P4.2 overrides the rule of P5.2.
Scenario: Occupant A (e.g. parent) uses P5.2 to set a relatively low maximum audio level for the house. Every family

uses P4.2 to turn on an AN device at overlapping time settings. The combined volume of the several audio
devices will exceed the max volume allowed for the home.
Solution: Assign higher priority of P5.2 and do not allow combined volumes of AN devices to exceed the max. limit.

154
P4.2,
P12.1

Linked events
E7, E18

Type: The action of P12.1 overrides the action of P4.2.
Scenario: Occupant A sets the VCR to turn on and record a show. Occupant B calls from work to completely shu
down all AN devices as he suspects that he left one of them on. This prevents P4.2 action from ever executing.
Solution: State to user over phone if there are any AN devices affected by power cut off or scheduled to work later.

155
P5.1,
P5.2

P5.1 interacts
With system
Axiom P52

Type: The action of P5.1 overrides the rule of P5.2.
Scenario: Occupant A (e.g. parent) sets the maximum audio level of the house to X. Occupant B (e.g. child) presets
audio of TV and CD to levels that when combined (i.e. added to each other) will exceed max audio level of house X.
Solution: Assign higher priority to P5.2 and do not allow combined volumes of AN devices to exceed the max. limit.

156
P5.1,
P12.1

Linked events
Eli, E18

Type: The action of P12.1 overrides the action of P5.1.
Scenario: Occupant A (e.g. parent) receives a phone call from a neighbor that TV is too loud. The parent calls anc
uses remote access module to lower volume of all AN devices. At the same time, occupant B (e.g. child) turns on a
3D recorder expecting a certain audio level, as specified in P5.1, but the parent has lowered volume using P12.1,.
Solution: State over the phone if there are AN devices affected by lowering the volume. In all cases, a priority
assignment is needed in case parent still proceed with lowering the volume.

157
P52

P12.1 interacts-Scenario:
with system
axiom P5.2

Type: The action of P12.1 overrides the rule of P5.2.
Occupant A uses P5.2 to set a low maximum audio level V for the house. Occupant B calls and uses the

remote access module to activate several AN devices that have audio levels which when combined (i.e. added to
aach other) will be greater than V.
Solution: Assign higher priority for P5.2 and do not allow combined volumes of AN devices to exceed the max limit.

158
P52

P16.1 interactsScenario:
With system
axiom P5.2

Type: The action of P16,1 overrides the rule of P5.2.
The already existing audio level of the house is almost at maximum. Occupant A activates various loud

appliances like the food processor and blender. Although appliances are not AN devices they increase the noise
evel of the house and violates the intended purpose of P5.2 which is to keep the house below a certain noise level.
Solution: Reduce the volume of an AN device to compensate for the additional noise of appliances.

159
P6.1, Linked events

Type: Action of P6.2 overrides the action of P6.1.

Scenario: Occupant A uses P6.1 to preset X as the temperature of the house for the whole day. Occupant B is no aware of the preset value of X and sets another temperature V during day using P6.2. If X is different from Y then
later one might override the prior temperature.
Solution: Do not allow different temperature settings in overlapping time intervals.

160
P6.1, Linked events

E7 E12

Type: The action of P10.1 negatively impacts the action of P6.1.

Scenario: P10.1 opens the windows. If the outside temperature is low then the opened windows will negatively impac
P6.1 and prevent the HVAC unit from keeping the room temperature at the predefined temperature setting.
Solution: The system checks for the outside temperature and if the temperature affect the room temperature if the
windows are open then the occupant is prompted to choose between either one of the policies.

161
P6.1, Linked events

E12 E18

Type: The action of P12.1 overrides the action of P6.1.

Scenario: The temperature inside the house gets low and P6.1 triggers. An occupant calls and uses the remote access module to shutdown the HVAC unit before completing its work. A similar scenario can occur when the
occupant calls and uses the remote access module to open the windows.
Solution: User is informed over phone if temperature is affected by the remote access module action

162
P62
ió

Same t er
Event rigg

Type: The action of P10.1 negatively impacts the action of P6.2.
Scenario: P10.1 opens the windows. If the outside temperature is low then the opened windows will negatively impac
P6.2 and prevent the HVAC unit from getting the room temperature to the predefined temperature setting.
Solution: The system checks for the outside temperature and if the temperature affect the room temperature if the
windows are open then the occupant is prompted to choose between either one of the policies.

163
P6.2,
P12.1

Linked events
E7, E18

Type: The action of P12.1 overrides the action of P6.2.
Scenario: P6.2 triggers to increase/decrease the temperature to the predefined settings. The occupant calls and uses
the remote access module to shutdown the HVAC unit before the predefined temperature has been reached. Or the
occupant calls and uses the remote access module to open the windows.
Solution: The occupant is informed over the phone if the temperature is affected by the action of the remote access
module and is asked to confirm the action.

255

Table Ed- Continued: Detected interactions using IRIS and suggested solutions

164
P8.1,
P8.2

Linked events
E4, E13

Type: The action of P8.1 overrides the action of P8.2.
Scenario: An occupant wakes up at night and P8.2 triggers to increase the tight to a maximum over 2 minutes. The
occupant uses light dimmer to decrease the lights intensity (P8.1). Thus both are not able to execute at same time.
Solution: Assign higher priority to manual light dimmer and terminate the action of P8.2 if light dimmer is used.

165
P8.1,
P8.4

Linked events
E13, E15

Type: The action of P8.1 overrides the action of P8.4.
Scenario: An occupant uses the light dimmer to decrease the light's intensity (P8.1) but at the same time the nigh
starts and P8.4 tries to turn on and increase the intensity of lights to the specified maximum.
Solution: Assign higher priority to manual light dimmer and terminate the action of P8.4 if light dimmer is used.

166
P8.1,
P12.1

Linked
E13, E18

Type: The action of P12.1 overrides the action of P8.1.
Scenario: Occupant A gets home and uses the light dimmer to increase the light intensity (P8.1). Occupant B calls
and uses the remote access module to switch off all lights as he suspects he left them on.
Solution: Assign higher priority to manual light dimmer and terminate the action of P12.1 if light dimmer is used.

167
P8.2,
P12.1

Linked events
E4, E18

Type: The action of P12.1 is used to cancel the action of P8.2.
Scenario: Occupant A gets up at night and thus triggering P8.2 to increase light intensity. Occupant B calls and uses
the remote access module to switch off all lights as he suspects he left them on not knowing that occupant A is home
Solution: Inform the user over the phone that someone is at home and ask for confirmation before executing actions.

168
P83
P12

Linked events
E14 E18

Type: The action of P8.3 overrides the action of P12.1.
Scenario: An occupant uses P12.1 to switch on the lights in the garage just before his arrival. For some reason he is
15 minutes late (P8.3 has now switched off the lights) and when he gets into the garage the lights are off.
Solution: The occupant is informed over the phone if he wants to double the time before P8.3 switches off the lights
Then the occupant can decide to accept or not.

169
P84
P12

Linked events
E115, E18

Type: The action of P12.1 overrides the action of P8.4.
Scenario: Occupant A activates P8.4 when she gets home and takes a shower. Night begins and P8.4 switches or
the lights including the bathroom light. Occupant B calls and uses the remote access module (1312.1) to switch offal
ights not knowing that occupant A is home.
Solution: Inform user over the phone that someone is at home and ask for confirmation before executing the actions.

170
P9.1,
P9.2

Linked events
E7, E15

Type: The action of P9.1 overrides the action of P9.2.
Scenario: Occupant A uses P9.1 to set the curtains/blinds to open-at 6 PM (same time night starts). Occupant B sets
curtains/blinds to close when night begins using P9.2.
Solution: Assign higher priority to either one of them.

171
P9.1,
P12.1

Linked events
E7, El 8

Type: The action of 1312.1 overrides the action of 139.1;
Scenario: Occupant A sets the curtains to open at time X using P9.1. When time X comes, the curtains start opening
Occupant B calls and uses the remote access module to close curtains thus cancelling action of P9.1.
Solution: Inform user over phone of affected policies actions (129.11) and ask for confirmation before execution.

172
P9.2,
1312,11

_inked events
E15, E18

Type: The action of P12.1 overrides the action of P9.2
Scenario: Occupant A sets the curtains to open in the early morning using P9.2 and when the day begins the curtains
open. Occupant B, who spent the night at work, calls and uses the remote access module to close curtains (as he
suspects he might have left them open) thus cancelling action of P9.2.
Solution: Inform the user over phone of affected policies actions (P9.2) and that there is someone at home who hac
set a new policy that uses P9.2. Then user is asked for confirmation before proceeding to execute any commands.

173
M0.11,
P12. 1'

inked events
7 E18

- '

Type: The action of P12.1 overrides the action of P10.1.

Scenario: Occupant A sets the windows to open at time X using P10.1. At time X, the windows starts opening
Occupant B calls and uses the remote access module to close all windows thus cancelling action of P10.1.
Solution: Inform the user over the phone of affected policies actions (13110.11) and that there is someone at home whc
set a new policy that uses P10.1. Then user is asked for confirmation before proceeding to execute any commands.

174
1311 .1,
P12.1'

e events ents

=-17,
'

Type: The action of P12.1 overrides the action of P11.1.
Scenario: Occupant A takes a shower and leaves without tightly closing the water tap. The water starts filling the tub
till it reaches 75%. P11.1 triggers and starts closing the water tap. Occupant B calls and uses the remote access
module to open the water tap in shower for 10 minutes to fill the tub before his arrival and thus flooding bathroom.
Solution: Assign higher priority to P11.1.

175
P12.1,
P13.1

P121 interacts
Withs ste
m 1

axio Solution:

Type: The action of P12.1 overrides the rule of P13.1.
Scenario: When one occupant calls and uses the remote access module (P12.1) for a long time this violates the
presence of a telephone line enforced by P13.1 as they both use the same telephone line.

Do not allow extended use of the remote access module beyond a certain time limit.

176
P12.1,
P132

m trigger
eventE18

Type: Next state non-determinism between P12.1 and P13.2.
Scenario: The system will have a next state non-determinism if the occupant assigns the number of rings to activate
the remote access module and the answer machine to be the same. The system does not know which next state I
should transfer to: the answer machine or the remote access module.
Solution: Assign higher priority to either one of them.

256

Table E.1- Continued: Detected interactions using IRIS and suggested solutions

177
P12.1,
P14.1

Linked events
E7, E18

Type: The action of P12.1 overrides the rule of P14.1.
Scenario: A parent uses P14.1 to prevent any activation of the stove while s/he is out. A child uses a cell phone to
call the home phone number and uses the remote access module to activate the stove.
Solution: Assign higher priority to P14.1.

178
P12.1,
P14.2

Linked events
E10, E18

Type: The action of P12.1 overrides the action of P14.2.
Scenario: The G/I-f/S triggers and shuts down the stove to prevent any fire (P14.1). Occupant A calls and uses the
remote access module (P12.1) to turn on the oven to be heated until he gets home.
Solution: Assign higher priority to P14.2.

179
P12.1,
P15.1

Linked events
E18, E19

Type: The action of P12.1 overrides the action of P15.1.
Scenario: Occupant A is cooking and the humidity sensor triggers and turns on the kitchen fan (P15.1). Occupant B
calls, not knowing that occupant A is home, and uses the remote access module to shutdown all kitchen appliances
including the kitchen fan as he suspects he might have accidentally left them on.
Solution: Inform user over phone of affected policies actions (P15.1) and that there is someone at home.

180
P12.1,
P16.1

P12,1
interacts

With system
axiom P16.1

Type: The action of P12.1 overrides the action of P16.1.
Scenario: Occupant A at home uses the remote control to run the food processor (P16.1). Occupant B, not
knowing that occupant A is home, calls and uses the remote access module to switch off all kitchen appliances as
he suspects he might has left something switched on.
Solution: Inform the occupant over the phone of affected policies actions (P16.1) and that there is someone at
home. Then the occupant is asked for confirmation before executing any commands.

181
P14.1,
P16.1

P14.1
interacts

With system
axiom P16.1

Type: The rule of P16.1 overrides the action of P14.1
Scenario: P16.1 enforces that any appliances including the stove can be controlled by the remote control. What
happens if a parent uses P14.1 to switch off the stove while being away and a child finds the remote control and
use it to turn on the stove? If the stove turns on then P14.1 was cancelled; if not, then P16.1 was violated.
Solution: Assign highe,priorityto P14.1.

182
P14.2,

P14.2
interacts

With system
axiom P16.1

Type: The rule of P16.1 overrides the action of P14.2.
Scenario: P16.1 enforces that any appliances including the stove can be controlled by the remote control. What
happens if the GIH/S triggers (maybe falsely) P14.2 to switch off the stove and a child finds the remote control and
insists on using it to turn on stove. If the stove turns on then P14.2 was overridden. If not, then P16.1 was violated.
Solution: Assign higher priority to PI 4.2.

183
P15.1,
P16.1

P15.1
interacts

With system
axiom P16.1

Type: The action of P15.1 overrides the rule of P16.2.
Scenario: The humidity sensor is triggered and P15.1 turns on kitchen fan while. At the same time, occupant uses
remote control to switch off kitchen fan. The fan will switch off for a second but then turns on again because the
humidity sensor is still triggered. P14.2 cancelled remote control action although occupant wants to switch off the
fan.
Solution: Assign human control a higher priority.

257

APPENDIX F: THE IRIS-TS PROTOTYPE DXL CODE

This Appendix presents the DXL code developed for IRIS-TS. The complete DXL code

of the tool is more than 70 pages using the format below. Therefore, only the code for

executing the first step is presented below to give a feeling of how the DXL code that

was written for the IRIS-TS looks like.

Detecting Requirements Interactions using Semi-Formal
methods IRIS

Copyright © 2004 Mohamed Shehata and Tim Yuc.
All tights reserved.
University of Calgary - Canada

Version 3.0
Date: July 20th, 2004

This Script will display a welcome Message and determine
whether to proceed or not

** * * * **** * ****** **** *** ******* ***** *** *

DB graphBox = create ("Welcome to IRIS",
sty1eFixedstyleFloatingIstyleCentered)

void repaint(DBE graph)
realBackground(graph, realColor_NewGrey4)
realColor(graph, realColor_Yellow)
font(graph, 1,1)
draw(graph, 10,50, "This Program Will Detect

Requirement Interactions Using IRIS")

)

I/repaint
DBE graph = canvas(graphBox, 650, 100, repaint)

I/Building the Callbacks
void ackHalt(DB graphBox) {
if(confinn("Are you sure to really close?"))

release graphBox
halt

return

void proeeed(DB graphBox)
release graphBox

// Adding Buttons
apply(graphBox, "Proceed", proceed)
close(graphBox, true, ackHalt)
block graphBox

This Script will APPLY THE FIRST STEP OF IRIS WHCIH
IS CLASSIFYING THE REQUIREMENTS INTO SYSTEM
AXIOMS AND DYNAMIC BEHAVIOUR

/' INITIALAIZAT1ON**************/
Folder myF = current
Module myM=current
/'I'**''*'K CONSTANTS******************/

string sRequirernentType = "Classification"
string sRequirementTypeDef = "RequirementType"
string sRcquirementAttrType = "RequirernentTypeAttr"
string sRequirementAttrEnum[] = { "Dynamic Behaviour",
"System Axiom", "Resource", "N/A")

/**************Code

mt iRequirernentlypeWidth = 200
string slnitFileNarne = "I" narne(rnyF) "I" namne(rnyM)
string sFileName

/** Create a dialog box to ask for requirement database **/
DB dbGetFileName = create "Input File Name"

label(dbGetFileNaie," Input the file name that contains the
set of requirements to be checked for interactions: \n If you
wish to stop the program and not to proceed press the close
button ")

II DBEdbeFileNarne= field (dbGetFileName, "File Name:

"/Smart Homes/Requirements", 128)

DBE dbeFileName = fileName (dbGetFileName,
slnitFileName);

/** Creates the callback **/
void getFileNamne(DB dbGetFileName)

sFileNarne = get dbeFileName
release dbGetFileName

void closegetFileNameDB (DB dbGetFileName) {
release dbGetFileName
halt

}

258

Ix" Assign buttons to dialog box for requirement database **/
apply (dbGetFileName, "Use", getFileName)
close (dbGetFileName, true, closegetFileNameDB)
block dbGetFileName
Module rnCunent = edit (sFileName, true)
Column cindex
string sColumnTitle
mtn = -t
mt loopindex = 0
Column cReqTypeHandle

/'' See if sRequiieinentAttrType needs to be created **/
AttrType at = find (inCurrent, sRequirementAttrType)
if (at== null)

string sErrMessage =
AttrType at = create (sRequirementAttrType,

sRequirementAttrEnum, sErrMessage)
if (!null sErrMessage) {

print "Attribute type creation failed!\n"
halt

)

/** Create attribute "RequirementType" I
create type sRequircmentAtti'l'ype attribute
sRequirementlypeDef

/*'' Loop through all the column to find whether the
Classification column has been created**/
for clndex in (current Module) do

sColumnTitle = title(clndex)
if (inatches(sColumnTitle, sRequirementType))

n = loopindex
break

loopindex++

/** Create Classification column if has not been created 1K/
if (n == -1)

n = loopindex
cReqTypeHandle = insert (column n)
title (cReqTypeHandle, sRequirementType)
width (cReqTypeHandle,

iRequirementTypeWidth)
attribute (cReqTypeHandle,

sRequireinentTypeDef)
save (current Module)

} else {
cReqTypeHandle = column n

refresh (current Module)

/** Creates a dialog box to ask for requirement database **/
DB dbGetSkipToReqName = create "Requirement to skip to"
label(dbGetSkipToReqName," Enter the name of the
requirement you wish to skip to and press SKIP. If you wish
to start from the begining of the document with NO skipping
press close")
DBE dbeSkipToReqName = field (dbGetSkipToReqName,
"Requirement: ", "Requirement", 128)
string sSkipToReqName =
bool bFoundSjcipToReqNamne = false

/***********Creates the callback
void getSkipToReqName(DB dbGetSkipToReqName) {

sSkipToReqName = get dbeSkipToReqName
release dbGetSkipToReqNaine

}
void closeSkipToReqName (DB dbGetSkipToReqName) {

bFoundSkipToReqName = true
release dbGetSkipToReqName

/' Assign buttons to dialog box for req. database. **/
apply (dbGetSkipToReqName, "Skip", getSkipToReqNarne)
close (dbGetSkipToReqName, true, closeSkipToReqNaine)
block dbGetSkipToRcqNaine

string sReqName
intiRC
Buffer bufl'emnp = create
Object o
string sClassifyReasons [J = ("Dynamic Behaviour", "System
Axiom", "Resource", "N/A", "Finish"}
Module inaCuirent = edit (sFileName, true)
for o in (current Module) do

sReqNanic = o."Object Heading"

bufFemp = sReqName

if(IbFoundSkipToReqName)

if (contains (bufTemp,
sSkipToReqNamne, 0) 0)

continue
else

bFoundSkipToReqName =
true

For each requirement, prompt the user to classify
requirement type **/

DB dbPromnptForClassification = create ("Requirements
Classification")
mt choice = query (dbPromptFomClassification,
"Requirement: \n \n "sReqName "\n \n is Classified as:

sClassifiReasons)
if(choice 4)

break;
} else if (choice 0)

o.sRequirementTypeDef "Dynamic
Behaviour"

) else if(choice I)

o.sRequirementTypeDef = "System Axiom"
} else if (choice = 2)

o.sRequircmnentTypeDef "Resource"
) else if (choice = 3)

}

{

259

if(!bFoundSkipToReqNarne)
warningBox "String not found!"

/' Defintions for defining the columns **/
n-1
loopindex = 0

/** Loop through all the columns to find whether
classificationColumn is created **/
for cindex in (current Module) do

{
sColumnTitle = title (clndex)
if(sColurnnlitle "Classification")

n = loopindex
break;

loopindex++

}

/** Create the ClassificationColumn if one has not been
created. **/
if (n == -1)

{
n =Ioopindex
Column classificationColumn = insert(column n)
title (classificationColumn, "Classification")
width (classificationColurnn, 200)
attribute (classificationColurnn, "Requirementlype")
save (current Module)

refresh (current Module)

/ Confirm if user want to proceed to IRIS step 2 or stop *1

DB goStepTwoBox = create ("Proceed to Step 2 of IRIS",
sty1eFixedstyleFloatingIstyleCentered)

void repaintl(DBE goStepTwo) {
realBackground(goStepTwo, realColor_NewGrey4)
realColor(goStepTwo, realColor_Yellow)
font(goStepTwo, 1,1)
draw(goStepTwo, 10,30, "Do you wish to proceed to step

2 of IRIS:")
draw(goStepTwo, 10,60, "Requirements Attributes

Idenitifcation")

I/repaint
DBE goStepTwo = canvas(goStepTwoBox, 450, 80,
repaintl)

II Building the Callbacks

void ackHaltl(DB goStepTwoBox) {
if(confina("Are you sure to really Exit?"))

release goStepTwoBox
halt

return

void proceed l(DB goStepTwoBox) {
release goStepTwoBox

}

II Adding Buttons
apply(goStepTwoBox, "Proceed", proceed 1)
closc(goStepTwoBox, true, ackHaltl)
block goStepTwoBox

End of Step I of IRIS

