UNIVERSITY OF

CALGARY

L5

University of Calgary
PRISM: University of Calgary's Digital Repository

Graduate Studies Legacy Theses

2005

Detecting requirements interactions using
semi-formal methods

Shehata, Mohamed Sami Abbass

Shehata, M. S. (2005). Detecting requirements interactions using semi-formal methods
(Unpublished doctoral thesis). University of Calgary, Calgary, AB. doi:10.11575/PRISM/2399
http://hdl.handle.net/1880/103400

doctoral thesis

University of Calgary graduate students retain copyright ownership and moral rights for their
thesis. You may use this material in any way that is permitted by the Copyright Act or through
licensing that has been assigned to the document. For uses that are not allowable under
copyright legislation or licensing, you are required to seek permission.

Downloaded from PRISM: https://prism.ucalgary.ca

UNIVERSITY OF CALGARY

Detecting Requirements Interactions Using Semi-Formal Methods
by
Mohamed Sami Abbass Shehata
A THESIS
SUBMITTED TO THE FACULTY OF GRADUATE ST UDIES

IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE

DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

CALGARY, ALBERTA

JULY, 2005

© Mohamed Shehata 2005

UNIVERSITY OF CALGARY

FACULTY OF GRADUATE STUDIES

The undersigned certify that they have read, and recommend to the Faculty of Graduate
Studies for acceptance, a thesis entitled "Detecting Requirements Interactions Using
Semi-Formal Methods" submitted by Mohamed Sami Abbass Shehata in partial

fulfilment of the requirements of the degree of Doctor of Philosophy.

Supervisor, Dr. A. Eberlein,
Department of Electrical and Computer Engineering

AW

Co- Supervisor, Dr. ‘A Fapojuwo,
Department of Electrical and Computer Engineering

Dr. R. Kremer,
Department of Computer Science

Dr. M. Husein,
Department of Chemical and Petroleum Engineering

External Reader, Dr. M. Reformat,
University of Alberta

O o5

Date

1

Abstract

Finding ways of detecting interactions between requirements is essential in order to
develop a set of clear requirements, which serves as a foundation for successful software
development. Detecting requirements interactions as early as possible helps avoid high
repair costs.

This thesis presents IRIS, Identifying Requirements Interactions using Semi-formal
methods, which is a semi-formal approach for detecting requirements interactions. IRIS
is a systematic six step approach that uses tables, graphs, interaction detection scenarios,
and subjective judgment to detect requirements interactions in software systems. IRIS has
the advantage of not only being domain independent but also customizable towards a
specific domain in order to enhance its performance. IRIS helps reduce the number of
necessary pair-wise comparisons between requirements that have to be performed
informally by a human expert. This reduction is achieved by discarding irrelevant
comparisons that will not lead to interactions.

A general requirements interaction taxonomy was developed for identifying when two
requirements are considered interacting. This requirements interaction taxonomy
provides interaction detection scenarios that are used within IRIS for detecting
interactions.

To validate IRIS, it was applied to three different case studies from different domains. In
the first case study, the lift system, IRIS was able to detect 7 interactions as opposed to 6
interactions that were detected by another approach reported in literature. IRIS was also
able to achieve 17.6% reduction in the number of comparisohs. The second case study
analyzed telephony features and IRIS was able to detect 21 interactions with 17.9% fewer

il

feature comparisons. This result is very good as other approaches that detected 22
interactions all used formal methods. _ The third case study looked at smart homes
policies. IRIS detected 83 interactions with 19.3% fewer policy comparisons. The smart
homes case study is a major contribution as the results from it serve as the first fully
documented analysis of interactions between smart homes policies in literature.

To facilitate the application of IRIS, a tool was implemented. IRIS-Tool Support (IRIS-
TS) is built as an add-on module for DOORS which is a well-known commercial

requirements management tool.

v

Acknowledgements

First of all, I want to thank God almighty for giving me the strength to pursue this degree.
Looking back at the last four years, many people come to my mind who contributed in
one way or another in this thesis.

I always considered that getting a Ph.D. degree is not only about conducting research, but
rather it involves interacting with people and learning from their experience and
mentalities. I was very lucky in working with two great supervisors, Dr. Armin Eberlein
and Dr. Abraham Fapojuwo.

I would like to thank Dr. Armin Eberlein for his deep support and guidance in my
research from inception through to completion. I'm really grateful to all the
encouragement and inspiration that he gave to me.

I also want to thank Dr. Abraham Fapojuwo who helped me greatly during my research
a:nd provided me with huge valuable feedback during my research.

I also want to thank Dr. Rob Kremer for his feed back on this thesis.

Additionally, I would like to thank the Egyptian Higher Ministry of Education for the
financial support that they covered me during my research course.

Moreover, I would like to thank all my fellow researchers in my research group, Abdallah
Mohamed, Jiang Li, Simon Pfeiffer, Quin Zhang, and Majid Moussavi.

I would like also to thank Tim Yue who participated with me in creating the code for the
tool support created in this thesis and presented in Chapter)ﬂ/ 3

Finally, a big thank you goes to my family especially my parents and my wife Samar who
continuously provided me with love, care, and encouragement during the period of this

research.

Dedication
| I would like to dedicate my thesis to:

My Parents: Sami and Nawal

My Wife: Samar

My Daughters: Dina and Noha

My Son: Ahmed

vi

Table of Contents

APPIOVAL PAGE ..cviveriieniiiiiieicceniteicicsttnt sttt ettt b s e b s ene ii
ADSEIACE 1eevveereeieereeieesteeee st see st ste et esbessts et et e b s s s sa b s a s a e b s e b e e bt e rn e b et ba bt esbaenes i
DEAICALION 1evvierrerreerreereereeereesseesseesessnesstessessesesesstosatossesssessssssnssssessasssassssensassassssossnesssssesss vi
TaDLE OF CONLENLS ..vvevverrireerierieterteereeeertetestesterersesttetarestssresbesre e s ersssbessasssassesassnesaensans vii
LISt OF TaADIES .veevieveireireieirieseenesreseseesstestesteneesssesstesasssssbssrsetseansaessessaseesa et entensesanenesatons xi
List of Figures and THUSrAtionsccueueiiminiienniiineinesiccnccstcnnenincinesenee XV
List of Symbols and AbDreviations.........c.cciviierernieisinrirnninieisecsisesrescieesssenenes Xvii
CHAPTER ONE: INTRODUCTIONooccereerenriiiiiiniiiiesieeeresresissiessessesassseesesssessenssnes 1
1.1 Introduction and Motivation of Researchcocovviiiiviiiniininiieieencee 1
1.2 Thesis CONtIIDULIONS ...vveveeerirereeriereeiereeteneeeresiiieiresrsere e s ers s ssase s essenessessseseens 4
1.2.1 IRIS: A Semi-Formal Approach for Detecting Requirements Interactions....... 4
1.2.2 Applying IRIS to detect Interactions in different domainsc.cecevuivririeiennns 6
1.2.3 A General Requirements Interaction TaXONOILY ..cceeveervesvervesreeriesiesmenisiinnnnniens 6
1.2.4 A Tool Support for IRIS Integrated in the DOORS Requirements Management
SOTEWATE .veevieeiieieteereerreeeesseesseeseesssessesssesseesssessassssssssnssesaessassesssasssasssesatensssantennssass 7

1.3 ThESIS OULLINE vovivvieererrirereereeeereeresteseeesesetenessvesuesateseenssaserasssesbaasessna s essesaseneeanesones 7
CHAPTER TWO: CURRENT STATE OF THE ARTcoiiiiirieiecciicrcicinines 9
2.1 INtrOAUCHON ..ovtivvenrecreeteeti et etest et ettt bttt sbs s re e e s esa e s e a b e sss st sresanenesansnnenas 9
2.2 Surveying the Feature Interactions AT€a.......ccceeerereenerieienineninenniiniiinerineenens 10
2.2.1 The Feature Interactions Problem ... 10
2.2.2 Methodology for Surveying the Feature Interaction Approaches.................... 11
2.2.3 Detecting Features Interactions using Semi-Formal Approaches.................. 12
2.2.4 Detecting Feature Interactions using Formal Approaches.......c.ccocevivurivennnnnn. 17

2.3 Surveying the Requirements Interactions Management Area........c.c.oevevevennnneneis 30
2.3.1 The requirements Interaction Management Problemocccoveevnnvininnnnnnnnn 30
2.3.2 Methodology for Surveying the Requirements Interaction Approaches.......... 31
2.3.3 Classification Based Approaches.......couvevininiiienienoninnenieeceecenentenieinens 32
2.3.4 Patterns Based APProachesccoeciviviiiiiiiniinenisinnssiesesscscsnienessesuisnsnnns 35
2.3.5 Al Planning Based ApProaches......c.coueviiniinimnimiiiiniennnnencccncnisieninne 36
2.3.6 Scenario Analysis Based Approaches......ccvuveeniiorininieninnincncniencniecnn 38

2.4 SUIIINALY ..veeeverereierrrerateeresiestessossessesnesssssssesssastssssessesssassstastessesisesssesssssesssesnens 39
CHAPTER THREE: A REQUIREMENTS INTERACTION TAXONOMYccccvevvene 40
3.1 INLTOAUCHION ccvvieerieereeeererereeeeeeneeeneeseeeeeesstesstsesanresassesssee s aenssasssanessasssnesonnasosnesans 40
3.2 System DecomPOSITION.....ccciiiririiiiiiinrret ettt ettt 42
3.2.1 The Concept of System Decomposition.......ccuevuerireiniereeienieniinienieienenenncninns 42
3.2.2 System Representation using AHITDULEScovviviiiiieniiiiiecccn 43

vii

3.3 The proposed Interaction TaXONOmMYcccocvecveriirievinruenniiiiiininiee e 47

3.3.1 General ATCHhILECIUIE ...cuveeviiiieieevenieerreereeteer et eteeeesaeenesbe st e e saeesarosanesnen 47
3.3.2 First Layer: Main Interaction Categoriesc..ccoovevrimvririirieriinienineiienieeieneas 49
3.3.3 Second Layer: Interaction SubCategOriesccuviivirieniinenieiiereieeeieeeneeeeaens 51
3.3.4 Third Layer: Interaction TYPES.....ccceeirieriririnierieinrinininienieieinssenieneneesnenns 53
3.3.5 Fourth Layer: Interaction SCEnarioscceeiiiivrmrimnieniinnninisnese e 59
3.4 Comparison of the Proposed Taxonomy to Already Existing Taxonomies............ 66
3.5 Limitations of the Proposed Interaction Taxonomy......... eeereeereeeraeereeeteessaneaaens 69
3.6 SUIMNALY .evveerenreeeerereerireeresiesitateisssessseraeseessassessassssse st entassetetesstentonssssssassinsanens 70
CHAPTER FOUR: IRIS: IDENTIFYING REQUIREMENTS INTERACTIONS USING
SENI-FORMAL METHODS. ..ottt eerererestcsntsnrestesessessasssssssssensessesssenssssssnenes 71
4.1 TOEEOAUCHIOM coevviveereerrereeterreeseeesestestesseesesetenesssesaesasssnesteabasesbebesssassassessassesasensesnsones 71
4.2 OVerview OFTRISvvioireeieecieeiteetr ettt et sasesbnesns 72
4.2.1 GENeral OULHIIEovveeereerreeiierteesieereestsesetests e sss e rasesassne s st eessnesstessnesane 72
4.2 .2 Detecting Interaction with IRIS at Different Abstraction Levels.................... 73
4.2.3 TRIS CustomiZabilitycoeererrvererririiniiiiiniinrininieerneissesenesesese s satennenines 74
4.3 TRIS: Class Model and DesCriPtion. ...ccceeeeiriinirniiiiiienienesiesessesenseneessessessneuesnes 75
4.3.1 A Class Model for IRIS.....c.coierieerimrreniioriniinieineere i esresstestssieeseesesessesnesanes 75
4.3.2 Step 1: Requirements ClassifiCationcoeceveveneseeeciinniniiiniiniieieeen 77
4.3.3 Step 2: Requirements Attributes Identificationccoeveeceevccrcennenes rerenrerenes 78
4.3.4 Step 3: Trigger Events EXtractioncocoeeenineeenncnniiiiiiiiiisn, 80
4.3.5 Step 4: Linked Events Identification ..o 81
4.3.6 Step 5: Trigger Events Charts Representationc.coceeveceniniiiinininiiininiens 84-
4.3.7 Step 6: Interactions DeteCtIONc.eveiereererererieririreneeieieiiiici s 86
4.4 Advantages of the Proposed IRIS Approachcoeveveininniciicniiininnniinn, 90
4.5 Limitations of the Proposed IRIS Approach........ccuvmecineininiennencncnneiniininnen. 93
4.6 Comparing IRIS to other Semi-Formal Approaches in the Literature.................... 95
4.7 SUITIIIALY «.evveverueorensenersessessesisssorioseasesosesassasssstsssessssensestanststossssmossasisensesssssssesssnes 97
CHAPTER FIVE: IRIS CUSTOMIZATIONcccovvimiiriiiinrentintinenneteeeniescsntssesasenesanes 98
5.1 TNEEOAUCHION ..ccvvivierriereeieerreereesiaeseeetesetesaresueesnesstesbesrsseasesssasss st esssessaaastensesantsnsens 98
5.2 The Concept of IRIS CustOmiZationceeeereveirerininnnieeseneesinciiiic s 99
5.3 TRIS HOOKS .ouviireviiitreirireereierteesetessusessnesneessesesssssstseossnessessssansssassassssessassssssesantesans 100
5.3.1 OVEIVIEW cvereeineeiereeerreeetveecreesasssseeessresssesssasssssssssessnesssenassessssessssesssssessessstons 100
5.3.2 HOOKS CharacteriStiCS. . eereeerrererreereeeneesieisreisnreonsreeseresneessessaesssesssseesssesonnens 101
5.4 TRIS PIUZ-INS cveurvererieriniereinciiriinistesese et sse st sseas et snebesentsssassnsnssas e asnases 105
5.4.1 General Structure of @ PIUg-in.....covvviiiiniiiiniiiniceecnine 105
5.4.2 PIUG-I0 TYPC.rirreiriiiriiriniiiiiiitir ettt 106
5.4.3 Plug-in Main BOdYccccooviiiiiiiniinieice ettt 106
5.4.4 PIug-in LOCALION c.c.veuveveiereiriciniinietcertcet sttt 107
5.4.5 Available Plug-ins for IRIS ..o 107
5.5 SUITINIATY .vevvverreerveersenuesneeeosessmiessesssessessesissessassessssssesnseesesssesssesstssnsssssssssssssnsens 113
CHAPTER SIX: APPLYING IRIS IN THE CONTROL DOMAIN - THE LIFT
SYSTEM CASE STUDY ..ooovtierteiieriieresteeeseteseeeseeesesestessesssssssssesssserssasassssssssosasssassaes 114
6.1 INtTOAUCHON c.vveeevreerieereeerteeeresetaeeie s ee et eete s sbessas s sbresbassrse e bbesebassrasasssasssaasnsanes 114
6.2 The Lift System ReqUITEMENtS. ...c.ccoveveriviiiiiiniiiiineriirenestssesesssssessesestesnens 115

6.3 Customizing IRIS for the Lift System Case Studyccceeeevervveceeeenenieniinincnennn. 116

6.3.1 Plug-ins used in the Lift System Case Studycccocvvivviriivininiincninniennnn. 116
6.3.2 Assumptions used in the Lift System Case Study.......ccccevevevrivieniiinininninnnns 117
6.4 Applying IRIS to Detect Interactions in the Lift System Case Study................... 117
6.4.1 Using the Plug-in “Graphical representation of individual requirements”.... 117
6.4.2 Step 1: Requirements Classificationocoooevreeminniiininicenncecneeieeneee 118
6.4.3 Step 2: Requirements Attributes Identification.........eceeeinreinineenenncenc. 118
6.4.4 Step 3: Trigger Events EXtractioncooovveeieeieiininininininicincenceeniencnccnns 120
6.4.5 Step 4: Linked Events Identification........ccoeveeeiemeinienninnincineicieinens 120
6.4.6 Step 5: Trigger Events Charts Representationoeeeeeceieeenenenencninneicncn. 120
6.4.7 Step 6: Interaction DeteCtion......oovveeereriivieiininenieinieestesreee s 122
6.5 Discussion 0f the RESUILSccovveriererrirnienientiienieireeis ettt srse s seneas 127
6.5.1 Reduction in Number of COmMPAriSONS........cceveeiiirreiriiinsiesnsesisenieseencessenees 127
6.5.2 Comparing IRIS Results with the Results by Heisel ez al. in [17, 149]......... 128
6.6 SUIMINIATY ...veuvervenererenernieresientesiosessessentesesssersssesssssssesssssesassessosassassestastestensssesnssssns 129
CHAPTER SEVEN: APPLYING IRIS IN THE TELECOMMUNICATIONS DOMAIN
- THE TELEPHONY FEATURES CASE STDUY ...cooviiiiiiinrintineninneiieseeicenne 130
7.1 Introductioneeeeerceeerieiniinininieinieinenns e eeereereeeaesrresrerstesseeereseraesenneearens 130
7.2 The Telephony FEAtUIEScccveiviviiinririiirreineriense sttt eciestsstesenes 131
7.3 Customizing IRIS for the Telephony Features Case Studyccoevceievecccnnace 132
7.3.1 Plug-ins used in the Telephony Features Case Studyccoceevenirirencncnecnnene. 132
7.3.2 Assumptions used in the Telephony Features Case Study.........cocvevevvvvevevennes 132
7.4 Applying IRIS to Detect Interactions in the Telephony Features Case Study...... 132
7.4.1 Step 1: Features Classificationocoevereeiinieniiniininencniencecntiieiins 132
7.4.2 Step 2: Features Attributes Identification........ooeeviioneinnninnnninnn 132
7.4.3 Step 3: Trigger Events EXtraction ... 134
7.4.4 Step 4: Linked Events Identificationccoeveinincnniniiniiiin 134
7.4.5 Step 5: Trigger Events Charts Representationeeeceeveeerncceeeniiisininanacn. 135
7.4.6 Step 6: Interaction Detection.......c.cvveveenenenieiiineienininiie SO 137
7.5 Discussion 0f the RESULLS ...cc.cveerereerrereerniniiiinieiint et sssese s essessessesnessees 141
7.5.1 Reduction in Number of COMPAriSOnS.......couverviieirieninisnesiennenienennencsesnenes 141
7.5.2 Comparing IRIS Results with Other Results Reported in the Literature........ 141
7.6 SUITINIALY ...vevervenereeeeneseeesessraetosesissensesessesesssssssssasasssssssesentssentoseusorestsssssssssnssssssens 144
CHAPTER EIGHT: APPLYING IRIS IN THE POLICIES DOMAIN - THE SMART
HOMES CASE STUDY .oveeieieresteeneetsreseoreeessesssssessesssesseesissessssassasssstesssssessssssonens 145
8.1 TNHTOQUCHION vueeiveietreeerieerreerteeeeresereeseceneesrasratostssssseerrsesssseassassnassasesnesssstesssesones 145
8.2 Features and POLICIES . .cuiiiiriereerertieiinciieiienis ittt srss e ss s ssn e ssnens 147
8.2.1 Understanding Features and POLICIESc.ccevvieiriniiirniioeniiininencniiiiiiniices 147
8.2.2 Relationship between Features and POIICIEScovervvieienicnieieicinicinininnns 148
8.2.3 Features and Policies in a Smart Home Architecture........ccoovevvevveneriencennnnnnes 150
8.2.4 Simple Policies and Compound POLCIES.cccvevrirmerecnininnciniiiiiiciiinen 151
8.3 Smart HOMmMES FEAUIESccvveereierireerirereeeieiiniiiietesrtenreentesessassaesensessssesssasonsesonee 152
8.4 Customizing IRIS for the Smart Homes Case Study i.....ccceoevevivireeicninieiecnnencncncnes 157
8.4.1 Plug-ins used in the Smart Homes Case Studyccoevereevenvereeienninnenennncnen 157
8.4.2 Assumptions used in the Smart Homes Case Study......coeeereverinieicncncnncnce 159

ix

8.5 Applying IRIS to Detect Interactions in the Smart Homes Case Study................ 160
8.5.1 Using Plug-ins “Functionalities Identification” and “Parameters Assignment”160

8.5.2 Step 1: Simple Policies Classification..........cocevveererviiniiviiniinininiisicniniiinne 164
8.5.3 Step 2: Simple Policies Attributes Identification........ccoeeeievieinininiiinnnncs 165
8.5.4 Step 3: Trigger Events EXtractionccccoviiviivininininininnieieieenecenees 168
8.5.5 Step 4: Linked Events Identification.......cccevvevenrinenniiiivennns rerereeereesneenes 169
8.5.6 Step 5: Trigger Events Charts Representationuoeeeeienniniencinenienennns 170
8.5.7 Step 6: Interaction Detection........cvvviveviirenririeiniineieeeester et 172
8.6 Discussion of the ReSUltscceveeeeveeviniiiiiniiiiiiiiir e 178
8.6.1 Reduction in Number of CompariSONS.......couveeririierieniennieniieeitenrsnsssnnesceaes 178
8.6.2 Comparing IRIS Results with Other Results Reported in the Literature........ 178
8.7 SUIMIMIALY .e.evernreeueeererereisieeieiesstesaiessisinesbesraeasseasseba s b sestessaesssssesstonsessaesntesssesssins 179
CHAPTER NINE: IRIS TOOL SUPPORTcceoiitiiiiiiiiniiinicreneieiesnessssesnseenaeene 180
0.1 TNtrOAUCHION .. evverrerirerveenteeeeseesetesteritesbesuteteestesar et sebesssasssessa s b besaessassnassnessasnsess 180
9.2 Architecture Of IRIS=TS .. .coieirrierrereecrreeniitisise ittt et ers e s e se e e s 181
9.3 A prototype Of IRIS-T'S....cioiimiriiiriiniiiinriieete et 186
9.3.1 IMPlemeENntation.......coeveeeveurereririeiniiinieiisit et sa s etenenes 186
9.3.2 Applying the IRIS-TS Prototype on the Smart Homes Case Study...cceevveneen 188
0.4 SUINIMALY «veeuveererurerreeereeisersiioresitioiesseernsssesssesssasssssasssessasssesssesssessassstessesssssssesssos 196
CHAPTER TEN: CONCLUSIONS AND FUTURE WORK ..ot 197
10.1 Summary and COnClUSIONS.....cc.ecverueeririiiiiriisiiniieet e ese e ssre e sceseneas 197
10.2 FULUIE IESEAICHevieieerieeriereeeieseesetesieenesr st esre et s eae st s ae st assn s saesnnenanenes 199
10.2.1 Experimentation With IRIS........ccovimiiiiniiiccce e 199
10.2.2 Development of a three layer frame Work........cooivieeieiiinieveneineeen 199
10.2.3 Application of IRIS to new Case StudIES....cevuvirerinieierinierinreircierienccene 200
10.2.4 Further Development of IRIS-TS......cccooiviiiiiiiieieece 200
REFERENCES......ooottettieeteierresieestesteteseessessaesesstosessssssessssssitosssssssssssessssssassassasssassassass 201
APPENDIX A: PUBLICATIONS ..ottt steese s saesanesssnesens 224
APPENDIX B: FULL RESULTS FROM CHAPTER 3 ON THE REQUIREMENTS
INTERACTION TAXONOMY ...ooverieieierireriiisieinsiisiesesseeeessessssassssssssssssessessconsessens 227

APPENDIX C: FULL RESULTS ON THE COMPARISON IN CHAPTER 3 ON
COMPARING THE PROPOSED REQUIREMENTS INTERACTION TAXONOMY

WITH OTHER TAXONOMIES......cocoiiiiiiiiiitinerentenresesesnss st stesssesssanennes 238
APPENDIX D: FULL RESULTS ON THE DEVELOPED PLUG-INS FOR IRIS IN
CHAPTER 5.ttt etertesitett et sacenecsas st sne e s s s e s s s s e b e b e saesn e st essseene e snsentsasssas 241
APPENDIX E: FULL RESULTS FROM CHAPTER 8 ON THE DETECTED
INTERACTIONS IN SMART HOMES ..ottt 249
APPENDIX F: THE IRIS-TS PROTOTYPE DXL CODE ...t 257

List of Tables

Table 2.1: The Approach by Wakahara, Fujioka, Kikuta, Yagi, and Sakai..........cc.c....... 13
Table 2.2: Approach by Mierop, Tax, and Janmaat........c.cccevvvmvvininininiinieniinncninnnene. 14
Table 2.3: The Approach by Kimbler, Kuisch, and Mullerccooeevveriininininininennns 14

Table 2.4: The Approach by Dankel, Schmalz, Walker, Nielsen, Muzzi, and Rhodes 15

Table 2.5: The Approach by Kuisch, Janmaat, Mulder, and Keesmaat.........ccccevvreenennen. 15
Table 2.6: The Approach by KECKccvuieereveerinemnirecmeiieneiisisiinissesssssssssssesssasisssenss 16
Table 2.7: Approach by Kimbler and SObitK ..o 16
Table 2.8: Software Engineering Approaches.......ocoeviiiiiiniencinininenienesnessnesieneenes 18
Table 2.9: The Approach by Zave and JacKSOmc.ocvvveinveeiiiinineiiiieinnicineneneenees 20
Table 2.10: The Approach by ULascoeciiviiiiiniieirinins e 20
Table 2.11: The Approach by AMYOt @f @lcocvivrerinininiiiiinieiteiieec s 21
Table 2.12: The Approach BY TUIMET ..cc.coveiiiiiniiiiriniiinieecsnetseiesnet s 21
Table 2.13: The Approach by Metzger aﬁd N2 S SO 21
Table 2.14: Properties only approachesoveeeereieeninieesreenteeenteinieieneesieiens 23
Table 2.15: The Approach by Blom, Jonsson, and Kempe.......ocoeeeeueencnniecnnrceininnnnn. 24
Table 2.16: The Approach by Felty and Namjoshi...... e 24
Table 2.17: The Approach by GibSONcc.ecviiiiniiviiiiiniinieinenesretne ettt 24
Table 2.18: Behavioural only approaches............ccocv... et ereeseeeerreaans 25
Table 2.19: The Approach by Hall.......cocveiniiniiinniiinssiteeeenscicennns 26
Table 2.20: The Approach by Bruns and Mataga, Sutherland ..o 27
Table 2.21: The Approach by Khoumsi and BeVElo........ccoiieiinniiniiiniciieeeeen, 27
Table 2.22: Properties and behavioural apProaches.......c.coceueereecuemeeemserserecsensenissessnons 28

xi

Table 2.23: The Approach by Plath and Ryanc.ccceevievieiniinniinivencnncinoninnenncnns 28

Table 2.24: The Approach by Calder and Millercoveveiiiniiieiiriiiiiinenes 29
Table 2.25: The Approach by Bousquet, Ouabdesselam, Richier, Zuanonc........... 29
Table 3.1: Summary of the resulting interaction types in the third layer......... reerererereaens 55
Table 3.2: Description of the interaction scenario SCRE........cooiiriiiniiniiiiniencnciin 62
Table 3.3: Description of the interaction scenario SCRO ... 62
Table 3.4: Description of the interaction scenario SCRI10........cueinrienininincinnnenniens 63
Table 3.5: Des'cription of the interaction scenario SCRIT......cccoviivinininiininininininenennens 63
Table 3.6: Description of the interaction scenario SCRIZ.....ccoveerienivcnncnncnneninnnnn, 64
Table 3.7: Description of the interaction scenario SCRI3 ..o 64
Table 3.8: Description of the interaction scenario SCRI4......cooooviiviiniiienniniicninnnnns 65
Table 3.9: Description of the interaction scenario SCRIS ... 65
Table 3.10: Description of the interaction scenario SCRIG......cooeiiinieinnienininnnncnnnn 66
Table 3.11: Comparing the proposed taxonomy to other existing taxonomies................ 68
Table 4.1: Examples on classifying requirements........cccovevmvueenesenisenncnceennenennninions 78
Table 4.2: System Axioms Attributes Identification.........ceeeinineinnncninnnnnn 79
Table 4.3: Dynamic Behaviour Attributes Identification..........ooeverieeeennnecinncnncnnn 80
Table 4.4: Resources Attributes Identification.cooviiiiiiniiiicieniiiceececeenne 80
Table 4.5: Trigger Events EXtraction ...ttt 81
Table 4.6: Linked Events Identification........coceceeviiiiiiniiiiininiiiieeneescceeenene 83
Table 4.7: Comparing IRIS with other Semi-Formal Approaches.........ccccovervvieieiencnnes 95

Table 5.1: Details of the plug-in Graphical representation of individual requirements.. 103
Table 6.1: Classification table for the lift system requirements........ccoecvvevinrieniecrennennes 118

xii

Table 6.2: System axioms attributes identification table for the lift system,c.cc.c...... 118

Table 6.3: Dynamic behaviour attributes identification table for the lift system............ 119
Table 6.4: Trigger events extraction table for the lift system reerteeresreeresaeen 120
Table 6.5: Linked events identification table for the lift system......c.coceveiiviniinienannns 120
Table 6.6: A summary of the detected interactions in the lift system case study 122
Table 6.7: Interaction between R12 and R8 in the lift system case study..........ccoveueneene. 124
Table 6.8: Interaction between R13 and R8 in the lift system case study........cccccenrenee. 124
Table 6.9: Interaction between R13 and R8 in the lift system case study........ccccoeervnee. 124
Table 6.10: Interaction between R12 and RS in the lift system case studycoeveunee 126
Table 6.11: Interaction between R13 and R5 in the lift system case study 126
Table 6.12: Interaction between R14 and RS in the lift system case studyccccecuenene. 126
Table 6.13: Interaction between R9 and R1 in the lift system case study........cccceeveneneen. 127
Table 7.1: A description of the telephony features used in the case studyc.c.ccec.e... 131
Table 7.2: Dynamic behaviour attributes identification for telephony features.............. 133
Table 7.3: Trigger events extraction table for the telephony features case study 134

Table 7.4: Linked events identification table for the telephony features case study 134

Table 7.5: Summary of detected interactions in the telephony features case study........ 137
Table 7.6: Explanation of telephony features case study interactionscoceeeucuenen. 139
Table 7.7: Interactions reported by different contestants in the FIW0O contest.............. 142
Table 7.8: Comparing IRIS results to others results from the FIW00 contest................ 142
Table 8.1: Classification table for the smart homes case Studycoeeveieeeinenieiiieennnn 164

Table 8.2: System axioms attributes identification table for the smart homes policies.. 165
Table 8.3: Dynamic behaviour attributes identification table for the policies................ 166

Xiil

Table 8.4: Trigger events extraction table for the smart homes case studycc..c....... 168

Table 8.5: Linked events identification table for the smart homes case study................ 169
Table 8.6: Results summary of detected interactions among smart homes policies........ 173
Table 8.7: Example of interaction between two system axioms using SCR1................. 174

Table 8.8: Example of interaction between a system axiom and a dynamic behaviour
simple policy using SCR30.....ccviiiiiiiiniiieieete e 175

Table 8.9: Example of interaction between two dynamic behaviour simple policies
triggered by the same trigger event using SCRI1 ..o 177

Table 8.10: Example of interaction between two dynamic behaviour simple policies

triggered by linked trigger event using SCRIZ.....cceviiiniicnnnininiinn 177
Table 8.11: statistics on the smart homes case StUdYccocevvvrniiniiiniiiniienieenienren 178
Table C.1: Comparing proposed taxonomy to Cameron et al. taxonomy........c.cocecccvuen. 239
Table C.2: Comparing proposed taxonomy to Kolberg et al. taxonomyccccceccuee 239
Table C.3: Comparing proposed taxonomy to Reiff-Marganiec ef al. taxonomy........... 240
Table D.1: The plug-in Functionalities Identification................ et 241
Table D.2: The plug-in Parameters ASSIgNmMENtcoevverirenneneniiinneniiee 242
Table D.3: The plug-in Parameterscoeveiiriiiniinieniinieienneneeie et 243
Table D.4: The plug-in Parameters Range.......cccooveveevmienrneoenenecninnicncniniensnns 244
Table D.5: The plug-in System AXioms Strategies......ccevererverrseessirieieiereriiiniiiiinns 245
Table D.6: The plug-in Availability........cccooviivmiiinininiiiinnciceins 246
Table D.7: The plug-in Performance.........coeveiiieenieiinieeninnieescsncnteieenenensiseaenne 247
Table D.8: The plug-in Interface......cccouevviiiiiiiniiiiniiieeetn 248
Table E.1: Detected interactions using IRIS and suggested solutions.........cceceeveereinnene 250

xiv

List of Figures and Illustrations

Figure 3.1: General architecture of the proposed interaction taxonomy.........cceceeeerererennes 48
Figure 3.2: First layer of the proposed interaction taX0nomyc.ceeeveeereesuricsiencnnsenennes 50
Figure 3.3: Second layer of the proposed interaction taXonomy.......cecevereerereeeresinicnaneans 51
Figure 3.4: Third layer of the proposed taXonomy........ccoeeveeeniseniereeniieniescncninniininneans 54
Figure 3.5: Fourth layer of the proposed interaction taXonomy.........coceecevrerecsisisiiucninians 60

Figure 4.1: Application of IRIS to detect interactions when developing a software system

... 72
Figure 4.2: A class model of the basic core of IRIS cersteunerensesnrneranseessanas st ssasas 76
Figure 4.3: Trigger Events ChartS ... 85
Figure 5.1: Basic core of IRIS showing points of the different hooks..........cocvvuvecinne. 101
Figure 5.2: General structure of an IRIS plug-in ... 105
Figure 6.1 CRESS [65] representation for R1 on the left and R3 on the right ...ccoeeeee. 117
Figure 6.2 Trigger events charts for the dynamic requirements of the lift system 121
Figure 7.1: Trigger events chart for the telephony features case study............ 135

Figure 8.1: Object-oriented description of relationship between features and policies.. 149

Figure 8.2: Features, policies, and physical elements within smart homes 151
Figure 8.3: Overview of the features of a smart hOme.......coocoveievninoriininiiniiinnnns 153
Figure 8.4: Trigger events chart of the smart homes dynamic behaviour policies 170

Figure 8.5: List of the comparisons needed to detect interactions between dynamic
behaviour simple policies in the smart homes case Study......ccocoveeerenreicnennencncncnns 176
Figure 9.1: An example of modules, objects, and attributes.........cevevvveiencnieccinnenenns 182

XV

Figure 9.2: Architecture of IRIS-T'S ...ccuiioiirriiriinreniertentceeeentecrretee e srtesse e eeeonne 183

Figure 9.3: Internal structure of IRIS-TS ...ccviiiinieniiniiieicrceriree 184
Figure 9.4: IRIS-TS implementation in DOORSccoieiiiiniiiiiiecnins 187
Figure 9.5: Performing requirements classification using IRIS-TSccooeernrinencnnnne 189
Figure 9.6: Results of requirements classification using IRIS-TS.....cccoceoeiereieveencias 190
Figure 9.7: Performing system axioms attributes identification using IRIS-TS............. 191

Figure 9.8: Performing dynamic behaviour attributes identification using IRIS-TS...... 192
Figure 9.9: Results of system axioms attributes identification using IRIS-TS 192

Figure 9.10: Results of dynamic behaviour attributes identification using IRIS-TS...... 193

Figure 9.11: Results of trigger events eXtractioncecocoeviviievecnncinininiiniininnn 194
Figure 9.12: Performing linked events identification.........cccueveeeenenncicnniniininiinins 195
Figure 9.13: Results linked events identification ... 195
Figure 9.14: Results Trigger Events Charts Representation.............. oo 196

Xvi

List of Symbols and Abbreviations

3WC Three Way Calling

Al Artificial Intelligence

AOSD Aspect Oriented Software Development
ATTR Attribute

BCSM Basic Call State Modes

CENELEC European Committee for Electrotechnicl Standardization
CFBL Call Forward on Busy Line

Ci i Constraint

COSPAN COordination-SPecification ANalysis

CPL Call Processing Language

CRESS CHISEL Representation Employing Systematic Specification

CTL Computational Tree Logic

CW Call Waiting

DB Data Base

DC Duration Calculus

DDRA Deficiency-Driven Requirements Analysis

DFC Distributed Feature Composition

DOORS A requirements management software tool by Telelogic Inc.
DXL DOORS eXtension Language

EFSA Extended Finite State Automata

xvii

EHS

EIB

eSERL

ESTI

ETS

FI

FIW

FIWO00

FOL

FR

FSA

FSM

IN

IRIS

IRIS-TS

IVR

KAOS

KNX

LOTOS

LTL

European Home Systems

European Installation Bus

extended Service Execution Rule Language

European Standard Telecommunications Institute

Engineering Tool Software

Feature Interaction

Feature Interaction Workshop

The sixth Feature Interaction Workshop held in 2000

First Order Logic

Functional Requirements

Finite State Automata

Finite State Machines

Intelligent Networks

Identifying Requirements Interactions using Semi-formal methods
IRIS — Tool Support

Interactive Voice Response

Knowledge Acquisition in autOmated Specification of software
A smart homes networking system

Language Of Temporal Ordering Specification

Linear Temporal Logic

XVviil

Lustre

MSC

NFR

00

PIMM

POTS

PROMELA

PSHIDB

PSTN

RACE

RBF

RC

RE

RIM

ROSA

SCRi

SDL

SE

Si

SMV

ti

A storage and file system architecture that comes from Linux and
Clusters

Message Sequence Charts

Non-Functional Requirements

Object Oriented

Predefined Interaction Manager Module

Plain Old Telephone System

PROcess MEta LAnguage

Predefined Smart Homes Interactions Data Base
Public Switched Telephone Network

Research and Development in Advanced Communications in
Europe

Ring Back when Free
Reverse Charge

Requirements Engineering

‘Requirements Interaction Management

RACE Open Service Architecture

i™ interaction SCenaRio

Specification and Description Languagé
Software Engineering

i interaction Subcategory

Symbolic Model Verifier

i™ interaction type

Xix

TL

TLA

UCM

UML

VM

Temporal Logic

Temporal Logic of Action
Use Case Maps

Unified Modelling Language

Voice Mail

XX

CHAPTER ONE: INTRODUCTION
1.1 Introduction and Motivation of Research
Studies have claimed that in order to succeed in developing high-quality software
systems, it is necessary to have correct and unambiguous requirements [1]. This makes
requirements engineering (RE) a vital part of software development [2-5] and critical to
the success of the entire project. Recent surveys by Nikula et al [6] and McPhee [7]
show that industry has started to realize the importance of good requirements
engineering. Emam et al. [8] surveyed 56 projects worldwide over a period of two years
and concluded that good requirements have a positive impact on the quality of software.
A key issue in obtaining a set of clear requirements is how to manage negative
relationships between requirements [9] [10]. Robinson et al. [11] defines requirements
interactions management as “the set of activities directed towards the discovery,
management, and disposition of critical relationships among a set of requirements”.
Requirements often interact when developing new systems because of the heterogeneity
and diversity of stakeholders [11] or because of reusing already existing requirements
from previous similar projects where people make the assumption that the reused
requirements will increase safety because they have been exercised extensively [12]. In
either case, developing a software project should be done with an ongoing effort to
discover and resolve interactions that could arise between requirerhents.
The so-called feature interaction problem has been extensively researched in the
telecommunications domain to identify interactions between telephony features. A basic
definition of feature interactions can be: Feature interaction is a situation where several

features that are integrated on top of a base system may interfere and affect each other.

2
Features and requirements can be seen to have an n:m relationship. A high level
requirement can consist of several features [13]. On the other hand, a feature may needs
to be defined by several requirements. Hence, the relation between features and
requirements can be seen as an n:m relationship.
Requirements interaction is similar to feature interactions in the: sense that both fry to
identify the relationships between features or requirements. However, requirements
interaction has a broader scope than the limited scope of fea’édre interaction for the
following reasons:

1. Requirements interaction considers non-functional requirements as well as
functional requirements whereas feature interaction focuses on functional
behaviour interactions.

2. The feature interaction research focuses primarily on Zthe telecommunication
domain where one examines possible interactions between new and existing
telephony features. But requirements interaction is a iohenomenon that can occur
in any software domain.

3. Many of the current feature interaction approaches require désign and possibly
implementation-specific knowledge such as complete\:rderscriptions of all the states
of the system. Such knowledge is not always available at the early requirements
engineering phase. On the other hand, requirements interaction approaches
focuses mainly on detecting interactions between requiremehts ‘at the early

requirements engineering phase.

4. While feature interaction tends to detect only technical behavioural interactions

between requirements, requirements interactions additionally detects interactions
between requirements caused by the heterogeneity of stakeholders.

The techniques used for the resolution of requirements interactions consider social
and technical aspects. This means that the resolution of requirements interactions
must involve stakeholders (e.g. the WinWin model [14, 15] involves
stakeholders’ views on the importance of each requirement and aims at achieving
a win-win situation for all stakeholders involved). Whereas in feature interaction,
most of the interaction resolution techniques assign priorities to the different

features and the feature with the highest priority dominates.

In this thesis we focus on the broader area of requirements interactions. The motivation

for this thesis was based on the following:

1.

A review of the current practice of interaction detection (as summarized in
Chapter 2) showed that there are two extremes: one extreme uses informal
detection approaches using domain experts who rely on their experience with no
systematic approach to follow. The other extreme uses formal approaches, such as
the Specification and Description Language SDL [16]. However, domain experts
are expensive, hard to find and prone to errors [15]. Formal approaches provide
fairly accurate detection of interactions but not every company has the time and
resources necessary to carry out a formal verification of their systems under
development. |

It appears as if there is currently no robust and complete deﬁrﬁtion of the different

types of possible interactions between requirements. Most definitions describe, at

4
a very high level of abstraction, what interaction is without deﬁning the different
types of interactions or the various scenarios that can cause interactions.
Furthermore, the different approaches surveyed in this thesis rely on detection of
inconsistencies in formal models and design problems éuch as deadlocks and
livelocks.

Many approaches and techniques have been proposed to solve the feature
interaction problem in the telecommunications domain but only little effort has
been spent on researching the applicability of possible solutions to this problem in

other domains of software engineering.

1.2 Thesis Contributions

This Thesis offers 4 main contributions summarized as follows:

1.2.1 IRIS: A Semi-Formal Approach for Detecting Requirements Interactions

The first contribution of this thesis is the development of a semi-formal approach for

detecting requirements interactions in software systems. This approach is termed IRIS

which stands for Identifying Requirements Interactions using Semi-formal methods. IRIS

has the following advantages over currently existing approaches:

1.

Semi-formality of the approach: The proposed approach uses semi-formal
methods for detecting interactions. This means that it uses tables, graphs,
interaction detection scenarios, and subjective detection to detect interactions.
This requires visual system representation and does not require any heavy
mathematical modeling of the system under investigation as opposed to formal

methods.

2. Detecting interactions at different levels of abstraction: The proposed IRIS
approach uses attributes to represent system elements (e.g., dynamic behaviour
requirements). This enables IRIS to detect interactions at different levels of
abstraction. This thesis reports case studies in which IRIS was able to detect
interactions at the requirements level (see Chapter 6), at the features level (see
Chapter 7), and at the policies level (see Chapter 8).

3. Reduction in number of comparisons: IRIS reduces the number of necessary pair-
wise comparisons that a human developer would have to perform between
requirements in informal approaches and other semi-formal approaches described
in the literature (more details on these approaches are provided in Chapter 2).
IRIS achieves the reduction in the number of comparisons by discarding
irrelevant comparisons that will not lead to interactions and focuses only on
comparing requirements that are related either directly or sequentially. Hence, this
can result in a clear reduction in the number of comparisons and consequently
reduction in time and effort.

4. Domain independency: The proposed approach is not limited to a specific
software domain (e.g., the well known telecommunications domain). To achieve
this generality, IRIS was developed as a general approach that can be adapted to
any software domain through a customization process to “include specific
knowledge about software domains through the use of plug-iné thus improving
the detection success rate (see Chapter 5).

5. Extendability of the approach: IRIS was designed with a basic core and extension

hooks. These extension hooks are insertion points that allow the addition of plug-

6
ins to IRIS basic core to extend its performance, increase the scope and
thoroughness of interaction detection to include design :and resource interactions,
make IRIS applicable to new domains, and cope with any specific future needs by
system developers.

1.2.2 Applying IRIS to detect Interactions in different domains

The second contribution of this thesis is the application of IRIS in detecting interactions
in 3 case studies each belonging to different software domain. The first case study was
done to detect interactions between the requirements of a lift system (control domain).
The second case study was conducted to detect ipteractions between telephony features
(telecommunications domain). The third case study was conducted to detect interactions
between smart homes policies (policy domain). The first two case studies have been
analyzed by other approaches and their results were reported in literature [17-19]. Hence,
these results have been used as benchmarks to assess the effectiveness of IRIS. The third
case study represents a major contribution in the interaction community és no complete
interaction detection analysis between smart home policies has been reported in the
literature.

1.2.3 A General Requirements Interaction Taxonomy

The third contribution of this thesis is the development of a general interaction taxonomy
for classifying and identifying requirements interaction. The proposed taxonomy
describes 9 main interaction categories, 24 interaction subcategories, 37 interaction types,
and finally 37 interactions scenarios that also contain 37 interaction detection guideiines.
The interaction detection guidelines help developers identify when two requirements are

considered interacting. The proposed interaction taxonomy addresses the lack of detail

7

that exists in other interaction taxonomies in the literature [20-22]. To validate the

proposed interaction taxonomy, a comparison is made with other existing taxonomies in

the literature. The results of the comparison show that the proposed interaction taxonomy

was not only able to address the interaction issues in other taxonomies presented in the

literature, but it also contained many other interaction types that have not been captured

by other taxonomies (Chapter 3 provides more details).

1.2.4 A Tool Support for IRIS Integrated in the DOORS Requirements
Management Software

To help software developers apply IRIS, a tool called IRIS-TS, which stands for IRIS

Tool Support, was implemented as an add-on module for the commercial DOORS

requirements management tool [23]. IRIS-TS appears as a drop down menu on the main

tool bar of DOORS and has the ability to detect interactions between the requirements

saved in DOORS. IRIS-TS performs a step-by-step walkthrough of the steps of IRIS and

generates the appropriate inputs and outputs for the analyst. IRIS-TS was implemented

using the DOORS eXtension Language (DXL).

1.3 Thesis Outline

This thesis contains ten chapters including the introduction chapter. The remaining nine

chapters are organized as follows:

Chapter two contains surveys and analysis of the relevant literature. The literature review

presents the necessary background information on the different approaches to interaction

detection currently available.

Chapter three presents a general requirements interaction taxonomy used to identify when

two requirements are considered interacting.

8
Chapter four presents the proposed semi-formal IRIS approach and describes in details
its basic core.
Chapter five describes how IRIS can be customized and extended with plug-ins.
Chapter six presents the application of IRIS to the control domain. IRIS was used to
detect interactions between the requirements of a lift system.
Chapter seven presents the application of IRIS to the telecommunications domain, i.e.,
the detection of interactions between telephony features.
Chapter eight describes the application of IRIS to the policies domain by analyzing smart
homes policies for interactions.
Chapter nine presents the tool support, IRIS-TS, that was created to support the
application of IRIS using the commercial DOORS requirements management software.
Chapter ten presents a summary of the thesis and the conclusions. Chapter ten also
includes a list of future research topics on the work pioneered in this thesis.
At the end of the thesis, 6 appendices are includéd to provide complementary data and

information to the thesis’ main body.

CHAPTER TWO: CURRENT STATE OF THE ART

2.1 Introduction

Although there has been relatively little attention paid to the problem of detecting
requirements interaction in software systems, the feature interaction problem has been
very well researched in the telecommunications domain. To provide the necessary
literature review that the work in this thesis was based on, some of the more relevant
previous work is described in this chapter. It is worth mentioning that other relevant
previous work on requirements interaction taxonomy and on the case studies presented
later-on in this thesis are specified in the appropriate chapters. Hence, this chapter
focuses oﬁly on the previously developed approaches for interaction detection.

The structure of this chapter is as follows: Section 2.2 presents a survey on the current
state of the art regarding approaches in the feature interaction research community.
Section 2.3 gives a survey on the current state of the art regarding approaches from the
requirements engineering research community. Finally, section 2.4 provides a summary

of this chapter.

10
2.2 Surveying the Feature Interactions Area
2.2.1 The Feature Interactions Problem
Feature interaction is a situation where several features that are integrated on top of a
base system may interfere with each other, or interact in ways that are hard to predict. To
explain the feature interaction problem, consider the following two telephony features:
Call Waiting (CW) and Call Forward on Busy Line (CFBL) [19, 24]. The CW feature is a
feature when active allows the subscriber to be notified of an incoming call while s/he is
busy and to accept the new call by putting the original call on hold. Then s/he is able to
toggle between the two calls. The CFBL feature, when active, will redirect all incoming
calls to the subscriber phone number to a predefined number when the subscriber line is
busy. The interaction occurs when these two features are implemented and activated on
- the same phone line. In this case the system is unable to decide what to do: should it
notify the user of the incoming call and allow him to accept it according to the CW
feature, or it should automatically forward the incoming call to the predefined phone
number according to the CFBL feature.
The features interactions problem has received a lot of attention from the
telecommunications industry where many approaches have been developed. A good
description of the current research status of feature interaction in telecommunications and
software systems can be found in the proceedings of the feature interaction workshops
[25-31]. However, in this section, we try to summarize some of the work done on

creating approaches for detecting features interactions.

11
2.2.2 Methodology for Surveying the Feature Interaction Approaches
In this section, different approaches for detecting feature interactions are presented. A
classification can be made for the different feature interaction approaches based on
whether an approach is a static offline detection approach or it is a run-time detection and
resolution approach (also called online approaches). In this section we only focus on
offline approaches which are more relevant and of interest to the proposed IRIS approach
than the online approaches.
A classification of the offline approaches can be made based on their formality.
According to the formality criteria, offline detection approaches can be classified based
on their degree of formality into the following two categories: Semi-formal and formal
approaches. Semi-formal approaches use tables, graphs, and human subjective detection
(7 approaches) while formal approaches use formal methods (59 approaches). It must be
noted that an approach can have more than one paper published on it, however, all these
papers are counted only once as they all relate to the same approach. Due to the relevance
of semi-formal approaches to this thesis, all surveyed semi-formal approaches in the
literature are described in detail.
In the formal approaches category, only a summary table of the approaches is first
presented, then some of the approaches are described in detail. The selection criteria for
describing a formal approach in detail will depend on whether the approach has been
successfully applied in the industry or if the approach has a major.impact in the feature

interactions research community.

12
The survey presented in this section is based on the following resources:

1. An extensive survey conducted by the author using online resources on the World
Wide Web and online database libraries such as the IEEE [32], ACM [33], and
CITESEER [34] digital libraries. |

2. The proceedings of the feature interactions workshops [25-31] and journals
special issues on feature interactions [35].

3. The survey by M. Calder et al. [36] regarding the different approaches in the area
of feature interactions.

4. The survey by Keck and Kuehn [37] on the feature interaction problem in
telecommunications systems.

2.2.3 Detecting Features Interactions using Semi-Formal Approaches

Semi-formal approaches create and use graphical and tabular notations for representing
the system and using these representations for detecting interactions without the need to
use formal models. Through the conducted survey, only seven approaches were found to
fall under this category. In the following, all of the seven semi-formal approaches are
presented. Each approach will be described in a table using the following items: the
heading of the table is used to give an ID for the approach and also to list the authors and
references of the approach, the notation used in the approach, the main idea of the
approach, steps of the approach to describe how the approach is executed, results to
describe if the approach has reported any case studies or industrial results, types of
interactions that can be detected by this approach, pros to describe the points in favour of
"this approach, and finally criticisms to list the points against and limitations of this

approach.

13
It is worth mentioning that all of these approaches and IRIS are similar in using semi-
formal methods. However, there are a number of differences between IRIS and these
approaches (see the criticism row in the tables below). Also, a summary of the

differences is listed in Chapter 4.

Table 2.1: The Approach by Wakahara, Fujioka, Kikuta, Yagi, and Sakai

SF 1: The Approach by Wakahara, Fujioka, Kikuta, Yagi, and Sakai [38]
Notation Used | Message Sequence Charts (MSC)

Approach The main idea of the approach is to analyze the input-output relationships between the features of the
Main Idea telecommunications domain. The analysis is done using human experts analyzing message sequence charts
Steps of the o Informally specify features
Approach o Check for features completion using specific telecomm. knowledge about how a feature should be written
o Define obvious interactions between features due to explicit input-output relationships between the features
 Define implicit relationships between the features using impact knowledge of features in telecomm. domain
o Develop MSC for system and features by adding all MSC of features and system in one chart
e Detect interactions by having an expert inspecting the MSC with the help of a telecommunications features
knowledge database
Results Examples from the telecommunications telephony features
Types of The interactions detected are in the form of:
Interactions e Duplication ¢ Redundancy
Detected e Incorrect order of execution e Inconsistency
e Vagueness/non-determinism o Looping
Pros o Simple to use

e Do not require complete specification details to be applied but rather missing details are completed during
the execution of the approach

o One of the carly attempts to tackle the problem of feature interactions using semi-formal methods

Criticism e Specific to the telecommunications domain due to the nature of knowledge being used

e The database and knowledge used are very abstract

o Combing two or more features on top of the base system in one MSC chart is not easy as the resulting MSC
will be hard to analyze by an expert

e Detects only interactions due to input-output relationships problems whereas many other types of
interactions are ignored

o Do not address system properties that must be preserved (e.g. non-functional aspects such as availability)

e Do not address resource related interactions

14

Table 2.2: Approach by Mierop, Tax, and Janmaat

SF2: The Approach by Mierop, Tax, and Janmaat [39]

Notation Used | Object Oriented (O0)
Approach The main idea of the approach is to represent the system and the features as objects with interfaces. During
Main Idea the specification of features as objects, ambiguities that arise are considered as interactions between the
features
Steps of the o Build an object oriented environment for the telecommunication system and represent users in this base
Approach environment as objects. Each user object will have an interface, a user agent object, and a user profile
object
o Specify the features to be added to the base system and model them as scenarios on the object oriented
environment
o Human developers analyze the object oriented environment and the object oriented feature specification for
any ambiguous situations such as two services inducing a non-determinism on busy signal
Results CW and CFBL example from European Community research Project RACE Open Service Architecture
(ROSA)
Types of The interactions detected are in the form of ambiguity in specification of the features in the object oriented
Interactions | model
Detected
Pros e Separation of feature interactions from other resource interactions
e New and original representation of the problem
o One of the early attempts to tackle the problem of feature interactions using semi-formal methods
Criticism o No proof of application outside the telecommunications domain

o The representation of the telecommunications domain in object oriented notation is not an easy task and the
approach is therefore did not spread

e Detects only interactions due to ambiguous situations which was defined as non-determinism transitions
due to invoking more than one feature by a common signal

o Do not address system properties that must be preserved (e.g. non-functional aspects such as availability)

e Do not address resource related interactions

Table 2.3: The Approach by Kimbler, Kuisch, and Muller

SF 3: The Approach by Kimbler, Kuisch, and Muller [40]

Notation Used

None

Approach The features are categorized into categories based on the similarities of their nature (e.g., charging features)
Main Idea and the similarities of the roles they play. Interaction-prone feature combinations are obtained when two
categories are said to be interaction-prone which is decided based on the roles and resources that the
categories play and use. Once non interaction-prone combinations are eliminated, the rest are analyzed using a
systematic approach for identifying interactions. The interaction detection is based on manually analyzing the
features service life cycle created by the European Standards Telecommunications Institute/Group 6
(ESTINAG). The analysis is based on executing four steps in sequence and manually detecting interactions
between features.
Steps of the o Analyse interactions between service pairs
Approach e Analyse combinations of feature categories
o Once irrelevant non-interaction prone combinations are discarded, compare remaining stand alone feature
pairs
e Compare feature pairs within service context by manually analyzing the feature specifications provided by
the ESTI/NAG for interactions
Results No
Types of Negative impact of a transition of the first feature on any state of the second feature
Interactions
Detected
Pros e Uses experience along with structure approach for detecting interactions
o Analyze features in the context of their services in addition to the stand alone analysis
Criticism o Especially designed for the telecommunications domain

e The final interaction detection relies totally on experience with no rules or guidelines
e The approach used some serious simplifications in the ESTUNAG specification with no proof of validity
(e.g., the modification of invocation data state cannot cause any interactions)

15

Table 2.4: The Approach by Dankel, Schmalz, Walker, Nielsen, Muzzi, and Rhodes

SF 4: The Approach by Dankel, Schmalz, Walker, Nielsen, Muzzi, and Rhodes [41]
Notation Used | High level predicated
Approach The main idea of the approach is to use a feature capturing system which will accept natural language
Main Idea statements from the designer regarding specification of new features and then convert it to high level
predicates. The developed predicated are added or used to update a knowledge base. Artificial intelligence is
used to announce any ambiguities in the new specifications. Finally, developed models are shown to designers
to decide if there are interactions between the newly added feature and other existing features
Steps of the e The designer input natural language statements about the new feature through a graphical interface
Approach e Parse the statements using a lexical and grammar knowledge parser
e Generate high level predicates for the parsed statements
e Pass predicates to command interpreter to find any ambiguities to be returned to the designer. if no
ambiguities are found, add or update the knowledge base with the new feature
e Generate graphical models of the system for the new features with other features based on the selection of
the designer to check for interactions
o Human designer checks the models for interactions
Results No
Types of Incompatibility between two features
Interactions
Detected
Pros o Allows designers to specify features with natural language
o Uses artificial intelligence to remove easy to detect ambiguities
Criticism e No proof of applicability outside the telecommunications domain
e The actual detection of interactions is completely done by human and with experience
o The approach does not have any systematic steps in it and does not address the detection of interaction

Table 2.5: The Approach by Kuisch, Janmaat, Mulder, and Keesmaat

SF 5: The Approach by Kuisch, Janmaat, Mulder, and Keesmaat [42]

Notation Used

Basic Call State Modes (BCSM)

Approach The main idea of the proposed approach is to represent the system and the features using a template. This
Main Idea template contains information about the functionalities of features through the representation in BCSM
notation and the use of Detection points, information flows, and resources. The human developers analyze the
BCSM for interactions using specific criteria
Steps of the e Produce a behavioural specification according to a predefined template
Approach o Specify the features to be added to the base system using the BCSM, the Detection points, the dataflow, and
the resources usage
o Combine features to be examined for interaction in one model
e Determine the range that each feature controls on the BCSM model
o Allow human detection of interaction using the criteria that interaction occurs when there is a conflicting
overlap between the ranges of two features or when the two features want to process each others flow data
in conflicting manner
Results Examples from the telecommunications domain
Types of The interactions detected are in the form of:
Interactions | ¢ Conflicting data manipulation
Detected o Conlflict of control due to overlapping of features range
o Shared resources interactions
Pros o Practical and have sufficient in-depth details about the telecommunications IN networks
e Considers resources interactions
e One of the early attempts to tackle the problem of feature interactions using semi-formal methods
Criticism e Specific to the telecommunications domain

e Specification in BCSM is not an casy task

o The reference does not describe types of resource related interactions that can be detected but states that it
is limited and needs further development

Do not address system properties that must be preserved (e.g. non-functional aspects such as availability)

16

Table 2.6: The Approach by Keck

SF 6: The Approach by Keck [43]

Notation Used

Basic Call State Modes (BCSM)

Approach
Main Idea

Detect interactions prone scenarios by a tool that generates a list of interaction prone scenarios based on a
criteria for interaction detection. The generated list can be further analyzed by other interaction approaches

Technique of
the Approach

The developed tool will detect interaction prone scenarios using the following components:

e Initialization Components: This component select and parse the provided service description (i.e.,
provides pairs of services to be examined)

o Filtering Component: This component applies different filters based on criteria used for identifying
scenario prone interactions

o Result Generation Component: This component creates a file reporting the results of applying the filters

Results Case study on the telecommunications telephony features
Types of Filtering: Trigger collision interactions, Resource conflict interactions, and Data conflict interactions
Interactions
Pros Reduces the number of scenarios to be examined in large and complex systems where analysis of all
behavioural scenarios of the system is hard
Criticism e The tool requires design details on the behaviour of features to be examined. The features are then written

using the BCSM notation

e The generated list contains only interaction prone scenarios and this list must be analyzed by another
detection approach for deciding which features are really interacting

e The criteria used for identifying interaction prone scenarios are limited and many interactions (e.g.
sequential interactions) are not addressed

e Do not address system properties that must be preserved (e.g. non-functional aspects such as availability)

Table 2.7: Approach by Kimbler and Sobirk

SF 7: The Approach by Kimbler and Sobirk [44]

Notation Used

Use Case Models

Approach The main idea of lh'c approa(;h is 10 build a use case quel that descn'bc the qiﬁ'creql scenarios of using the
A system and then build a service usage model that describes the dynamic relations of the features from the
Main Idea users point of view. A human expert have then to manually analyze the models
Steps of the | ¢ Create a use case model that have many use cases that describe roles and actors for the system and how
A h different scenarios of the system might be executed by the actors
PProac e Transform the use case model into a service usage model that describes the dynamic behaviour of the
service form the user’s perspective
o In the service usage model, create service usage graphs that is based on state diagrams
e The process of building the service usage model is done as follows: first the use cases from the use case
model are analyzed, then the informal description of each use case is converted into sequence of events,
then identify system usage states, and finally combine these analyzed data into a service usage model
e Manually analyze the created models for interaction-prone features by a human expert
e Two features are considered interaction-prone when they access or modify same service or call specific data
Results Examples from the telecomm domain
Types of Incompatibility between two features due to shared service or data access violation
Interactions
Detected
Pros o Uses experience along with structure approach for detecting interactions
o Analyze features in the context of their services in addition to the stand alone analysis
o The approach can avoid state explosion by dividing the use case graphs into smaller ones
Criticism o The created use cases, which is the first step and basic core, cannot cover all possible usage scenarios

The final interaction detection relies on experience with limited definition of when two features interact

e Creating use cases for new systems is very hard and hence the authors explicitly limit the approach to
telecommunications domain

e The criteria used for identifying interaction prone scenarios are limited and many interactions (e.g.
sequential interactions) are not addressed

e Do not address system properties that must be preserved (e.g. non-functional aspects such as availability)

17
2.2.4 Detecting Feature Interactions using Formal Approaches
A formal approach can be simply defined as an approach that uses a formal language for
describing software specifications such that formal proofs are possible about the software
specification. A formal language is a language whose vocabulary, syntax, and semantics
is based on mathematical concepts whose properties have been well investigated and are
well understood [45].
In this section we present a summary of the formal approaches for detecting feature
interactions and highlight some of the famous approaches that havé been either applied in
the industry or have significant impact in the feature interaction research community.
Generally, formal approaches for detecting features interactions can be divided into the
following two sub-categories:
1. Approaches that employ Specific software engineering techniques: These
approaches employ techniques inspired by the software engineering domain and
use different formal languages (e.g., SDL [16, 46] and LOTOS [47]),
2. Approaches that employ formal methods: These are approaches that mainly use -
logic and formal languages like SDL to validate properties and/or behaviour.
These approaches are in turn divided into:
a. Properties only approaches
b. Behavioural only approaches
c. Properties and behavioural approaches
Software engineering approaches are often considered part of formal approaches since
they always involve a formal language in association with the software engineering

approach they adopt. However, a difference between software engineering approaches

18
and approaches that employ formal methods is that the latter approach uses only logic
and formal languages, whereas software engineering approaches use a more
comprehensive software engineering view.
2.2.4.1 Approaches Employing Specific Software Engineering Techniques
Software engineering approaches use specific software engineering techniques that have
been used elsewhere in the area of software engineering. Usually, software engineering
approaches use a formal language to detect and eliminate interactions between features.

Table 2.8 lists some of the approaches that have been introduced in the feature interaction

community that fall in this category.

Table 2.8: Software Engineering Approaches

J1)) Approach Authors Software Formal Application Reported
and References Technique used | Notation used Phase Results
F1 Feature Labeled .
Hay, Aflee [48] Composition Transition Design No
Diagrams
F2 Case study
Braithwaite, Atlee [49] Layerec? State Stat.e Specification (telecomm.
Transition Machines .
domain)
F3 Kelly, Crowther, Specification Case study
King, Masson, SDL SDL P (telecomm.
DeLapeyre [50] domain)
F4 Product Case study
Bredereke [51] I CSP-0Z Requirements (telecomm.
Families :
domain)
F5 | Heisel, Souquieres [17, | Requirements System state Reaui Case study (lift
e equirements
18] Elicitation traces system)
F6 Feature Desion and Industrial scale
Zave, Jackson [52-55] . DFC . g . (telecomm.
Architecture implementation .
domain)
F7 Composition of ‘ Case study
Iraqi, Erradi [56] pFS A MONDEL Specification (telecomm.
domain)
F8 Feature Examples
Prehofer [57] Oriented JAVA Requirements (telecomm.
Programming domain)
F9 Pattern Industrial Scale
Utas [58] L FSM Implementation (Telecomm.
anguages .
domain)

Table 2.8 - Continued: Software Engineering Approaches

19

1D Approach Authors Software Formal Application Reported
and References Technique used | Notation used Phase Results
F10 Aspect Oriented c rud
Blair, PANG [59] Software Aspect J Specification a.sle S “t Y
Development (email system)
F11 | Amyot, Charfi, Corse, .
Gray, Logrippo Requirements Industrial scale
.02 . Use Case Maps LOTOS . ’ (telecomm.
Sincennes, Stepie, Design domain)
Ware [60] omatn
F12 Feature State chart . Examples
Prehofer [61] Composition diagrams Design (email system)
F13 Berkani, Cave, State Example
Coudert, Kaly, Le Gall, Service oy . Xampies
L . Transition Design (telecomm.
QOuabdesselam, Richier Integration X
[62] Rules Domain)
F14 Formal Requirements, Case study
Metzger, Webel [63, Traceability Strategy, (heating and
. . product model : L2
64] relationships Structure, illumination
(uses SDL) .
Environment control system)
F15 Examples on
Turner [65-68] CHISEL LOTOS, SDL Requirements | Interactive Voice
Services (IVS)
F16 Examples
Component . (telecomm.
Zave [69, 70] architecture DFC Design Domain and
Email system)
F17 Choi, Kim, Lee, Kwon Dls.trlbuted . . Case study
functional plan Petri nets Design (telecomm.
[71] . .
abstraction level domain)
F18 Automata Case study
Bredereke [72, 73] theoretic ESTELLE Design (telecomm.
formalization domain)
F19 Klein, Prehofer, Rumpe Feature Sta'te. . Example
e Transition Design (telecomm.
[74] Composition Di .
iagrams domain)
F20 Goal oriented Examples
Faci, Logrippo [75] LOTOS Design (telecomm.
knowledge .
Domain)

In the following, more detailed explanation of the approaches F6, F9, and F11 is

presented (industrial scale application). Also, detailed explanation of the approaches F14

and F15 is presented (impact on feature interactions research community)

20

Table 2.9: The Approach by Zave and Jackson

F 6: The Approach by Zave and Jackson [52-55]

Notation Used

Distributed Feature Composition (DFC)

Approach
Main Idea

Use the known pipe and filter principle. In this principle:

o Filters communicate with the environment through only pipes

o Filters does not know what is on the other side of the pipe

Based on this principle, feature interactions can be prevented through the enforcement of a certain architecture
called the DFC on the telecommunications network

Technique of
the Approach

A structure is used on which a line interface is used to represent interface between a telephone and the
network through certain ports on each interface. Features are represented by feature boxes.

On call request to t1, the interface of t1 sets up an outgoing call which goes to F3. Now, F3 generates an
outgoing call to F2 and wait for response. Also, F2 generates an outgoing call to FI and wait for response.
The last feature who receives the back signal is F1 and therefore if it is a trigger to Flthen F1 will make
changes according to its specifications. But if F1 is not triggered or it is disabled, then F2 is to be checked if it
is triggered and so on. Hence it is clear that F1 has the highest priority and then F and finally F3

F2 Fl » Li

4

tﬂl—b Li » F3

>t
2

Results Industrial application in the telecommunications domain (AT&T Inc.)

Types of Prevention of interactions through the enforcement of the DFC architecture
Interactions

Detected

Table 2.10: The Approach by Utas

F 9: The Approach by Utas [58]

Notation Used

Finite State Machines (FSM)

Approach
Main Idea

The main idea of the paper is to present a pattern language for tackling the problem of feature interactions. A
pattern language is a collection of patterns that are used to solve a set of related problems (in this case feature
interactions). A pattern is a general technique used to tackle a problem using a standard form. In this
approach, each pattern can be used to handle a group of similar interactions (e.g.. the pattern called PFE Chain
of responsibility is used to tackle interactions that arise when two features can trigger at the same feature
alternation point which is the time when a feature modifies the base system).

Technique of

The approach technique is based on developing several patterns to handle the different feature interactions at

the Approach the implementation level. _ ‘ . e
These patterns are then applied to detect and resolve feature interactions. Each pattern will consist of?
Context, Problem, Forces, Solution, Rationale, Resulting Context, Examples, and Related Patterns.
Results Industrial application in the telecommunications domain (Nortel GSM Mobile switching centre)
Types of o A feature that changes a basic call parameter that must be used by another feature
Interactions | ® Interactions between a feature monitoring a channel data and features that can modify the users connection
Detected (e.g., close the channel)

e Interactions between a feature that needs to change the state of another feature to execute

o A feature that needs to perform a query and wait for response and depending on the result of the query
suitable actions can be done

o Interactions between multiplexer features that can run at the same time for the same user

 Interactions between features that are triggered at the same feature alternation time

o Interactions between an feature active feature and another incompatible feature that is being triggered

21

Table 2.11: The Approach by Amyot et al.

F11: The Approach by Amyot, Charfi, Corse, Gray, Logrippo, Sincennes, Stepie, and Ware [60]

Notation Used

Use Case Maps (UCM), LOTOS

Approach UCM provides very good visual representation for features and can be used as a front end for any formal
Main Idea language. In this work, LOTOS was chosen as the formal language that is used to do the interaction detection.
The approach first uses UCM to visually represent features then the generated representations are translated
into LOTOS to be validated for interactions
Steps of the e Represent the system features using UCM
Approach e Translate the generated UCM models into LOTOS manually then automatically
e Extract test scenarios putting in mind that the tests should test: basic system properties, individual features
properties, and interactions between features
o Use acceptance/rejection test scenarios to execute the LOTOS specification and see if the LOTOS
specification accept or reject the test (reject means the executed behaviour of the specification does not
match the expected behaviour specified in the original test scenario)
Results Industrial results in the telecommunications domain (Mitel Inc.)
Types of UCM itself does not provide results of interactions unless translated into a formal language. However, once
Interactions | translated into LOTOS, the interactions found would be in the form of:
Detected e Basic service properties violation

e Scenarios that show negative impact of one feature on another feature

Table 2.12: The Approach by Turner

F 14: The Approach by Turner [65-68]

Notation Used

Chisel Representation Employing Systematic Specification (CRESS), LOTOS, and SDL

Approach
Main Idea

The CRESS notation can be used to graphically represent a service and its features. Then developed graphical
notation can be translated into a formal language (either SDL or LOTOS) where interaction detection takes
place

Technique of

o Apply CRESS to represent the service and its features

the Approach | ¢ Translate the generated graphical representation into SDL or LOTOS using SDL or LOTOS code
generators
e Analyze the features using either an SDL validator or a LOTOS validator to find problems either in the
features themselves or in the group behaviour of the features
Results Examples are given on detecting interactions in Interactive Voice Services (IVS)
Types of Detected CRESS itself does not provide results of interactions unless translated into a formal language. However, once
Interactions | translated into SDL or LOTOS, the interactions found would be in the form of inconsistency and deadlocks

Table 2.13: The Approach by Metzger and Webel

F 15: The Approach by Metzger and Webel [63, 64]

Notation Used

Formal product model (uses SDL)

Approach
Main Idea

The approach main idea is to detect interactions caused by the environment as well as interactions caused by the
system. The approach is based on developing a formal product model that describes requirements, functional
needs, tasks, and functional strategies. Using this formal model, analysis can be made to detect interactions
based on dependencies between the functional needs and the other artifacts of the formal product model.

Technique of
the Approach

e Develop the formal product model of the system

o Detect interactions at the requirements level by developing a dependency graph between the needs and the
tasks. An interaction point is a node that realizes more than one need and has more than one direct parent.
From these points of interaction, the actual interactions can be deduced.

o To refine the potential interactions detected at the requirements level, interactions that cannot occur should
be eliminated. This is done by only considering tasks that are directly and not transitively realized by the
task at the point of interaction.

e Detect interactions at the strategy level. After the above levels of information have been considered,
dependencies between tasks that are introduced by their realization can be examined as soon as the
developers have specified the strategies of the respective tasks. Dependencies on this level can occur
because strategies can be coupled by signals or attributes to exchange information

e Finally detect interactions at the environmental level. This is done by considering the dependencies that
arise due to the environment (e.g. building architecture)

Results

Case studies in the building control system, automotive control system, and railway crossing controller

Types of Detecteq

Interactions

Negative dependencies

22

2.2.4.2 Approaches Employing Formal Methods
Approaches that employ formal methods are divided into three categories:

e Property only approaches: This category contains approaches that represent the
features and the base system in terms of abstract properties and then check for
interactions such as inconsistencies or unsatisfiabilities.

e Behavioural only approaches: This category contains approaches that describe
features and the base system in terms of behavioural models and then check for
interactions such as non-determinism and deadlocks.

e Properties and Behavioural approaches: The third category contains approaches
that describe features and the base system in terms of both properties and
behavioural models and thén check for interactions such as: combined features do
not satisfy the corresponding combined properties (i.e., a property of a feature can
be satisfied in the behavioural model of the feature but when two combined
features are modeled together in one behavioural model, the combined properties

of the two features are not satisfied)

23

2.2.4.2.1 Properties Only Approaches

Table 2.14 presents a sinnmary of some of the approaches that use properties to detect
interactions. Detailed explanation of the approaches F21, F22, and F23 are presented later

on after Table 2.14.

Table 2.14: Properties only approaches

D Approach authors Property language Detected Interactions
Deadlocks and

F21 Blom, Jonsson, Kempe [76] TLA . .
Inconsistencies

F22 Gibson [77, 78] FOL & TLA Invariant violations

F23 Felty, Namjoshi [79] LTL Inconsistencies

F24 Rochefort, Hoover [80] Constructive Logic Satisfiability

F25 | Frappier, Mili, Desharnais [81] FOL Inconsistencies

F26 Bostrom, Engstedt [82] DELPHI Inconsistencies
Deadlocks, race

F27 Calder, Miller [83] LTL »

conditions
F28 Lee [84, 85] Object-Z State variables conflicts
F29 M. Butler [86] Z Inconsistencies

24

Table 2.15: The Approach by Blom, Jonsson, and Kempe

F 21: The Approach by Blom, Jonsson, and Kempe [76]

Notation Used

Temporal Logic of Action (TLA)

Approach
Main Idea

A service is considered as a module which can be formalized. Also each feature is seen as an independent
formal module. The overall system is obtained by composing the service and features modules. This
composition is seen as the conjunction of the properties of the modules.

Technique of

e Specify the basic system using TLA in the form of variables, events, restriction, initial condition, and

the Approach reaction part,
e Check for deadlocks interactions in the base system by making sure that the system always reaches states
where other events can still occur

e Specify features using TLA
o Check for logical inconsistencies of (Feature_A AND Feature_B) over the base system
o Resolve interactions between the interacting features by having Feature_A or Feature_B weaker

Results Case study in the telecommunication domain on telephony features

Types of e Deadlocks

Interactions | ® Logical inconsistencies between actions exhibited by two features
Detected

Table 2.16: The Approach by Felty and Namjoshi

F 22: The Approach by Felty and Namjoshi [79]

Notation Used

Linear Temporal Logic (LTL)

Approach Base system and features are specified in LTL. Two features are considered interacting if their specifications arg
Main Idea mutually inconsistent under axiom properties about the underlying base system behaviour
Technique of | ¢ Model the base system axiom properties using LTL and W-automata
the Approach e Model the features specifications using LTL and W-automata
o Use the model checker COSPAN to check for consistency of the modeled formulae
e Two features A and B interact IFF A and B can be enabled together under the system properties such that:
(System prosperities hold) AND (A and B are enabled together) AND (Some feature property doesn’t hold)
Results Case study in the telecommunication domain on 10 telephony features based on Bell-labs specifications
documents
Types of e Inconsistencies between logical formulae
Interactions
Detected

Table 2.17: The Approach by Gibson

F 23: The Approach by Gibson [77, 78]

Notation Used

Temporal Logic of Action (TLA)

the Approach

Approach The main idea of the approach is that the base system and the features can be treated as objects. The author use
Main Idea TLA to express the liveness properties (such as always, eventually). The liveness properties are then checked
for each pair of features to detect interactions.
Technique of | ¢ Model the base system axiom properties using fair objects semantics (which is TLA and Object Oriented

concepts)

e Specify state invariant properties (properties that contain the word **Always™) and faimess properties
(properties that contain the word “Eventually™)

e Classify the features under consideration according to their triggers using a triggered feature taxonomy

e According to the result of the classification, apply interaction detection technique to mainly detect no-
determinism

e Resolve interaction based on prioritizing the features

Detected

Results Examples from the telecommunication domain on telephony features
Types of e Invariant violations
Interactions

2.2.4.2.2 Behavioural Only Approaches

Table 2.18 presents a summary of some of the approaches that use behavioural languages
to represent the base system and the features to check for interactions. The different

approaches detect different interactions and at different levels of abstraction. A detailed

explanation is given after Table 2.18 on the approaches F30, F32, and F37.

Table 2.18: Behavioural only approaches

D Approach authors Behavioural language | Detected interactions
F30 Hall {87] State Transition Inconsistent state changes,
Diagrams Inconsistent actions
F31 Plath, Ryan [88] Csp Deadlocks
F32 Bruns, Mataga, Chisel variant Order dependency
Sutherland [89]
F33 Blom [90] MSC variant Inconsistent post-conditions
Inconsistent event
F34 Au, Atlee [91] State Transition Control and data modification.
Machines Resource contention,
Unreachable states
F35 Bergstra, Bouma [92] Synchronous MSC Inconsistencies
F36 Laporta, Lee, Lin, FSA Language differences
Yannakakis {93]
F37 Khoumsi, Bevelo [94, 95] ESFA Non-determinism,
Inconsistencies
F38 Inoue, Takami, Ohta [96, State Transition Rules Abnormal state, Transition
971, disappearance of normal
Harada, Hirakawa, state
Takenaka {98, 99]
F39 Nakamura, Kakuda, FSM Deadlocks, Loops, Non-
Kikuno [100] determinism
F40 Thistle, Malhame, Hoang Control theory Conflicting languages
[101]

26

Table 2.18 - Continued: Behavioural only approaches

ID Approach authors Behavioural language | Detected interactions
F41 Chan, Bochmann SDL, MSC Resource contention,
[102] Incoherence, non-determinism,
deadlocks, livelocks
F42 Mitchell, Thomson, Jervis | MSC, Process Algebra | Phase transition interactions
F43 Kawaucl[lil,ogilta [104] State Transition Rules Three way interactions
F44 De Marco, Khendek eSERL Inconsistency of
[105] composition
F45 Aggoun, Combes [106] SDL State errors
F46 Lin, Lin [107] PROMELA Violation of assertions
F47 Nakamura, Leelaprute, CPL Semantic warnings
Matsumoto, Kikuno [108,
109]

Table 2.19: The Approach by Hall

F 30: The Approach by Hall [87]

Notation Used

State Transition Diagrams

Approach
Main Idea

The main idea of the approach is to use foreground/background models for basic system and
features combination to detect interactions. A background model is a model used to represent the
base system and is of low priority whereas a foreground model is a model of the feature that has
higher priority and when merged with a background model will override only specific parts of it
and inherit its un-ridden parts. The combination approach is based on building a model for the basig
system extended for feature F1 and another model for the basic system extended for F2 and then
use a straight merge to combine the two models. An interaction would occur whenever the
conceptual foreground behaviour of a feature is inconsistent of the conceptual background or
default behaviour of another feature. The resolution technique is to allow the foreground models to
override the behaviour of the background models at points of interaction. However, un-overridden
points are left as is

Technique of
the Approach

o Construct a foreground model of each feature

o Construct a background model of the base system

Validate (FGlr; AND BG)

Validate (FGlg: AND BG)

Merge only the foreground models of the features using direct merge to get a new foreground
model of F1® F2

¢ Validate (FGlpior2 AND BG)

 Resolve any interactions detected from the previous step as explained earlier

Results

Case study in the telecommunications domain based on the second feature interaction contest [19]

Types of
Interactions
Detected

o Type | interactions occur when feature combination results in an ill-defined next state or output
function for the resulting reactive system

o Type Il interactions occur when feature combination results in the violation of a correctness
propetrty for one of the individual features

27

Table 2.20: The Approach by Bruns and Mataga, Sutherland

F 32: The Approach by Bruns and Mataga, Sutherland [89]

Notation Used

CHISEL variant

Approach
Main Idea

The main idea of the approach is based on having an original service and then applying a new feature to the
service to extend the base service. Features are implemented on top of the base system by adding them in an
ordered sequence. If the system behaves differently when the order of the features are changed then these
features are considered as interacting

Technique of

e Model the base system as a state transition system

the Approach | ® Model the features that consists of sequence of updates, sequence of reactions, and sequence of events

e Apply F1 then F2 to the system and capture the behaviour of the system
e Reverse the order and apply F2 then F1 and capture the behaviour of the system
o Interaction occurs if the system behaviour is different, i.e., (FI(F2(5)))# (F2(F1(S)))

Results Case study in the telecommunications domain based on telephony features

Types of Order sensitive

Interactions
Detected

Table 2.21: The Approach by Khoumsi and Bevelo

F 37: The Approach by Khoumsi and Bevelo [94, 95]

Notation Used

Extended Finite State Automata (EFSA)

Approach
Main Idea

The main idea of the approach is inspired from the control theory of discrete events. Features can be described
using EFSA while the system can be extended using the finite state automata (FSA). Features are added on top
of the base system to extend it. The extended system is then checked for non-determinism or variable
inconsistencies

Technique of
the Approach

e Model the base system using FSA

e Model the features using the EFSA

o Describe a scenario that express the non occurrence of the suspected interaction
e Transform EFSA to FSA

o Apply a model checker to see if the scenario holds

Results Case study in the telecommunications domain based on the second feature interaction contest telephony
features [19]
Types of e Non-determinism
Interactions | ® Inconsistencies
Detected

2.2.4.2.3 Properties and Behavioural Approaches

Table 2.22 presents a summary of some of the approaches that use both property and

behavioural languages to represent the base system and the features to check for

interactions. A detailed explanation is given after Table 2.22 on the approaches F50, F51,

and F55.

Table 2.22: Properties and behavioural approaches

28

ID Approach authors Property language | Behavioural language

F48 Combes, Pickin [110] LTL. SDL

F49 Gibson [13] TLA LOTOS

F50 Plath, Ryan [111] CITL SMV

F51 Calder, Miller [112] LTL PROMELA

F52 Stepien, Logrippo [113] LOTOS LOTOS

F53 Capellmann, Combes, Petterson, MSC SDL
Renard, Ruiz [114]

F54 Kamoun, Logrippo [115] CTL LOTOS

F55 Bousquet, Ouabdesselam, Richier, Lustre Lustre
Zuanon [116, 117]

F56 Guelev, Ryan, Schobbens [118] DC SMV

F57 Thomas [119] Temporal Logic LOTOS

F58 Bouma, Levelt, Melisse, TL SDL

Middleburg, Verhaard [120]
F59 Gammelgaard, Kristensen [121] FOL State Transition rules

Table 2.23: The Approach by Plath and Ryan

F 50: The Approach by Plath and Ryan [111]

Notation Used | Computation Tree Logic (CTL) and Symbolic Model Verifier (SMV)

Approach The main idea of the approach is to describe the features formally as units of functionalities which can be
Main Idea understood without much knowledge of the base system. The features are integrated on top of the base system
and the new extended system is verified. The verification of the new extended system includes verification of
the extended system properties and verification of the extended system behaviour

tat the authors developed)

Technique of | * Model the base system using the extended SMV code
the Approach | ¢ Model the system properties using CTL

o Verify the base system against the properties using SMV model checker

Model the features using SMV code

Integrate the features on top of the base system using the tool SF1(SMV Feature Integrator which is a tool

e Verify the extended system against the set of properties described in the second set and was modeled using
CTL. Detect any inconsistencies using the SMV model checker

o Case study in the Lift system

Results e Case study in the telecommunications domain based on the telephony features

Types of Logical inconsistencies
Interactions
Detected

29

Table 2.24: The Approach by Calder and Miller

F 51: The Approach by Calder and Miller [112]

Notation Used

Linear Temporal Logic (LTL) and PROMELA

Approach
Main Idea

The main idea of the approach is to consider the base system service to develop the right level of abstraction
of needed to ensure that effective reasoning techniques are established before proceeding to add features.
Once this is done, features are added. The PROMELA implementation is augmented with the new feature
behaviour, primarily through the use of an inline function, and then validated. Interaction detection analysis
takes two forms: static analysis which is inspection of the PROMELA code, and dynamic analysis which is
reasoning over combinations of sets of logical formulae and configurations of the feature

Technique of
the Approach

o Model the base system as a set of properties and as a finite state automata (use LTL for properties and
PROMELA for finite state automata)

e Also, model the features as properties and finite state automata

o Add the features on top of the base system

o Perform static analysis to detect inconsistencies of the syntax of the features

o Perform dynamic analysis of the model and the properties using the tool SPIN

Results Case study in the telecommunications domain based on the telephony features
Types of o Non-determinism

Interactions | ® Logical Inconsistencies
Detected e Violation of properties

Table 2.25: The Approach by Bousquet, Ouabdesselam, Richier, Zuanon

F 55: The Approach by Bousquet, Quabdesselam, Richier, Zuanon {116, 117]

Notation Used

Lustre

Approach
Main Idea

The main idea of the approach is to represent the system behaviour and properties using Lustre. Features
validation should be conducted in an interactive way by observing different features behaviours through
sequences of exchange between the user and the telephony system executable specifications. Feature
validation is done through testing to save time and resources.

Technique of
the Approach

e Build a Lustre program that consists of the basic call service properties and the properties of the features

e Apply testing methods that are part of Lustre to validate a specific feature F

o Detect interactions between features by confronting each property of all available features to the new
feature F. This is done incrementally by having a Lustre program gathers the properties of the feature to be
compared and confront it with the properties of the new feature F. Several testing methods are then applied
and an interaction is detected when the Lustre testing model output a false result at any time.

o Perform static analysis to detect inconsistencies of the syntax of the features

e Perform dynamic analysis of the model and the properties using the tool SPIN

Detected

Results Case study in the telecommunications domain based on the telephony features
Types of Logical Inconsistencies
Interactions

30
2.3 Surveying the Requirements Interactions Management Area
2.3.1 The requirements Interaction Management Problem
Requirements Interaction Management (RIM) was discussed in detail by Robinson et al.
in [11] and it was defined as “the set of activities directed towards the discovery,
management, and disposition of critical relationships among a set of requirements”. It is
very similar to feature interactions in the telecommunications domain in that they both try
to detect possible interactions between features or requirements and provide guidance on
how to resolve these interactions. Requirements interaction approaches are complete
management approaches that include identification of interaction, proposed resolutions
for the interaction, and negotiation with stakeholders for the best solution. This complete
solution approach is more general than the feature interaction detection approaches as
discussed in Section 1.1.
The lack of proper requirements interaction management resulted in several problems
that ranged from minor inconsistencies between requirements to real life disasters like the
software of the Therac-25 system, the destruction of ARIANE-5, and the A320 Warsaw
airplane. In the A320 airplane disaster, an interaction between two requirements led to
serious results that in turn led to the destrucﬁon of the airplane as follows: In the air,
braking of an airplane is not allowed. To ensure that pilots will not accidentally engage
the A320’s breaking system, the software has a requirement that the breaking system is
not engaged unless the wheels detect the full weight of the airplane during the landing.
Another requirement of the system is that the airplane will have an efficient breaking

system to ensure a safe landing. However, when a Lufthansa pilot attempted to land in

31
Warsaw on a wet, runway in high winds, the system did not detect the full weight of
the plane on the wheels, with the following results:
"The spoilers, brakes and reverse thrust were disabled for up to 9 seconds after landing in
a storm on a water logged runway, and the airplane ran off the end of the runway and into
a conveniently placed earth bank, with resulting injuries and‘rloss of life" [122]
In this section we summarize some of the work done that are relevant to the requirements
interaction management area. |
2.3.2 Methodology for Surveying the Requiréments Interaction Approaches
In this section, different approaches for requirements intel'action managemént are
presented. A classification can be made for the different approaches based on the way
they can detect interaction [11]. This classiﬁcatidn will classify an approach into one of
the following categories: Classification based, Patterns based, Al planning based,
Scenario analysis based, formal model checking based, and runtime monitoring based.
However, in this section, the category formal 1;nodel checking based approaches is not
considered as this was considered in detail in section 2.2. Also, the funtime monitoring
based approaches are not considered as they are irrelevant for this thesis.
Since the surveyed approaches are interaction management approaches; i.e., they are not
concerned with only detecting interactions but have mény other activities, the focus
within each approach will be on the detection part as the rest of the approach is irrelevant

to this thesis.

32
The survey presented in this section is based on the following resources:
1. An extensive survey conducted by the author using online resources on the World
Wide Web and online libraries such as the IEEE [32], ACM [33], and CITESEER
[34] digital libraries.
2. The survey by Robinson et gl. [11] regarding the different approaches in the area
of requirements interaction management.
2.3.3 Classification Based Approaches
The classification based approaches detect requirements interactions by comparing
requirements against a-priori model of requirements interactions. The basic idea is to
build a knowledge of all commonly known interactions thét would occur between
requirements (e.g., non-functional requirements), and then classify the requirements and
compare them to the rules and knowledge that was built previously. For example,
consider the two requirements R1 that can be classified to be a high accuracy requirement
and R2 that can be classified into a low cost requirement. From the a-priori knowledge on
n01.1-functiona1 requirements that the low cost is interacting with high accuracy, hence R1
and R2 are considered as interacting requirements.
Approaches that fall in this category are: WinWin approach by Boehm in 1996 [15], NFR
approach by Mylopoulos et al. in 1992 [123], and Viewpoints by Nuseibeh et al. in 1994

[124].

33

2.3.3.1 The WinWin Approach [15]

The WinWin approach was built to support collaboration between a wide range of
stakeholders with the ultimate goal of getting each stakeholder to be a winner (i.e., his
needs are fulfilled). To achieve this, a-priori model on negative interactions between
different non-functional requirements was built in the QARRC project [15].

Interaction identification is done when an analyst enters a new requirement R for a
specific stakeholder into the database of the project under consideration. The QARRC
will then classify the new requirement under one of the non-functional categories Cl
(e.g., Accuracy) and starts searching for other non-functional requirements categories that
would interact with C1 using the a-priori model. Once an interacting non-functional
requirement category C2 is identified, all previously entered requirements that were
classified under this category C2 are identified as interacting requirements with the new
requirement R. The QARRC will then send a conflict advisor note to all concerned
stakeholders.

The QARRC model in the WinWin approach suffers from the following problems:

e The interaction detection is based on a-priori mode] and hence it cannot identify
new interactions that are not included in that a-priori model.

e The model is currently able to detect only non-functional requirements
interactions and it does not consider technical and behavioural interactions which
are in many cases the basic core of the system.

e The model uses implementation strategies for linking the non-functional
requirements categories together and identifying if they interact. This means that

these strategies need continuous update.

34
2.3.3.2 The Non-Functional Requirement (NFR) Approach [125]
The NFR approach was built to model and analyze rnon—functional requirements. The
approach is based on building dependencies graphs for the requirements of the system
(either functional or non-functional) in the form of AND/OR hierarchies. The interaction
detection is done when an analyst enters a new requirement R and models it into the
dependencies graphs. The first step will be to associate the new requirement with existing
non-functional requirements. Association here means that the new requirement when
entered will be known, via the a-priori model, to have positive or negative effect on some
non-functional requirements. The second step will be to propagate the effect to all other
non-functional requirements to estimate the cumulative effect of the requirement on the
overall non-functional requirements.
The NFR approach suffers from the following problems:
e The NFR approach is used to target the interactions aﬁd effects with respect to
only non-functional requirements
e The NFR approach is based on a-priori knowledge and hence it cannot tackle new
interactions that are not included in the a-priori model
e The NFR approach is based on human experts in building the hierarchy of the
requirements with AND/OR relations. However, human experts can make
mistakes.
e If a link is missed between two requirements then the interaction cannot be

propagated to other levels of the hierarchy.

35

2.3.3.3 The Viewpoint Approach [124]
Viewpoints were introduced as a means to partition requirements of different
stakeholders and analyze them for conflicting views. Viewpoints address the integration
of the different and heterogeneous viewpoints from stakeholders which are known to be
part of the requirements engineering known problems.
The interaction detection is done by having the analyst representing the new requirement
as a viewpoint. The analyst can then apply consistency rules to determine inconsistencies
between the new requirement and the other requirements.
Viewpoints are expressed usually using a language which can be dataflow diagrams [126]
or state transition diagrams [127]. Consistency rules are built using a formal rule pattern
and are based on a priori knowledge on the different types of inconsistencies and
interactions that can occur.
The viewpoints approach suffers from the following problems:

e It is aimed to detect inconsistencies rather than technical and behavioural

interactions
e It partially uses formal languages such as state transition diagrams, which require
heavy mathematical modeling, to represent the viewpoints in some cases.

2.3.4 Patterns Based Approaches
Pattern based approaches are approaches fhat detect interactions through the comparison
of requirements with detection pattern conditions and interaction is found when there is a
match. An interaction pattern uses pre and post conditions to constrain their use in

specific situations and hence identify interactions.

36
An example of the approaches that can be classified as patterns based approaches is the
KAOS project [128] which defines formal interaction pattéms for identifying
interactions.
2.3.4.1 The KAOS Approach [128]
The Knowledge Acquisition in autOmated Specification of software (KAOS) is a broad
project that includes meta-modeling, specification methodology, interaction
identification, learning, and reuse. We focus our efforts on the inte{actions detection with
patterns part. The KAOS detects requirements interactions as the following types:
Process level deviation, Instance level deviation, Terminology clash, Designation clash,
Structure clash, Conflict, Divergence, Competition, and Obstruction.
For each one of these interaction types, the KAOS applies the corresponding interaction
pattern to detect interactions under this type. For example, in the divergence interactions,
apply the divergence pattern to generate boundary conditions sufficient to detect
interactions. The divergence pattern is of the form:

“Given assertions of the Achieve-Avoid pattern: (P=0Q) A (R=0-S) A (Q=8),

consider the boundary condition: ¢ (PAR)”
The KAOS approach has the following problems:
e Itis a heavy weight approach
e It uses formal notations (temporal logic) to define its interaction patterns
o All requirements must be represented using formal notations (temporal logic)
2.3.5 Al Planning Based Approaches
The Al planning approaches divides requirements into operational and non-operational

requirements. For operational requirements, Al planning approaches use Program Slicing

37
techniques [129] to highlight semantic differences. However, for non-operational
requirements, which are presented as system goals, planning techniques can be used to
detect interactions when the planner cannot find a plan for the conjunction of the
requirements.

Example of approaches that fall in this category is the Deficiency-Driven Requirements
Analysis (DDRA) [130].
2.3.5.1 The DDRA Approach [130]
The DDRA was designed to use Al techniques to get assistance in analyzing
requirements for deficiencies. Several prototypes for achieving this goal were developed
including OPIE [131] and Oz [132].
The interaction detection is done by simulation. The planner OPIE will design and
simulate execution of an agent and environment that will lead to the satisfaction of a
requirement or the failure of a requirement. This method was used to validate individual
requirements against the environmental constraints in the system.
Another way to detect interactions between two requirements was to use OPIE to analyze
the conjunction execution of two requirements held by different stakeholders. If conflict
existed between the two requirements, which is usually in the form of inconsistencies
between the logical formulae of the two requirements, then the planner Oz is used to
identify the point at which a predicate was violated.
The DDRA approach suffers from the following problems:

e It uses formal notations for representing requirements (predicates logic)

e Itis based on validating arbitrary constraints to represent the system

38
2.3.6 Scenario Analysis Based Approaches
Scenario analysis based approaches detect interactions by simulating a sequence of
events scenario to describe some aspect of system behaviour. In scenario analysis based
approaches, the aim is to check if a specific scenario can satisfy the requirements under
consideration. If a scenario fails to satisfy the requirements, then there is an interaction
between these requirements. Sometimes, scenario analysis is performed by model
checking tools or it is performed manually by having the analyst check the outcome of
the scenario to identify if an interaction exists or not.
An example of approaches that fall in this category is the Software Cost Reduction (SCR)
approach [133].
2.3.6.1 The SCR Approach [133]
The SCR approach was used to specify and analyze real time embedded software
systems. In SCR, the requirements are formally modeled and then a set of tools can be
used to analyze the system for interactions. Two types of interactions can be detected
using SCR. The first type of interactions is static interactions which includes
inconsistencies and deadlocks. The second type of interactions is based on modeling the
behaviour of the system with a model checker and identifying specific requirements
properties that need to be checked. The SCR will analyze and detect interactions using
scenarios. The output will be a trace that describes a scenario By which the requirement

property under investigation fails to hold.

39
The SCR approach suffers from the following problems:
e SCR uses formal modeling to represent requirements and properties
e SCR uses model checking for interaction detection using scenarios which are
problematic due to the state explosion problem
e SCR requires detailed design information that might not be available at the
requirements level
2.4 Summary
This Chapter presented a summary of the current state of the art on approaches for
detecting interactions. The survey conducted in this chapter was divided into a survey
regarding the approaches in the feature interactions research éommunity and a survey
regarding the approaches developed in the requirements engineering research community.
The surveys presented in this chapter are intended as the necessary background to
understand the current state of the art regarding interaction detection approaches. The
first survey included 7 semi-formal approaches, which were described in detail, and 59
formal approaches of which a few were described in details. The survey conducted in the
requirements engineering research area included 6 approaches which were all described

in detail.

40
CHAPTER THREE: A REQUIREMENTS INTERACTION TAXONOMY

3.1 Introduction |
Requirements often interact when developing new systems because of the heterogeneity
and diversity of stakeholders [124]. Hence, there is a need to have a requirements
interaction taxonomy that would answer questions such as: When are two requirements
considered as interacting? Why are these two requirements interacting? How do we
detect this interaction? And how do we resolve it?
To the best of our knowledge, not much work has been done in the area of general
requirements interaction taxonomies. Even though Robinson et al. [11] defined in detail
the concept of requirements interactions, their work did not include in-depth information
on when two requirements are considered interacting and how to detect such interactions
between the two requirements. To this end, other work and research have been done and
published in the area of feature interactions. In 1994, Cameron th al. [134] published a
paper describing a benchmark for classifying the different categories of feature
interactions. However, this paper is very specific to the telecommunications domain and
all examples are related to interactions between telephony features and therefore it is very
hard to be generalized. In 2000, Gibson et al. [135] presented a taxonomy for triggered
interactions using fair objects semantics. This work builds on the assumption of “having a
set of triggered features and using a semantic point of view for classifying interactions
between those telecommunications features”. Hence, Gibson et al.’s work [135] cannot
be used beyond its assumption especially in cases where there can be triggered and non-
triggered (non-functional) requirements. In 2004, Reiff—Margéniec and Turner [68]

presented a taxonomy for identifying policy conflicts. However, this work focuses on the

41
social nature of policies interactions and the social explanations of why they occur.
Also, the taxonomy in [68] is geared towards policy domain and therefore not generally
applicable. There are also research efforts to present partial taxonomies as sections of
papers or thesis where no claim of completeness has been made [21, 136-138].

This chapter tries to address these shortcomings and presents a general interaction
taxonomy for classifying and identifying requirements irﬁeractions. rThe proposed
taxonomy can be represented in the shape of a four-layered pyramid where the first layer
describes 9 main interaction categories, the second layer describes 24 interaction
subcategories, the third layer describes 37 interaction types, and finally the fourth layer
describes 37 interaction scenarios. Each interaction scenario has an associated interaction
detection guideline. This structure addresses the lack of details that exist in other
interaction taxonomies (e.g., [11, 21]). Moreover, the proposed interaction taxonomy was
compared to other existing taxonomies in the literature and the obtained results were in
favour of the proposed interaction taxonomy as seen in Section 3.4.

This chapter is structured as follows: Section 3.2 presents the concept of system
decomposition. Section 3.3 presents the proposed requirements interaction taxonomy.
Section 3.4 compares the proposed interaction taxonomy with already existing
approaches. Section 3.5 presents the limitations of the proposed interaction taxonomy.

Finally, section 3.6 summarizes the chapter.

42
3.2 System Decomposition
3.2.1 The Concept of System Decomposition
The main goal of the proposed requirements interaction taxonomy is to define interaction
scenarios that fully describe interactions between requirements during the requirements
engineering phase of system development. The output of the requirements engineering
phase is a requirements specification document that contains a set of requirements that
describe stakeholders’ needs. This set of requirements can either describe certain
properties that have to be preserved (static view) or dynamic behaviour which the system
exhibits when certain triggers occur (dynamic view). Usually, there is also a description
of the available resources that the system will use (environmental view). Therefore, we
consider a system that comprises the following components:

e System Axioms: Each system axiom describes certain propertieé of the system
that must be preserved. For example, in the lift system [139], a system axiom
states that “At any time the user can press a call button to call the lift”. This
property must be preserved at all times to ensure the proper operation of the lift
and hence it is considered a system axiom.

e Dynamic Behaviour Requirements: Each dynamic behaviour requirement
describes how the system should behave whenitisina certain state and a specific
trigger event occurs. For example, a requirement from the lift system [139] might
state the following: “When the lift stops at floor K, it will open its doors”. This
dynamic behaviour requirement should perform the action “open lift doors” when

the trigger event “the lift stops at floor K occurs.

43
e Resources: Each resource describes physical elements that the system uses to

fulfill its requirements. For example, Infra Red sensors (IR) in security systems

are considered as resources used to detect motion.
The difference between a system axiom and a dynamic behaviour requirement is that the
latter contains a certain action during a transition of system states when the system
receives a specific trigger. On the other hand, system axioms are properties that are
neither related to events nor contain transitions of system states.
3.2.2 System Representation using Attributes
A system is usually defined by textually describing all the elements of the three system
components: system axioms, dynamic behaviour requirements, and resources. However,
the textual description is often long, ambiguous, and easy to get lost in. For example, if it
is required to examine the trigger events in a system, then a whole textual document must
be read and analyzed in order to identify those trigger events. We propose the use of
attributes to describe the system. In general, an attribute can be defined as a part that
belongs to a bigger entity and characterizes this entity. Examples of attributes used to
represent dynamic behaviour requirements include: Prestate, Trigger Event, Action, and
Next State attributes. The values of these attributes for a dynamic requirement are
determined from the textual description of that dynamic behaviour requirements.
This concept of representation using attributes can be applied to all the thre¢ system

components as follows:

44

Consider a system S which can be described using the following equation:
S=QUDUY (3.1)
where S: the system under consideration, Q: system axioms component
D: dynamic behaviour requirements component, ¥: resources component

Mathematically, Q is defined by:

Q = {(,0[, 0)2,..., (Dm} (3.2)

where ;.. O, are all the system axioms in the system
Every individual system axiom @ can be represented using system axioms attributes.
Based on the different textual formats that system axioms can have, our research found
that any system axiom can be represented by:

i =< Yi, Yi2, Yi3, Yia, Lis, Yi¢ > (3.3)

where Yj;: is the jth attribute associated with the ith system axiom, j=1, 2, ..., 6

System axiom @ can be defined using the attributes Yj;...Yis as follows:

Y;; | ID: A unique ID number corresponding to the system axiom number given in the

requirements document

Y, | Description: An informal description of the system axiom as specified in the

requirements document

Y;; | Rule: A description of the required property encapsulated in this system axiom

that must be preserved

Y, | Condition: A description of any specific conditions on preserving the property

described in the Rule attribute

Y;s | Parameters: A description of any parameters that are listed in the system axiom

body {optional}

Y, | Parameter range: A description of any restrictions on the values that the

parameters can have {optional}

45
The dynamic behaviour requirements component can be mathematically represented’
by: D={dj, dy, ..., dn} (3.4
where d;: represents the i dynamic behaviour requirement in the system
The i" dynamic behaviour requirement d; can be represented using dynamic behaviour
requirements attributes. After a study of the different possible fextual representation that
a dynamic behaviour requirement can take, it was found that any dynamic behaviour
requirement can be represented using 8 attributes:
di =<Ti, i, T3, Tig, Tis, Ti6, T, Lig™> (-5

where I'jj: is the jth attribute associated with ith dynamic requirement, j=1, 2, ...,8

Dynamic behaviour requirement d; can be defined using I'j;...I'is and written as follows:

I3, | ID: A unique ID number corresponding to the dynamic behaviour requirement

number in the requirements document

I, | Description: Informal description of the dynamic behaviour requirement given in

the requirements document

I; | Pre-state: A description of the required system state prior to the execution of this

dynamic behaviour requirement

[| Trigger event: A description of the trigger event required for this dynamic

behaviour requirement to execute

s | Action: A description of the action carried out by this dynamic behaviour

requirement once triggered

Ic | Next state: A description of the next state that the system should reach once this

dynamic behaviour requirement finishes executing

I, | Parameters: A description of any parameters that are listed in the dynamic

behaviour requirement body {optional}

I3 | Parameter range: A description of any restrictions on the values that the

parameters can have {optional}

46

Finally, consider ¥ as the resources component within a system. It is defined by:
Y= {1, V2, ..., Y} ‘ (3.6)
where y;: denotes the i" resource in the system
Resources attributes can be used to represent a resource ;. Based on a study of the
different possible textual representations that a resource can take 5 different attributes
have been identified to represent a resource:
Vi = < Ait, Ain, Aiz, Aig, Ais > (3.7)
where Ay is the jth attribute associated with ith resource, j=1, 2,..,5

Resource y; can be defined using the attributes Ajy...Ajs as follows:

A;; | ID: A unique ID number corresponding to the dynamic behaviour requirement

number given in the requirements document

Ay | Description: An informal description of the dynamic behaviour requirement

specified in the requirements document

Ap | Availability: A description of this resource’s availability constraints {optional}

Au | Performance: A description of this resource’s performance constraints

{optional}

A;s | Interface: A description of this resource’s interface constraints {optional}

It is worth mentioning that an optional attribute, which is labelled by {optional}, will
only have a value if textual description of the system axiom, dynamic behaviour
requirement, or resource describes these attributes. For example, if the resource y; textual
description has a certain constraint value on its availability value, then the attribute

Auvailability of ; is assigned to this availability value.

47
3.3 The proposed Interaction Taxonomy
3.3.1 General Architecture
In order to address the problem of requirements interaction in software systems, many
questions arise such as:

e WHERE can interactions occur in a system? Interactions can occur between two
elements from two different components, e.g., a system axiom from the system
axioms component and a resource from the resourcés component. Alternatively,
interactions can occur between two elements within one component, e.g., system
axiom A and system axiom B from the system axioms component.

e WHAT attributes cause the interaction? This requires the identification of those
attributes that cause the interaction to really occur.

e WHY does the interaction occur between the attributes? This question looks for
the reasons of why the attributes are interacting.

¢ HOW can the interactions be identiﬁed? This question looks into how the

different types of requirements interactions can be detected.

48

/ Main

Categorles 1% layer

@%.\ {(Where)
@ A)‘s’ \
BA
Subcategories 2 layer
e o

pes 3 Jayer
{Why)

Ty|
) I I)
oo e X
Detailed Scenarios N 4" tayer
/ Sl] B B N\

a —
Figure 3.1: General architecture of the proposed interaction taxonomy

The question on how to resolve interactions was left out of the taxonomy because the
focus of this thesis is only on the detection of interactions. Moreover, different
resolutions can heavily vary according to stakeholders’ preferences.

The architecture of the proposed interaction taxonomy addresses the questions listed
above in a gradual manner as shown in Figure 3.1. The proposed taxonomy starts in the
first layer by addressing the question of WHERE in the system interactions can occur.
Whenever two elements (either from two different components, e.g., a system axiom and
a resource, or from the same component, e.g. two system axioms) are interacting, they are
said to form a main interaction category.

The second layer of the taxonomy addresses the question of WHAT attributes of the two
system elements, identified in the first layer, cause the interaction. The second layer
contains interaction subcategories. Each interaction subcategory describes the two

attributes that cause the interaction.

49
The third layer of the proposed taxonomy addresses the question of WHY the
attributes, identified in the second layer, are interacting. The third layer contains
interaction types with each interaction type describing why the two attributes from the
second layer are interacting.
The fourth layer of the proposed interaction taxonomy addresses th¢ question of HOW to
detect interaction types, identified in the third layer, in any software system. This layer
contains interaction scenarios where each scenario is lised to describe in detail a specific
interaction type and how to detect it.
The elements of the first and the second layers of the proposed interaction taxonomy have
a 1:n relationship. This means that each main interaction category in the first layer can
have up to n (where n>1) interaction subcategories in the second layer depending on what
attributes cause interactions.
The elements of the second and the third layers of the proposed interaction taxonomy also
have a 1:n relationship. This means that each interaction subcategory in the second layer
can have up to n (where n>1) interaction types in the third layer depending on why the
two attributes in the interaction subcategory are interacting.
The elements of the third and fourth layers of the proposed interaction taxonomy have a
~ 1:1 relationship. This means that each interaction type in the third layer will have only
one corresponding interaction scenario in the fourth layer.
3.3.2 First Layer: Main Interaction Categories
Any two elements (out of system axioms, dynamic behaviour requirements, and
resources) that interact are said to form a main interaction category (whether these two

elements are from two different components or from the same component).

50
The number of the main interaction categories is 9 as shown in Figure 3.2 and are
listed as follows:
® Two interacting system axioms.
@ A system axiom interacting with a dynamic behaviour requirement.
® Two interacting dynamic behaviour requirements.
@ A system axiom interacting with a resource.
® A dynamic behaviour requirement interacting with a resource.
® Two interacting resources.
@ A dynamic behaviour requirement interacting with a system axiom.
A resource interacting with a system axiom
® A resource interacting with a dynamic behaviour requirement
In the remainder of this chapter we will focus our efforts on explaining and describing
only the main interaction category “Two Interacting Dynamic Behaviour Requirements”

as an ongoing example. However, the rest of the taxonomy will be listed in Appendix B.

it
Which components 1stlayer
interact? ‘
s VN
’ O
7 O
ot o \
S W
'k ynamic |\
J \ Behavior |
i 3 / \
! 1
; 1
!)
\ % Resources < ,
\) y
\ & ’
. SERX ;
b () » System
~ { ; "

-

Figure 3.2: First layer of the proposed interaction taxonomy

51

1stlayer
Which components
interact?

‘Two Interacting-Dynamic
Behavior Requirements

\ 2ud jayer

Which components
Attributes interact?

. <

Nttt ! 8 Triager Event
ex; state- i i i rigger Event-
Vot | |‘penicler| pelani | | TR e
Interactions Infaractions

Figure 3.3: Second layer of the proposed interaction taxonomy

3.3.3 Second Layer: Interaction Subcategories

The second layer of the proposed interaction taxonomy contains interaction subcategories
that are linked to the first layer through an attribute—baéed decomposition. An interaction
subcategory describes what attributes of the two interacting system elements, identified in
the first layer, cause the interaction. Therefore, to generate the second layer interaction
subcategories, each possible pair of attributes between the two interacting elements is
first listed, with the first attribute is from the first element and the second attribute is from
the second element. Then the obtained pairs of attributes are analyzed to determine which
ones can cause interactions. Any pair of attributes that could cause an interaction
situation is then listed and considered to be an interaction subcategory.

Therefore, the main interaction categories from the first layer will be decomposed into
different numbers of interaction subcategories in the second layer depending on the
outcome of the analysis of attributes pairs (e.g., as seen in Figure 3.2, the main interaction
category @ has four subcategories S5-S8, whereas as seen in Appendix B.3 the main
interaction category @ has three subcategories S9-S11).

The first layer’s 9 main interactions categories resulted in the following 24 interaction

subcategories in the second layer: 1 subcategory (S1) from main category O, 3

52
subcategories (S2, S3, and S4) from main category @, 4 subcategories (S5, S6, S7, and
S8) from main category @, 3 subcategories (S9, S10, and S11) from main categofy @,3
subcategories (S12, S13, and S14) from main category ®, 3 subcategories (S15, S16, and
S17) from main category ®, 1 subcategory (S18) from main category @, 3 subcategories
(S19, S20, and S21) from main category ®, and 3 subcategories (S22, S23, and S524)
from main category ®.

We continue with the ongoing example of presenting and explaining the subcategories of
interactions derived from the main interaction category ® “Two interacting Dynamic
Behaviour Requirements”. The remaining interaction subcategories associated with the
other eight main interaction categories, are presented in Appendix B.

Figure 3.3 shows how the third main interaction category ® from the first layer is
decomposed into 4 interaction subcategories in the second layer. The decomposition was
based on the attributes of dynamic behaviour requirements, namely: Prestate, Tﬁgger
event, Action, and Next state (refer to Section 3.2.2). The other two attributes
“Parameters” and “Parameters range”, described in section 3.2.2 as part of the dynamic
behaviour requirement set of attributes, are not used in the decomposition. This is
because these two attributes will not cause interaction situations with other attributes but
they are used to show the effects that parameters can have on the interaction and how the
parameters values can heavily affect the interaction. This is further explained in the
fourth layer of the proposed interaction taxonomy.

After analyzing the possible pairs of attributes that can form interaction categories, only

four pairs were found to really represent interactions subcategories as follows:

53

e S5: Next State-Next State interactions: This subcategory contains all the
interactions that arise between two dynamic behaviour requirements because the
next state attribute of the first requirement interacts with the next state attribute of
the second requirement.

e S6: Action—Action interactions: This subcategory contains all interactions that
arise between two dynamic behaviour requirements because the action attribute of
the first requirement interacts with the action attribute of the second requirement.

e S7: Action—Prestate interactions: This is a subcategory that contains all the
interactions that arise between two dynamic behaviour requirements because the
action attribute of the first requirement interacts with the prestate attribute of the
second requirement.

e S8: Trigger Event-Trigger Event interactions: This is a subcategory that
contains all the interactions that arise between two dynamic behaviour
requirements because the trigger event attribute of the first requirement interacts
with the trigger event attribute of the second requirement.

Note that the numbering started from 5 because there are other 4 subcategories derived
from the first two main interaction categories @ and @.

3.3.4 Third Layer: Interaction Types

The third layer of the interaction taxonomy describes the reasons why the attributes,
identified in the interaction subcategories in the second layer, are interacting. Each one of
these reasons forms an interaction type. Therefore, the number of interaction types for an
interaction subcategory will depend on the number of reasons that can cause the two

attributes of this interaction subcategory to interact.

54

/(T'v;o Interacting
Dynamilc Behavior
wulremenrs
Which components / / / \« \‘ \
! S5 $6 S7 s8N\ 2 layer

Attributes interact? Next state- Actlon- Action- Trigger Event
Next state Action Prestate iTrigger Event
Interactions||Interactions| |Interactions|jinteractions

—

1 layer
Whicli components
interact?

\
/]
L

Why the attributes 3" layer

interact?

ST

SjueAR
1661 aweg o
22

12638113 swesg
[he]

SIURAR
1861 paull
£3
SJUIAS

)

et J2B014 payui
£
SIIPAR 1308

Sajelseld JWes o
$ajeiseld sues -
payuy leng

/

-ucy
8
9ouapuadag
81
apUIBAQ
an
oedwy
aanebal
[42]
13pI0
[43]
ssedig
38]

(o]
<
3=
=
A
o
o

Toedu|
2AnEBaN

wsfuwieg

|

Figure 3.4: Third layer of the proposed taxonomy

Sometimes there are certain constraints on an interaction type to occur. For example,
consider the interaction subcategory S5 “Next State—Next State interactions” derived
from the main interaction category @ “Two interacting dynamic behaviour requirements”
(see Figure3.4).

This interaction subcategory has only one interaction type t8 called “Non-Determinism”
in the third layer that describes that the attribute Next State of the first requirement
interacts with the attribute Next State of the second requirement because they have
different values and will therefore cause a non-determinism situation in the system.
However, for this interaction type to occur, the two dynamic behaviour requirements
must execute simultaneously, i.e. they must have: (same prestates) AND (same trigger
events). This is considered to be a constraint on the interaction type “Non-Determinism”
and therefore the subcategory “Next State—Next State interactions” is connected to the
“Non-Determinism” interaction type through the constraint C1 “Same prestates AND

same trigger events”.

55
It must be noted that some interaction types can be repeated more than once under the
same subcategory because this interaction type occurs under two different constraints
(e.g., 110 and t12 under S6 in Figure 3.4).
Overall, the 24 interaction subcategories from the second layer resulted in 37 interaction
types and 5 constraints in the third layer as shown in Table 3.1.
We continue with our ongoing example and describe only types of interactions that aré
derived from the subcategories S5 “Next State — Next State interactions”, S6 “Action —
Action interactions”, S7 “Action-Prestate interactions”, and S8 *Trigger Event — Trigger
Event interactions”, which are presented in section 3.3.3 as subcategories derived from
main interaction category ® “Two interacting Dynamic Behaviour Requirements”. The
remaining types of other interaction subcategories are presented in Appendix B.

Table 3.1: Summary of the resulting interaction types in the third layer

S1 t:2, C:0 S2 t:2, C:0 S3 t:1, C:0
(Appendix B.1) (Appendix B.2) (Appendix B.2)
S4 t:2, C:0 S5 t:1, C:1 S6 T:6, C:2
(Appendix B.2) (Figure 3.3) (Figure 3.3)
S7 t:1, C:1 S8 t:1, C:1 S9 t:2, C:0
(Figure 3.3) (Figure 3.3) (Appendix B.3)
S10 t:1, C:0 Si11 t:2, C:0 S12 t:2, C:0
(Appendix B.3) (Appendix B.3) (Appendix B.4)
S13 t:1, C:0 S14 t:2, C:0 S15 t:1, C:0
(Appendix B.4) (Appendix B.4) (Appendix B.5)
S16 t:1, C:0 S17 t:1, C:0 S18 t:2, C:0
(Appendix B.5) (Appendix B.5) (Appendix B.6)
S19 t:1, C:0 S20 t:1, C:0 S21 t:1, C:0
(Appendix B.7) (Appendix B.7) (Appendix B.7)
S22 t:1, C:0 S23 t:1, C:0 S24 t:1, C:0
(Appendix B.8) (Appendix B.8) (Appendix B.8)
Where Si: The i Interaction subcategory in the second layer
t= Number of interaction type in third layer resulting from the corresponding Si
C= Number of constraints in the third layer resulting from the corresponding Si

56
Figure 3.4 shows how the subcategories S5, S6, S7, and S8 from the second layer are
associated with interaction types and constraints in the third layer of the proposed
taxonomy. The details of these interactions types in the third layer are as follows (in all
interaction types t8 to t16 described below, consider R1 and R2 to be dynamic behaviour
requirements):
t8: “Non-Determinism” interaction type (under constraint C1): Consider R1 and R2
to have the same trigger events and the same prestates and hence will be executed
together. Also consider R1 and R2 to have different values for their Next State attributes.
If these two requirements are executed at the same time then the system will face an
ambiguous situation in which the system is unable to determine which state to go to (the
next state specified in R1 or the next state specified in R2).
t9: “Dependence” interaction type (under constraint C2): Consider R1 and R2 to have
the same trigger events and the same prestates and hence will be executed together. Now,
suppose that the action of R1 requires that the action of R2 be successfully executed. This
means that the action of R1 depends on the action of R2, i.e., an interaction occurs if the
action of R2 is not completed successfully for any reason.
t10: “Override” interaction type (under constraint C2): Consider the two dynamic
behaviour requirements R1 and R2 to have the same trigger event and the same prestate
and that they have been triggered and are executing simultaneously. Suppose that the
action of R1 interrupts and cancels the action of R2 before its completion which means
that the action of R1 has overridden the action of R2. Hence there is a negative

relationship from R1 on R2, and by definition, R1 and R2 interact.

57
t11: “Negative Impact” interaction type (under constraint C2): Consider R1 and
R2 to have the same trigger events and the same prestates and that they have been
triggered and are executing simultaneously. Now suppose that the action of R1 negatively
impacts the action of R2. Hence, R1 interacts with according to the interaction type t11.
This interaction type is similar to t10, however, the difference is that in t10 the action of
R1 will completely cancel the action of R2 while in t11 the action of R1 will only
negatively impact, but not completely cancel, the action of R2.
t12: “Override” interaction type (under the constraint C3): Consider R1 and R2 to
have different, but linked trigger events, i.e., the occurrence of the first trigger event is
followed after some time by the occurrence of the second trigger event (Section 4.3.5
provides complete details and definition of linked events). Hence R1 and R2 are still
sequentially related and prone to interactions. Suppose that R1 is triggered and starts
executing. R2 is also triggered and starts executing after some time because the trigger
event of R2 is linked to the trigger event of R1. Now, assume that the action of R1 is not
yet completed while R2 is triggered. If the action of R2 cancels and overrides the action
of R1 before its completion then there is an interaction between the two requirements.
The interaction type t12 is also possible when the action of R1 overrides and cancels the
action of R2. In both cases, R1 and R2 interact.
t13: “Negative Impact” interaction type (under the constraint C3): Assume R1 and
R2 to have linked trigger events and hence if R1 is triggered and starts executing then R2
will also be triggered and starts executing after some time. Now, if the action of Rl
negatively affects the action of R2 then the R1 interacts with R2. This interaction type

can also occur when the action of R2 negatively impacts the action of R1.

58
t14: “Order” interactions type (under constraint C3): Consider R1 and R2 to have
linked trigger events. Assume that the trigger of the first requirement leads to the trigger
of the second requirement, i.e. T1~>T2.. In this case, the first requirement R1 executes
first then followed by the execution of the second requirement R2. Consider B1 to be the
system specific behaviour after the two requirements have executed their éctions. Now if
behaviour Bl is different from the behaviour that the system would exhibit if R2 had
started first followed by R1, i.e., T2~>T1, then there is an interaction between the two
requirements. This is because the actions of the two requirements are not independent but
‘have an effect on each other. If they were independent then the same behaviour would
have been obtained no matter which action started first.
t15: ”Bypass" interaction type (under constraint C4): Consider R1 and R2 with linked
trigger events. Assume that R1 is triggered and starts executing and that the action of R1
bypasses the system from being in a specific state. Suppose that this specific state is the
same state specified in the prestate attribute of R2. Hence when the trigger event of R2
occurs, R2 will never execute because the system is in a stéte different from R2’s
prestate. Thus R1 prevented the system from executing R2.
t16: “Infinite Looping” interaction type (under constraint C5): If R1 is triggered and
starts executing such that its action will create the trigger event for R2 and hence R2
starts executing its action. Now if the action of the second requirement R2 causes the
creation of the trigger event of the first requirement R1, then R1 is triggered again and
starts executing its action which will again create the trigger event of R2 and so on.

Therefore, R1 and R2 are forced into infinite looping and interact.

59

3.3.5 Fourth Layer: Intéraction Scenarios
The fourth layer of the proposed interaction taxonomy contains interaction scenarios that
provide details on the different interaction types by giving: |

e a guideline on how to detect this type of interaction

e an example of each interaction type in a real system

e an explanation of how parameters can affect this type of interaction
The third bullet in the above list, “parameters effect”, was rihtroduced to ‘elnpﬁésize the
effect that parameters can have on the interaction between two requirements. In section
3.3.3, it was stated that the two attributes “Parameters” and “Parameters range” are used
to describe the effect parameters can have on the cause and resolution of requirements
interactions. |
When a requirement has parameters in its body then it is called a parameterized
requirement where these parameters can be assigned specific Valués during later system
development stages. For example, a parameterized requirement from the teléphony
domain might state that “The phone can dial a number using X techniqués.” The
parameter X in this requirement can take several values su;:h as “pressing numbers on the

keypad” and/or “speed dial” and/or “voice dialling”.

60

/mo lnleram

Dynamic Behavior
ull t

\‘B:L rements

1stjayer
Which components
interact?

Which components _1_5._/_51;{_ _\s ~. ot
Attributes interact? / Next stated | Action- || Action- [Erigger Even ayer
ext state|| Action || Prestate [Frigger Even
Ipteracti iteractionsihteractions nteractions
= T 1

— <,

A

SJUIAS

128611y Jwes
ED,
SIUIAD

196613 aures o
Za

£
SjU9AR
A9BBLY paju
4]
Paxujl feng
§3

SJUAD
. 1086]43 payu

Why the attributes

3 Jayer
interact?

I CENEE
sjuaAd JaB01I3

)
I
3
&
2
s
il
b3
o
=S
@
»

Hoy/to detect the
yzgction types? SCRI2 ‘scm”scm‘ SCR15 scms‘ 411%

Figure 3.5: Fourth layer of the proposed interaction taxonomy

Uldoo]
SPuBY|

aAnebap
L
ECITELG)
f4%3
oAneBayy
FELX(6)
|42}

asuapuadag
8

A general template for each interaction scenario is used as a way of presenting it in a
more organized manner with the following columns: |

e Scenario ID: This is a unique ID that distinguishes one interaction scenario from
another.

o Interaction Type: This describes the interaction type the scenario is associated
with. The description does not only include the interaction type as a single leaf
but it includes the whole branch starting from the main interaction category in the
first layer.

e Detection Guideline: This column describes how to detect the interaction type
described in the scenario by a non-expert. The detection guideline includes a

textual description and, where appropriate, a graphical description.

61
o Example: This is an example that explains the occurrence of the interaction
type, associated with this scenario, taken from a real life system.
e Parameters Effect: This column gives an example of how parameters in
parameterized requirements affect the interaction described in the scenario.
Each interaction type from the third layer is associated with only one interaction scenario
in the fourth layer. Hence, the fourth layer of the proposed interaction taxonomy contains
37 interaction scenarios. In the remainder of this section we continue our ongoing
example and present only interaction scenarios associated with interaction types t8 to t16
as shown in Figure 3.5. The details of SCR8 to SCR16 are presented in Tables 3.2 to
3.10, respectively. The following symbols have been used:
o Ti: Trigger event of the requirement Ri
e Pi: Prestate of the requirement Ri |
e Ni: Next state of the requirement Ri

e Ai: Action of the requirement Ri

It is worth mentioning that all examples presented in SCR8 to SCR 16 are taken from the

smart homes domain which is described in more detail in Chapter 8.

62

Table 3.2: Description of the interaction scenario SCR8

Scenario ID

SCR8

Type of Interaction

TwoInteractingDynamiuBchaviourRequirements - NextState-NextStatelnteractions =
Non-Determinism ¢ -sameTi

Detection
Guideline

IF {(R1.TriggerEvent=R2. TnggerEvent) AND (R1.PreState=R2.PreState) AND
(R1.NextState # R2.NextState)} THEN {R1 interacts with R2 under the interaction type t8
l L ~
&P
T2 "/!\ "y
(P2 ety (N2)
N1=N2

Example

o R1:”Adjust the audio level of the device (X1=TV) to (X2=35% of the max. volume) when the
device is first turned on™.

o R2:"Adjust the audio level of the TV when it is turned on to the last used audio level setting
before the last shutdown™.

o Interaction: Assume that someone was previously watching TV and has manually adjusted the
TV audio level to 20% of its max volume before he shuts it down. Later on, when the TV is
first turned on then both R1 and R2 are triggered at the same time. Since the audio level
specified in R2 (20% of max audio level) is different from the audio level specified in R1
(35% of the max. volume), then the system will face a non-determinism situation on which
state it should transit to. Should it transit to the state where the volume of TV is 20% as
specified by R2 or should it transit to the state where the volume of TV is 35% as specified
by R1?

Parameters Effect

If X1 was set to another audio device then there is no interaction between the two
requirements R1 and R2. Moreover, if X2 is set to automatically obtain the last stored audio

settings of the audio device, then there is no interaction also.

Table 3.3: Description of the interaction scenario SCR9

Scenario ID

SCR9

Type of Interaction

TwolntcractingDynamicBehaviouchquircments - Action-ActionInteractions =
Dependence |>-g

Detection
Guideline

IF {(R1. TnggerEvent—RZ TnggerEvent) AND (R1.PreState=R2.PreState) AND (R1.Action
DEPENDS_ON R2.Action)} THEN {R1 interacts with R2 under the interaction type t9}

T \‘}\ -

(p1}_____:_>
T2 | D=DEPENDS_ON
(;;j: A2 Yy

D (Dependence relationship between A1 and A2) # null

Example

e R3:"Increase the temperature inside the house to the preset temperature (X3=22) when
temperature reading from thermostat is < {(X3=22) - 2} degrees”™

e R4:"Open the ventilation grills in locations (X4={LivingRoom, BedRooml}) to allow air
flow when the temperature reading from the thermostat is < {(X3=22) - 2} degrees”

e Interaction: When the temperature drops below 20, then both requirements R3 and R4 trigger
at the same time. However the action of R3 depends on the action of R4 as the temperature is
increased by pumping hot air through the ventilation grills. If R4 fails to execute for any
reason, then R3 will not be able to perform its action. Even more, if the action of R4 opens
only one or two ventilation grills, then the action of R3 is affected by the few opened
ventilation grills and it will not be effective enough

Parameters Effect

X4 has an effect on the type of interaction between R3 and R4 as X4 determines which
ventilation grills are opened. If X4 was an empty set, i.c., no ventilation grills were opened
then R4 will fail to increase the temperature of the house. But if X4 was properly assigned
then the dependence relationship is reduced to malfunctions situations of the ventilation grills.

63

Table 3.4: Description of the interaction scenario SCR10

Scenario ID

SCR10

Type of Interaction

TwolnterauungDynamchchavmw Requirements = Action-ActionInteractions =
Override |er-game

Detection
Guideline

IF {(R1 TrlgguEvcnt R" Tu gLrEvcnt) AND (R1.PreState=R2.PreState) AND (R1.Action
OVERRIDES R2.Action)! THEN {R1 interacts with R2 under the interaction type t10]
Ty
)
TZ“‘l

P B

A1 (R1.Action) OVERRIDES A2 (R2.Action)

Example

e R5:"As a security measure, secure the doors and windows of a house by having them closed
starting at time (X5=11:00 pm) for (X6=6 hours)”

e RO:™ automatically opens the windows in (X7=LivingRoom) at time (X8=11:00 pm)™

o Interaction: When the time is 11:00 pm the two requirements, R5 and R6, are triggered and
start executing. However, R6 tries to open the windows but RS, which is a security
requirement, will override the action of R6 and will not allow it to open the windows.

Parameters Effect

If X8 was set out the range in which RS is active, i.e., X5 to X5+X6, then there is no
interaction as R6 can execute normally. Moreover, if X6 is set to 0 hours then the user is
technically disabling RS and there is no interaction

Table 3.5: Description of the interaction scenario SCR11

Scenario ID

SCRI1

Type of Interaction

TwolnteractingDynamicBehaviourRequirements = Action -ActionInteractions =
N"gatl"clmpd"t IC’ =SameTriggerbvents&SamePreStates

Detection IF {(R1.TriggerEvent=R2.TriggerEvent) AND (R1.PreState=R2.PreState) AND (R1.Action
Guideline NEGATIVELY_IMPACTS R2.Action)! THEN {RI interacts with R2 under the interaction
type tl1}
T BN A
m 1
T2y I=NEGATIVELY_IMPACT
\P2‘ I
| (Negative impact relationship from A1 on A2) = null
Example o R6 (revisited from SCR10):” automatically open the windows in (X7=LivingRoom) at time

(X8=11:00 pm)”

o R7:"Increase/Decrease the temperature of the house to the temperature (X9=22) at time
(X10=11:00 pm).

o Interaction: When the time is 11:00 pm the two requirements are triggered and both of them
start executing. Now, if the temperature outside the house is too cold or too hot then the
action of RO will negatively affect the action of R7 as R7 will try to increase/decrease the
temperature of the house when the windows are opened.

Parameters Effect

If X10 was set to be a different time prior to X8 then there is no interaction as the two
requirements will execute at different times. Moreover, if X7 is an empty set then there are no

windows to be opened and the interaction is eliminated.

64

Table 3.6: Description of the interaction scenario SCR12

Scenario ID

SCR12

Type of Interaction[TwolnteractingDynamicBehaviourRequirements = Action-Actionlnteractions =

OVCI’TideICz,l inked TriggerEvents

Detection @ IF {(R1.TriggerEvent ~> @ IF {(R1.TriggerEvent ~>
Guideline R2.TriggerEvent) AND (R1.Action R2.TriggerEvent) AND (R2.Action

OVERRIDES R2.Action)} Then { R1 OVERRIDES R1.Action)} Then {R1

interacts with R2 under the interaction type interacts with R2 under the interaction type

t12} t12}

s | T
I 7 Ak;;i' i TEde
Linked to | Linked to A2
A1 (R1.Action) OVERRIDES A2 (R2.Action) | |42 (R2.Action) OVERRIDES A1 (Ri:Action)

Example e R3 (revisited from SCRR): “Use the last stored audio level settings of the TV to adjust its

volume when the TV is first turned on™

e R8: “Completely shutdown power supply to all Audio/video devices starting at
(X1 I=midnight) for (X 12=5 hours)”

o Interaction: Suppose that the TV was turned on just a few seconds before midnight.
According to R2 the system will obtain the last stored audio level settings of the TV and
starts adjusting its volume. But at midnight R8 starts executing and hence all audio/video
devices including the TV are shutdown. Hence the action of R8 has overridden the action of
R2 before its completion. This example is shown as the detection guideline number 2.

Parameters Effect | If the parameter X 12 was set to 0 hours, then there is no interaction as R8 will not power off

any devices.

Table 3.7: Description of the interaction scenario SCR13

Scenario 1D

SCR13

Type of TwolnteractingDynamicBehaviourRequirements = Action-ActionInteractions = Negativelmpact

Interaction C3=LinkedTriggerEvents

Detection @ IF {(R1.TriggerEvent ~> R2.TriggerEvent) | @ IF {(RI1.TriggerEvent ~> R2.TriggerEvent)

Guideline AND (R1.Action NEGATIVELY_IMPACT AND (R2.Action NEGATIVELY_IMPACT
R2.Action)} Then { RI interacts with R2 R1.Action)! Then { Rl interacts with R2 under
under the interaction type t13} the interaction type t13}
[T~ - ..]
o p—A 1 e 3
[~ ey I=NEGATIVELY_IMPACT ’ e I=NEGATIVELY_IMPACT |
e 1 1 |
| Linked to A2 Il Linkedto A2 |
‘L,l (Negative impact relationship from A1 on A2) # null | ; I (Negative impact relationship from A2 on A1) # null |

Example e RG (revisited from SCR10):" automatically opens the windows in (X7=LivingRoom) at time

(X8=11:10 pm)”

o R7 (revisited from SCRI1):"Increase/Decrease the temperature of the house to the temperature
(X9=22) starting at time (X10=11:00 pm).

e Interaction: When the time is 11:00 pm, R7 is triggered and starts executing. Now, R7 tries to
increase/decrease the house temperature to the value specified in X9 which is 22 degrees.
However this needs some time and meanwhile the time gets to 11:10 pm which triggers R6.
Now R6 opens the windows and consequently negatively affecting the action of R7. This
example is shown as the detection guideline number 2 in the previous row.

Parameters Effec| The parameters effect is the same as explained in SCR11. But the example above shows that

when X8 had a different value, the type of interaction change from Negative Impact with same
trigger event and same prestates to Negative impact with linked trigger events.

65

Table 3.8: Description of the interaction scenario SCR14

Scenario ID

SCR14

Type of Interaction

TwolnteractingDynamicBehaviourRequirements = Action-ActionInteractions > Order

C3=Link riggerbvents
Detection IF \'(SYSTEM-—BEHAVIOURlRl,Tri_ugerE\cm ~>R2.T rix_:gcrE\'em) #
Guideline (SYSTEM_BEHAVIOUR g3 triggerkvent - Ri TrigerEven) | Then § R1 interacts with R2 under the
interaction type t14} -) - B
| i B1 (System Behavior B2 {System Behavior
| i when T1~>T2) when T2~>T1) |
,,,,,, R ... SRS,
Example e R9: “The system shall support a one-click remote control 911 emergency service that calls

emergency centre and provides the home address and a pre-recorded message once a
connection is established”
e R10: “The system shall provide a regular telephone line with the set of telephony features
(X13=Three Way Calling).
Interaction: Suppose that an elderly resident A faces an emergency health condition (e.g. heart
attack). A calls his son on the phone to take him to the hospital but meanwhile, the condition
gets worst so he uses R9 to call 911. Now R9 finds the line is busy and it cannot execute 911
directly, so the system uses the Three Way Calling feature in R10 to put the son on hold and
then connects to the emergency centre using 911. Consider this as the system behaviour Bl
when Three Way Calling is activated first then 911 is followed later. Now, consider the same
situation but at this time A uses R9 first to call 911 then tries to use Three Way Calling
feature in R10 to put 911 on hold and inform his son of the situation. In this case the system
will not execute the Three Way Calling as the 911 service prevents anyone from putting it on
hold. Consider this as system behaviour B2 when 911 executes first then the Three Way
Calling. Obviously Bl # B2 because in Bl both TWC and 911 are executed successfully but
in B2 only 911 is executed successfully.

Parameters Effect

If X 13 did not contain the Three Way Calling feature then there is no interaction between R9

and R10.

Table 3.9: Description of the interaction scenario SCR15

Scenario ID SCRI15
Type of Interaction|[TwolnteractingDynamicBehaviourRequirements = Action-PreStatelnteractions =
Bypass l('J=Linkg51 Irigeerbvents
Detection IF {(R1.TriggerEvent ~> R2.TriggerEvent) AND (R1.Action Bypass R2.PreState)] Then
Guideline {R1 interacts with R2 under the interaction type t15}
R T};f‘"""”A"““_”]
@
Linked to B ;
L ——— T o
Example e RS (revisited from SCR10): R5:"As a security measure, secure the doors and windows of a

house by having them closed starting at time (X5=11:00 pm) for (X6=6 hours)”

e R13: When the intruder alarm is triggered and goes on then the security control unit is frozen
and it can be unfrozen only by a PIN

e Interaction: Suppose that R13 is triggered and starts executing. One part of R13’s action is to
freeze the security control unit to prevent an intruder from disabling the alarm, which in that
case would look like a system glitch, or opening doors and windows to escape. Now this
would bypass the prestate of RS and it will not allow the trigger event of RS to trigger RS
simply because the whole security control unit including doors and windows is completely
frozen (in another abnormal state). Therefore it can be said that the action of R13 bypasses
the prestate of RS

Parameters Effect

If X6 in the requirement RS was set to 0 hours then, the user is disabling the requirement from
executing and in this case there is no interaction, as RS is not supposed to do anything and
hence it is not affected by R13.

66

Table 3.10: Description of the interaction scenario SCR16

Scenario ID

SCRI16

Type of Interaction

TwolnteractingDynamicBehaviourRequirements = TriggerEvent-TriggerEventlnteractions >
InfiniteLooping |cs-puallinkedTriverEvents

Detection IF {(R1.TriggerEvent <~~> R2.TriggerEvent) AND (R1.Action CREATES R2.TriggerEvent)
Guideline AND (R2.Action CREATES R1.TriggerEvent)} Then { Rl interacts with R2 under the
interaction type t16} - e oe s s a
| TPl a1
P {E1=CREATES

: E2=CREATES »:

:‘ A2 27 T2

L R —
Example e R4 (revisited from SCR9): "Increase the temperature inside the house to the preset temperature

(X4=22) when temperature reading from thermostat is < {(X4=22) - 2} degrees”

e R12: “Open the windows in locations (X16=LivingRoom and BedRoom) to decrease the
temperature when the thermostat reading is 2 (X17=22) degrees. Then close them again
when the thermostat reading is < {(X17=22) — 2} degrees”

e Interaction: Suppose that the house temperature is now at 24 degrees then R12 is triggered
and the windows are opened to decrease the temperature inside the house to 20 degrees.
Once the temperature is at 20 degrees then the windows closes but also R4 is triggered (i.e.,
the action of R12 dropped the temperature to 20 which means that it created the trigger event
of R4). Now R4 starts executing and pumps hot air to increase the temperature back to 22.
Once the temperature reaches 22 then R12 is triggered and starts executing again (i.e., the
action of R4 created the trigger of R12 which is to have a temperature > 22 degrees).The
preceding process repeats indefinitely. It is noted that the first requirement is created by a
person who wants to keep the house temperature at 22 degrees while the second rcqunrement
is created by someone who wants to keep the house temperature at 20 degrees. This is
understandable in a multi occupant smart home

Parameters Effect

If X17 is changed to 24 degrees then looping chain is broken. Also if X4 is changed to other
values then the looping is broken. It must be noted that R4 and R12 are representative of
increasing and decreasing temperature requirements. The numbers are just for clarification.
The interaction would still occur if X4 was 22.5 for example as the small fractions cannot be

precisely achieved when increasing or decreasing the temperature

3.4 Comparison of the Proposed Taxonomy to Already Existing Taxonomies

In this section, we compare the proposed interaction taxonomy to the following already

existing interaction taxonomies:

1. Feature interaction benchmark for Intelligent Networks —proposed by Cameron et

al. in 1994 [20]. Cameron et al. presents in [20] two approaches for categorizing

interactions which will be denoted by C-1 and C-2, respectively.

2. Interaction taxonomy for services of networked appliances — proposed by Kolberg

et al. in 2003 [21] and denoted by K.

67
3. Interaction taxonomy for policies — proposed by Reiff-Marganiec et al. in 2004
[68] and denoted by R.
The three taxonomies mentioned above were chosen because they are cited frequently
(first taxonomy) or there is close similarity with our proposed interaction taxonomy
(second taxonomy) or they are very recent (the third taxonomy). The comparison will be
based on:

e The method used for categorizing interactions (e.g., nature of interactions)

The main focus of the taxonomy (e.g., telecommunication telephony features)
e The number of interaction categories and interaction types proposed in each
interaction taxonomy
e The number of examples presented to illustrate each interaction category
e The number of presented examples addressed by our proposed interaction
taxonomy and whether there are any examples missed and not addressed by our
proposed interaction taxonomy.
Using the criteria mentioned above, the results of the comparison are summarized in
Table 3.11. However, for brevity of presentation in the body of the thesis, the details
regarding the number of addressed examples by our proposed interaction taxonomy (fifth

row of Table 3.11) are presented in Appendix C using Tables C.1, C.2, and C.3

68

Table 3.11: Comparing the proposed taxonomy to other existing taxonomies

C
C-1 C-2 K R S
Method of Nature of Cause of Cause of Nature of Cause of
Categorizatiol _interactions interactions interactions | interactions interactions
Main Focus [Telecommunic- [Telecommunica- [Smart homes [Policies General (with
ations Intelligent [tions Intelligent networked restriction on
Networks Networks devices implementation
interactions)
Number of |5 main categories |3 Main Categories @ main 5 main categories [9 main categories
Interaction 12 subcategories [categories 19 subcategories [24 subcategories
Categories 37 types
Number of P2 22 (same ones 5 10 37
presented used in C-1)
examples
Number of |Addressed: 18 Addressed: 18 Addressed: 5 [Addressed: 10 IN/A
examples [Missed: 4 Missed: 4 Missed: 0 Missed: 0
addressed by [(implementation |(implementation
proposed [interactions) interactions)
taxonomy

C: Cameron et al. taxonomy [20]
C-1: Cameron et al. taxonomy - first approach
C-2: Cameron et al. taxonomy - second approach

K: Kolberg ef al. taxonomy [21]
R: Reiff-Marganiec et al. taxonomy [68]
S: Shehata ef al. taxonomy (proposed taxonomy)

From Table 3.11, the following points are evident:

e The proposed interaction taxonomy categorizes interactions according to the

cause of interactions. This satisfies the objective of our proposed taxonomy which

is to present where, how, and why interactions occur. This is most beneficial in

understanding the technical aspects rather than the social aspects of interactions

and also facilitates the definition of detection guidelines for interactions between

two requirements.

The proposed interaction taxonomy starts by categorizing interactions into high-

level main interaction categories in a similar way as the other taxonomies do. This

helps provide a general understanding of the possible interactions. However, the

proposed taxonomy provides more in-depth details regarding the subcategories

and types of interactions that are abstract or do not exist in other taxonomies.

69

e The proposed interaction taxonomy is able to address all examples presented in
other taxonomies except for the 4 missed interactions under the Cameron et al
taxonomy [20]. Those 4 missed interactions are caused by the way the system was
implemented and not by the requirements and therefore are intentionally outside

the scope of the proposed interaction taxonomy.

3.5 Limitations of the Proposed Interaction Taxonomy

The proposed interaction taxonomy has the limitation of not being able to address deep
design or implementation interactions. The taxonomy is des‘igned to address interactions
at the requirements and early design stages of software systems. Hence, all
implementation interactions are missed. However, in the majority of cases most of the
critical interactions manifest themselves during the requirements engineering phase of the
software lifecycle [13] and hence can be captured by the proposed interaction taxonomy.
Another limitation is when detecting interactions that involve resources. The definition of
resources uses only three attributes: availability, performance and interface. This reduces
the number of interaction types to those interactions that involve these attributes.
However, resources vary heavily and the number of attributes that can be used to describe
them can be very large. Therefore we limited the number of attributes to the common
ones which are: Availability, performance, and interface. However, the proposed
interaction taxonomy is expandable and can be extended by adding new attributes as

needed to be suitable for other domains.

70
3.6 Summary
This chapter presented a general taxonomy for identifying requirements interactions in
software systems. In total, the proposed interaction taxonomy has 9 main interaction
categories, 24 interaction subcategories, 37 interaction types, and 37 interaction scenarios
that contained 37 interaction detection guidelines that can be used to detect the
corresi)onding interaction types. |
The proposed interaction taxonomy is novel in the following sense: It is a general
taxonomy that can be applied in any domain rather than being oriente& towards a specific
domain. This can be seen from the principle of representing the system under
consideration using general and domain independent attributes. Hence, it can be
considered as the first domain-independent requirements interaction taxonomy. Also, the
taxonomy provides 37 interaction scenarios that give a detailedrdescription of when two
requirements are considered interacting. The 37 interaction scenarios provide also 37
detection guidelines that can be used to detect the different interaction types.
The proposed interaction taxonomy was compared to other existing taxonomies in the
literature and not only was it able to address the interaction issues in those taxonomies
but it also contained many other interaction types that have not been captured by other

taxonomies.

71

CHAPTER FOUR: IRIS: IDENTIFYING REQUIREMENTS INTERACTIONS
USING SEMI-FORMAL METHODS |

4.1 Introduction
This chapter introduces an approach for detecting requirements interaéﬁons called
Identifying Requirements Interactions using Semi-formal methods (JRIS). As the name
already indicates, the approach uses semi-formal methods such as tables, graphs,
interaction scenarios, and human judgment to identify interactions between software
requirements. In contrast to several other approaches that have been surveyed in Chapter
2, IRIS is a customizable and domain-independent approach. This means that IRIS can be
customized to detect interactions in different domains and at different levels of
abstraction and thoroughness using semi-formal methods. As a result, IRIS is an
approach that fills the gap between existing informal and formal interaction detection
approaches.
Section 4.2 gives an overview of some basic concepts of the proposed IRIS approach.
Then, Section 4.3 provides a detailed description of IRIS along with a description of the
steps that must be performed when applying IRIS. In Section 4.4, a discussion of the
advantages of using IRIS for detecting interactions in software systems is provided.
Section 4.5 lists the limitations of IRIS. Section 4.6 compares IRIS to other semi-formal

approaches found in the literature. Finally, in Section 4.7, the chapter is summarized.

72
4.2 Overview of IRIS
4.2.1 General Outline
Figure 4.1 shows how IRIS is applied to detect interactions when developing a software
system. IRIS is applied during the Requirements Engineering phase. The requirements
can be all new, or some new requirements are added to a set of already existing system
requirements, or reusable requirements are tailored and added to the system requirements.
IRIS is a semi-formal approach which means that it involves graphical and tabular
representations and human subjective judgment involving an analyst. The analyst is a
regular human developer who must be knowledgeable and experienced in the application
of IRIS to ensure the successful application of IRIS otherwise the whole process can fail.

However, the analyst does not have to be a domain expert.

New Requirements

IRIS
Uses Tables, Graphs,
Interaction Scenarios,
Subjective Detection

Library of
Reusable
Requirements

Requirements
Document

Figure 4.1: Application of IRIS to detect interactions when developing a software
system

73
4.2.2 Detecting Interaction with IRIS at Different Abstraction Levels
Originally, IRIS was developed to detect interactions between requirements. However,
IRIS has also been successfully applied to detect interactions between features, as well as
between policies. This is because IRIS uses the concept of attributes which was discussed
in Chapter 3. Usually, a software system being developed is described with a long textual
description using requirements, features or policies. Regardless of the way a system is
described, the system will still consist of three main components: a static view
represented by system axioms, a dynamic view represented by dynamic behaviour, and
an environmental view which is represented by resources. Since any 6f these elements
can be represented using attributes as discussed in Chapter 3, this enables IRIS wide
applicability for detecting interactions between requirements, between features, or
between policies as demonstrated by the case studies presented in Chapters 6, 7, and 8
respectively.
In this chapter, a description of IRIS is given based on the assumption that IRIS is being
applied to detect interactions at the requirements level. Hence, the word “Requirements”
is being used throughout the remainder of this chapter when explaining and describing

IRIS and its steps. The same description is also valid for features and policies.

74
4.2.3 IRIS Customizability
As mentioned in the introduction to this chapter, IRIS is a customizable approach. The
customizability of IRIS means that it can detect interactions in any domain and at
different levels of thoroughness. To achieve such a goal, IRIS was designed with a basic
core as well as extension hooks that allow expansion through the addition of plug-ins
attached to the hooks. The basic core of IRIS consists of several main steps, tables,
graphs, and interaction scenarios that always have to be applied regardlesé of the domain
or the type of system under consideration or the abstraction level on which IRIS is being
applied (e.g., requirements, features, or policies).
The basic core of IRIS is already capable of detecting critical interactions within a
software system, such as non-determinism and conflicting actions being executed
simultaneously or sequentially. However, plug-ins can be used to customize IRIS for new
domains and also enhance the obtained results by providing more steps, tables,
interaction scenarios, etc to detect interactions more thoroughly. This chapter focuses on
the basic core of IRIS and its associated steps, tables, graphs, and interaction scenarios.
However, a discussion on the customization concept of IRIS and the different plug-ins is

provided in Chapter 5.

75

4.3 IRIS: Class Model and Description

4.3.1 A Class Model for IRIS

The basic core of IRIS consists of several main steps, tables, graphs, and interaction
scenarios that are applied regardless of the domain or the type of system under
development. IRIS basic core is a systematic approach composed of six ordered steps that
facilitate the detection of requirements interactions. Different tables and graphs -are
developed and in a final step the analyst reviews these tables and graphs using a set of
interaction scenarios to detect interactions. IRIS basic core is graphically presented in
Figure 4.2. Each block represents a class in the figure. Each class has three parts, the top
part contains the name of the class, while the middle part contains any requirements
attributes that are used within this class, and finally the bottom part contains steps that are
executed in this class.

The figure starts by having a requirement document which is represented by the “Req.
Document” class. The requirements contained in the requirements document are then
classified into system axioms, dynamic behaviour, and resources. This classification is
represented by the step Classify_Requirements(Reqs). It is worth mentioning that the
output of the classification is zero or more system axioms, zero or more resources, and
one or more dynamic behaviour requirements. This is because a system can consist of
dynamic behaviour requirements without system axioms or resources as seen from the
case study in Chapter 7. But a system cannot consist of only properties without

description of the behaviour of the system.

76

Req. Document

| Classify_Requirements(Reqs)

0.* 0.* 1" l
v ., 4 3 ¢ 3
Resources | System Axioms Dywami: Bebavior
. ID: Ty
ID: A, 1D: Yy ol Description: I';
Description: A, Description: T Pre-state: T'
Rule: Y3 Trigger event: Ty
Identify_Attributes Condition: Yy Action: T'g
Values(Reqs) Identify_Attributes Next amie: Ty
[Y AL
\ \._‘ al"es(gf(!ﬁ“m"") Identify_Attributes_Values(Reqs,, ...}
—| Identify Linked Events(I')
“5“\\ uses ke —* Extract Trigger” Events(I',)
\ Interactions Detection /"
\ f Represented
SCRI, SCR2, SCR3. SCR4, [nses by
\ SCR8. SCRI0, SCRI1, v
SCRI12, SCR13, SCR30, SCR31 L1 Trigger Events Charts Representation
Detect_Interactions(Reqs) uses

Generate_Trigger Evenls Charts(Reqs;, ...

Figure 4.2: A class model of the basic core of IRIS

The “Resources” class has two attributes A; and A, and one step which identifies the
values of these attributes for all resources. The “System Axioms” class uses attributes 1'-
Y, and has one step which identifies the values for these attributes for all system axioms.
The “Dynamic Behaviour” class uses attributes I'j-I's and has three steps. The step
Identify_Attributes_Values(Reqsqynamic) identifies the attributes values for all the dynamic
behaviour requirements. The step Extract_Trigger_events(I'y) extracts all unique trigger
events from the different values of the attribute “Trigger event” and lists them in a
separate table. The step Identify_Linked_Events(I'y) identifies all linked events and lists
them in a separate table. The class “Trigger Events Charts Representation” has only one

step, Generate_Trigger_Events_Charts(Reqspynamic)s which creates trigger events charts

77
for all dynamic behaviour requirements. Finally, the “Interaction Detection™ class
detects interactions between requirements through the step Detect_Interactions(Reqs). In
this class, the step Detect_Interactions(Reqs) uses 11 of the 37 interaction scenarios,
namely: SCR1, SCR2, SCR3, SCR4, SCRS8, SCR10, SCR11, SCR12, SCR13, SCR30,
and SCR31 to detect interactions between requirements. The detaﬂs of these interaction
scenarios are provided in Chapter 3 and Appendix B.

Figure 4.2 shows that the basic core of IRIS contains six steps. These steps are ordered in
such a manner that the translation of requirements into graphical and tabular
representations is gradually achieved. The objective of these representations is to
facilitate the application of the interaction scenarios in the sixth step of IRIS.
4.3.2 Step 1: Requirements Classification
As stated in Chapter 3, any system will be decomposed into a static view represented by
system axioms, a dynamic view represented dynamic behaviours, and an environmental
view represented by resources. The first step is used to classify requirements contained in
the requirements document into one of three categories:

1. System axioms

2. Dynamic behaviours

3. Resources
Step 1 is performed by having the analyst examine the textual description of the
requirements of the system and determine if a requirement is a system axiom or a
dynamic behaviour or a resource. If the requirement describes a certain property of the
system that has to be preserved, then the requirement is a system axiom. If the

requirement describes how the system should respond in terms of state changes and

78
actions needed to be taken when a specific trigger occurs, then this requirement is a
dynamic behaviour requirement. Finally, if a requirement describes system specific
resource requirements, then this is a resource. It must be noted that a requirement can
belong to only one category, i.e., a requirement can be either a system axiom or a
dynamic behaviour or a resource. As an example, Table 4.1 shows three requirements and
the class they belong to.
The requirement classification step is shown in Figure. 4.2 by the

Classify_Requirements(Regs) in the Req. Document Class.

Table 4.1: Examples on classifying requirements

Requirement Requirement Classification
Occupants can control all A/V devices through remote controls System axiom requirement
Automatically turn on the lights according to a daylight sensor when | Dynamic behaviour
the night begins. requirement
The database server shall be available for processing requests more Resource requirement
than 99.9% of the time during each week

4.3.3 Step 2: Requirements Attributes Identification

As mentioned in Chapter 3, the use of attributes was proposed as a general representation
to describe system axioms or dynamic behaviour requirements or resources. This step
identifies the values of the different attributes of each requirement (either a system axiom
or a dynamic behaviour or a resource). For a system axiom there are four basic attributes
which are: ID, Description, Rule, and Condition, Y'-Y4. The two attributes Parameters Ys
and Parameters Range Y are optional attributes and hence are plug-ins that are not part
of the basic core of IRIS. In case of a dynamic behaviour requirement, there are 6 basic
core attributes which are: ID, Description, Pre-State, Trigger Event, Action, and Next

State I'j-Ts. The two attributes Parameters I'; and Parameters Range I's are optional

79
attributes and hence are plug-ins that are not part of the basic core of IRIS. Finally, in
case of a resource, there are only two attributes that are considered as part of the basic
core of IRIS which are: ID A; and Description A;. The three attributes: Availability,
Performance, and Interface, As-As, are considered to be plug-ins to IRIS.

Step 2 is performed by the analyst who identifies the different values of attributes for the
requirements in each of the three categories detérmined in step 1.

Step 2 has three tables as output. The first table is called the “System Axioms Attributes
Identification” and contains all the system axioms along with the values of the attributes
for each system axiom (see Table 4.2 for an example). The second table is called the
“Dynamic Behaviour Attributes Identification” and contains all the dynamic behaviour
requirements along with the values of the attributes for each dynamic behaviour
requirement (see Table 4.3 for an example). The third table is called “Resources
Attributes Identification” and contains all resources requirements along with the values of
the attributes for each resource requirement (see Table 4.4 for an example).

The requirements attributes identification step is shown by
Identify_Attributes_Values(Reqs) which exists in the classes Dynamic Behaviour,

System Axioms, and Resources in Figure 4.2.

Table 4.2: System Axioms Attributes Identification

ID Description Rule Condition
R1 | Occupants can control all A/V Control all A/V devices through True
devices through remote controls remote controls

80

Table 4.3: Dynamic Behaviour Attributes Identification

ID Description Pre-State Trigger Event Action Next State
Automatically turn on the Automaticall

R2 lights according to a | Daylight=True Nicht begi ¢ th y Daylight=False]
daylight sensor when the | Lights=Off £ egmsr Iliggtgn © Lights=On

night begins.

Table 4.4: Resources Attributes Identification

1D Description
R3 | The database server shall be available for processing requests more than 99.9% during each week

4.3.4 Step 3: Trigger Events Extraction

Step 3 is aimed at identifying and extracting all the different and unique trigger events
that can cause dynamic behaviour requirements to execute. This step is performed by
looking at the table “Dynamic Behaviour Attributes Identification” that was created in
step 2 and by determining all the different unique trigger events from the attributé column
“Trigger Event”. After that, these trigger events are listed in a separate table called
“Trigger Events Extraction” table as shown in Table 4.5. Each trigger event is listed in
the table and is given a unique ID (e.g. E1, E2...) with an informal description of the
trigger event, as specified in the Trigger Event attribute column of Table 4.3, and a list of
which requirements this event is triggering. This table is important as it will be used
when creating the trigger events charts in step 5.

Step 3 is shown by Extract_Trigger_Events(I') in the dynamic behaviour class in Figure

4.2.

81

Table 4.5: Trigger Events Extraction

Event ID Event Description Requirements Triggered by
this Event

El Night begins R2

4.3.5 Step 4: Linked Events Identification

To understand step 4 correctly, the concept of linked events must first be introduced.
Linked events are trigger events that are connected to each other. Linked events can best
be described using an example. For instance, consider the trigger event E stating that “A
window is opened”. The occurrence of this event will likely cause a change in the
temperature of the house and therefore the trigger event Bp, which describes that the
temperature of the home has changed, will also be triggered. This means that whenever
event E; occurs then event E, will also occur as a logical consequence after a short time
period. This means that event E; leads to event E, (or event E; is linked to Ey) and this is
expressed as B ~> E, where the curly arrow (~>) indicates that the occurrence of the first
event will most likely lead to the occurrence of the second event.

The degree of confidence that the occurrence of the first trigger event will lead to the
occurrence of the second trigger event is not of major concern because linked trigger
events are used to detect sequential interactions and hence if there is any chance that two
events are linked then it is better to mark them as linked trigger events in order not to

miss any sequential interactions.

82
An informal definition of linked events can be given as follows:
“Granted that events can be initiated by a user or a system, event E; is said to be linked to
event By (B ~> By) if the occurrence of event E; is followed by the occurrence of event
E, as a logical sequence”.
To give a more rigorous definition of linked events, consider the following symbols:
E: Event
U: User
S: System
@E: At the occurrence of the event E

createBvent(): Function that can represent a user or the system creating an event E

Using these symbols, linked events can be formally defined as follows:

(Ei ~>Ey) < (@E| — (B, = S.createEvent() v E; = U.createEvent())) “.1)
This latter formula can be read as follows “(event E; is linked to event E;) is equivalent
to (at the occurrence of event E; this will lead to (event E; is created by the system S OR
event B, is created by a user U))”.

The linked events definition can also be extended to include transitive linked events. Two
events are said to have a transitive link relation when these tWo events are not linked
directly to each other but through one or more linked events. A transitive link between
the two events E; and E; exists as follows:

“If event E, is linked to event E; AND event E; is linked to event E, then this leads to

event E; is said to be linked to event E;”

83
This definition can be translated into the following equation using the same notation

explained earlier as follows:
(E1 ~> E2) A (B2 ~> E3) = (E1 ~> Es) (4.2)

The purpose of investigating linked events is to detect interactions between requirements
that are sequentially related through linked events. This can be seen from the interaction
taxonomy introduced in Chapter 3 where there are interaction scenarios for identifying
interactions between sequentially executed requirements. Linked events are the
mechanism that IRIS uses for identifying requirements that are related sequentially and
hence allow the detection of sequential interactions. Moreover, the concept of transitive
linked events provides deep and sufficient means for IRIS to identify sequentially related
requirements even if these requirements are not related through a direct sequence of
events.

Linked events are identified in the 4™ step of IRIS. During the 4™ step of IRIS, an analyst
looks at the table “Trigger Events Extraction” (Table 4.5) that was created in step 3 of
IRIS. The trigger events listed in that table are examined in order to identify if the
occurrence of an event can lead to the occurrence of another event. In that case the two
events are said to be linked events and are they are listed in the “Linked Events
Identification” table shown in Table 4.6

Table 4.6: Linked Events 1dentification

Event Event Description Linked to Mathematical Representation
D

El A window is opened E2 E1~>E2

84
The linked events identification step of IRIS is shown in Figure 4.2 by
Idenitfy_Linked_Events(I'y) in the dynarﬁic behaviour class.
4.3.6 Step 5: Trigger Events Charts Representation
In step 5, a graphical notation is used to link each trigger event with the dynamic
behaviour requirements it triggers. This graphical notation is 'called “Trigger Events
Charts” because it graphically groups together dynamic behaviour requirements that are
triggered by the same trigger event. Trigger events charts are very useful as they facilitate
the detection of interactions between the requirements, performed in the sixth step of the
proposed IRIS approach.
Trigger events charts are created only for dynamic behaviour requirements and are
created by having the analyst look at the “Trigger Events Extraction™ table which was
created in step 3 of IRIS (Table 4.5) to identify which requirements are triggered by the
same trigger event. These requirements are then graphically represented as shown in

Figure 4.3.

85

ReqID 1 l

> Action 1

ReqID2 |

Pre-state 2 Action 2

Event

V

ReqIDn I

Figure 4.3: Trigger Events Charts

In Figure 4.3, the word Event represents any trigger event that has been identified in step
3. Each requirement that is triggered by this event is graphically ‘represented as a
rectangle that shows the following attributes: Requirement ID, Pre-State, Action, and
Next State. The values of these attributes for each of the requirements are extracted from
the table “Dynamic Behaviour Attributes Identification” (Table 4.3).

The trigger events chart provides a graphical view for the analyst to easily compare and
apply the interaction scenarios in the sixth step of IRIS (Interaction Detection) in order to
find interactions between requirements that are triggered by the same triggerr event or
requirements that are triggered by linked events.

The trigger events charts representation step is shown by
Generate_Trigger_Events_Charts(Reqs) in ther class Trigger Events Charts

Representation in Figure 4.2.

86
4.3.7 Step 6: Interactions Detection
4.3.7.1 General Description
The interaction detection step is the last and final step of IRIS. The interaction detection
in this step is subjective which means that the analyst detects interactions between
requirements using the different tables and graphs that have been created in steps 2, 3, 4,
and 5 and also uses the different interaction scenarios that are part of the general
requirements interaction taxonomy described in Chapter 3.
The subjectivity of interaction detection is minimized through the application of the
interaction scenarios that help correctly detect interactions between requirements and
serve as an experience base for the human analyst. Also, the developed tables and graphs
from the previous steps serve as a clear presentation of the information collected so far
during the detection step. Therefore, with these interaction scenarios being applied on the
developed tables and graphs, the subjectivity of the approach is reduced. According to the
interaction taxonomy in Chapter 3, there are 9 main interaction categories:
1. Interactions between two system axioms
2. Interactions between a system axiom and a dynamic behaviour requirement
3. Interactions between two dynamic behaviour requirements
4. Interactions between a system axiom and a resource
5. Interactions between a dynamic behaviour requirement and a resource
6. Interactions between two resources
7. Interactions between a dynamic behaviour requirement and a system axiom
8. Interactions between a resource and a system axiom

9. Interactions between a resource and a dynamic behaviour requirement

87
The analyst now tries to find interactions between requirements that fall in these 9
main interaction categories by applying the interaction scenarios provided under these
categories to detect interactions. However, not all interaction scenarios are always
applicable because some interaction scenarios are plug-ins and are not part of the basic
core of IRIS. For example, the interaction scenario SCR16 “Infinite Looping” is aimed at
finding interactions between two dynamic behaviour requirements due to infinite looping
but at the same time this interaction scenario actually detects interactions due to high
level system design problems, and therefore is not always applied (note that the
application of interaction scenarios requires time and effort and there might be situations
where such a thorough detection is not required). Also, there are interaction scenarios that
are applied only in specific cases. For example, there are interaction scenarios aimed at
detecting interactions when there are specific requirements for resources availability.
These interaction scenarios are applied when the attribute plug-in “Availability” is used
(Chapter 5 provides more details on using plug-ins with IRIS).
Based on this discussion, the following interaction scenarios are identified as part of the
basic core of IRIS: SCR1, SCR2, SCR3, SCR4, SCR8, SCR10, SCR11, SCR12, SCR13,
SCR30, and SCR31 (the complete details of these interaction scenarios are provided in
Chapter 3 and Appendix B). These interaction scenarios were chosen because they
provide detection of the most common critical interactions at the requirements level
based on the different case studies that have been conducted in this thesis or based on the
extensive literature survey of current approaches (previously presented in Chapter 2) that
was conducted during this research. However, more interaction scenarios can be plugged

into IRIS as needed as explained Chapter 5.

88

th

The following provides a description of how the 6™ step of IRIS is applied usi‘ng the
developed graphs and tables from the previous steps of IRIS and interaction scenarios
that are part of the basic core of IRIS.

4.3.7.2 Detecting Interactions According to Main interaction Category @

The main interaction category number @ provides interaction scenarios for detecting
interactions between two system axioms. There are two basic core interaction scenarios,
SCR1 and SCR2, that are part of this main interaction category. According to these two
interaction scenarios, the analyst is required to examine all the system axioms listed in
the “System Axioms Attributes Identification” table.

In order to detect interactions, the analyst compares pair-wise all the system axioms with
specific focus on the values of the rule attribute of the two system axioms being
compared, to find interactions. According to the first interaction scenario, SCR1, an
interaction is detected if the rule attribute of the first requirement overrides the rule
attribute of the second requirement. Whereas the second interac;tion scenario, SCR2,
states that an interaction exists between two requirements if the rule ‘attribute of the first
requirement has a negative impact on the rule attribute of the second requirement.
Whenever the analyst encounters one of these two situations when examining the rule
attributes of a pair of system axiom requirements, then these two requirements interact.
4.3.7.3 Detecting Interactions According to Main Interaction Categories @ and @

The main interaction category number @ provides interaction scenarios for detecting
interactions that occur between a system axiom and a dynamic behaviour requirement.

On the other hand, the main interaction category number @ provides interaction

scenarios for detecting interactions that occur between a dynamic behaviour requirement

89
and a system axiom. The main interaction categories number @ and @ were joined
together to avoid making the analyst comparing the same two requirements twicé first
under main interaction category @ and then under main interaction category @.

There are four basic core interaction scenarios to be used which are SCR3, SCR4,
SCR30, and SCR31. According to these four interaction scenarios, the analyst is required
to examine the table “System Axioms Attributes Identification” and the table “Dynamic
behaviour Attributes Identification” developed in step 2. The énalyst has to compare pair-
wise every system axiom and every dynamic behaviour requirement with the objective of
finding interactions based on the four interaction scenarios SCR3,'SCR4, SCR30, and
SCR31.

4.3.7.4 Detecting Interactions According to Main Interaction Category ®

This main interaction category contains scenarios for detecting interactions between two
dynamic behaviour requirements. There are 5 basic core interaction scenarios under this
category which are: SCR8, SCR10, SCR11, SCR12, and SCR13. The ﬁrsf three
interaction scenarios are used to detect interactions betwéén two dynamic behaviour
requirements that are triggered by the same trigger event while the last two scenarios are
used to detect interactions between requirements triggered by linked events. Thé analyst
first looks at the trigger events charts developed in step 5 and the linked events
identification table developed in step 4 and extracts all unique pairs of requirements that
are triggered by the same trigger event or triggered by linked trigger events. These pairs
are the ones to be examined for interactions using the five interraction scenarios under this
category. This way, the analyst discards unrelated comparisons that will not lead to

interaction situations.

90
The analyst now examines each one of the identified pairs of réquirements using the
trigger events charts developed in step 5 with the aim of finding interactions between the
two requirements in the pair under investigation. The examination is done by applying
the five interaction scenarios SCR8, SCR10, SCR11, SCR12, and SCR13 on the two
requirements being investigated to see if any interaction can occur between them. For
example, according to SCRS, the developer examines the trigger events chart for the two
requirements R1 and R2 that are triggered by the same trigger event and see if R1 and R2
have the same pre-sate and have different next states. Whenever such a situation occurs,
then these two requirements interact according to SCRS8 because this would cause a non-
determinism situation in the system.
As another example for detecting interaction between two requirements triggered by
linked trigger events, consider EI~>E2 and El triggers the requifement R3 while E2
triggers the requirement R4. According to SCR12, the analyst examines R3 and R4 to
determine if the action of R3 overrides the action of R4 or vice versa. If such a situation
occurs, then the two requirements R3 and R4 interact according to the interaction
scenario SCR12.
4.4 Advantages of the Proposed IRIS Approach
In Section 4.3, IRIS has been proposed as a semi-formal- approach for detecting
requirements interactions. This section focuses on highlighting the main adyantages and
characteristics of IRIS:
e RIS is a semi-formal approach for detecting interactions. This means that it does
not require any heavy mathematical modeling of the system under investigation

as opposed to formal methods.

91

IRIS reduces the number of necessary pair-wise comparisons that have to be
performed between all requirements in textual form. This is very important and
crucial as “The analysis of feature interactions is almost impossible in compléx
system because the number of combinations to be analyzed grows exponentially
with the number of features” [140]. | IRIS discards irrelevant comparisons
between requirements that will not lead to interactions (an irrelevant comparison
is a comparison that contains two requirements that are not triggered by the same
trigger event or by linked events). This can result in a clear reduction in the
number of comparisons as demonstrated in the case studies (chapters 6, 7, and 8).
Although this reduction in number of comparisons cannot be translated directly
into equivalent reduction in cost and time due to the fact that there will always be
an overhead due to the application of IRIS, but IRIS, as a structured approach, is
likely to increase the number of detected interactions. The increased number of
detected interactions will compensate for the additional time and effort of
applying IRIS. Also, the reduction in number of comparisons favours the
proposed IRIS approach.
IRIS is not limited to a specific domain (e.g. the telecommunications domain) but
is domain independent. This is obvious through:

o The general representation notations adopted in the different steps of IRIS.

o The general interaction taxonomy that provides general interaction

scenarios applied in the sixth step of IRIS.
o The different case studies from different domains in which IRIS has been

applied to detect interactions.

92
IRIS adopts the terminology introduced by Robinson et al. [11] which extends
the definition of feature interaction to Requirements Interaction Management
(RIM). This means that IRIS focuses on detecting interactions between
requirements during the requirements engineering stage to save costly repairs at
later stages.
IRIS is capable of detecting interactions at different abstraction levels. In this
thesis, IRIS was able to detect interactions at the requirements level (case study
in Chapter 6), at the features level (case study in Chapter 7), and at the policies
level (case study in Chapter §).
IRIS is a customizable approach that can be extended by adding plug-ins to
enhance its performance and detection accuracy. More discussion on this point is
provided in the next chapter.
The tables created in IRIS allow a comprehensive representation and visualization
of the requirements of the system in a structured format. The creation of these
tables requires a good understanding of the requirements forcing the developer to
clearly think about requirements which will likely improve them. This is because
when a developer cannot easily identify the values for the attributes of a
requirement, then this means that the requirement under investigation is
incomplete or ambiguous. Hence, the developer has to go back to the stakeholder
of this requirement to enhance and improve it.
Using trigger events charts makes detection of interactions between dynamic
behaviour requirements easier. For instance, requirements that are triggered by the

same event are grouped together in the trigger events charts. Therefore detecting

93
interactions can be easily done by examining the different actions and states of

the requirements according to the interaction scenarios being used.

4.5 Limitations of the Proposed IRIS Approach

After discussing the benefits and advantages of using IRIS, it is also important to discuss

its limitations. The discussion of these limitations is as important as the approach itself so

that IRIS will not be used beyond its capabilities resulting in unsatisfactory performance.

The following summarizes the limitations of IRIS:

IRIS is an offline detection approach which means that it cannot be used to detect
interactions in an interactive runtime environment. However, IRIS can be used to
detect interactions offline and then implement the obtained results in any online
detection approach as a knowledge base. Moreover, this limitation can be
compensated for by implementing the general interaction scenarios, which are
part of IRIS, in any online interaction detection approach.

IRIS is a detection approach only which means that IRIS does not provide
suggestions for the resolution of the detected interactions. The resolution has been
intentionally left out of IRIS because different resolutions are available based on
the different stakeholders involved. Any suggested resolutions for the detected
interactions must involve an iterative negotiation process between the
stakeholders involved in setting the interacting requiremenfs.

IRIS is a semi-formal approach that has subjectivity iﬁ the interaction detection
step. This means that it is not guaranteed to detect all the interactions in a system.

Therefore, IRIS is only recommended for non-critical systems such as

94
commercial PC software, telecommunications features, and smart homes.
However, IRIS can be used as a first stage application to filter as many
interactions as possible at the early étage of requirements engineering. Then, once
the necessary design and implementation details are available, formal approaches,
such as SDL, can be applied to the system to have a more through interaction
detection. This way, IRIS can help detect interactions early and avoid high repair
cost due to late detection in the software life cycle.

IRIS is not suitable for detecting detailed design and implementation interactions.
This is obvious as IRIS was designed originally to detect interactions between
requirements during the requirements engineering phase. This limitation was
slightly compensated for by the ability of IRIS to detect high level design
interactions such as infinite looping. Still, detailed design and implementation
interactions are beyond the capabilities of IRIS. It is worth mentioning that IRIS
can still be used as a front end filtering approach to detect interactions as early as
possible.

IRIS can detect only interactions between two requirements (2-way interactions)
but it cannot detect interactions that are cause by 3 requirements together (3-way
interactions). It is worth mentioning that 3-way, interactions are rare and have not
been thoroughly addressed in the literature. To the authors’ best knowledge, 3-
way interactions have been addressed only in the work by Hall [141], Samborski

[142], and Kawauchi et al. [104].

95

4.6 Comparing IRIS to other Semi-Formal Approaches in the Literature

To conclude presenting the proposed IRIS approach, a comparison is made between IRIS

and other semi-formal approaches that were identified in the literature. There are 7 semi-

formal approaches that have been compared to IRIS as shown in Table 4.7. The full

details of these approaches that are being compared to IRIS can be found in Chapter 2.

However, Table 4.7 compares all the semi-formal approaches including IRIS to highlight

the advantages and limitations IRIS over the other approaches. It must be noted that the

advantages from the comparison in Table 4.7 are not the only advantages but are added to

the list of advantages listed in Section 4.4

Table 4.7: Comparing IRIS with other Semi-Formal Approaches

Limitations

interactions, Not
recommended fo
critical systems

very hard, Not
recommended for

telecomm in OO is
very hard, Not
recommended for

critical systems

critical systems

Criteria IRIS Wakahara efal. [38] Microp et al. [39]| Kimbler ef al. [40]| Dankel et al. [41]
‘ Tables,
Notation Used Trigger events MSC 00 - High level predicates
charts
Approach Type Offline Offline Offline Offline Offline
All)) g ll]::z;:on General Telecomm Telecomin Telecomm Telecomm
Address
System Properties Yes No No No Yes
Interactions ‘
Address
Resources Yes No No Yes Yes
Interactions
! Expert with Expert with Expert with Designers
Human Regulat hun?an knowledge of knowledge of knowledge of and
Involvement developer
telecomm. and MSC| telecomm. and OO. telecomm. Expeits
Application Phase [l{:\?elagls]::ggr: ! Design ‘ Design Req. and Design Req. and Design
Experience Genen.al Knowledge bases witl . . .
Factor interaction data on telecomm Human expertise | Human expertise Human expettise
‘ scenarios 3 '
Number of case
studics reported 3 0 0 0 0
in the literature
Do not address | Knowledge used in th Detfdse;'g}' ted uses serious Based on natural
deep designand| DB are very abstract, inté?lclions simplifications in | language processing,
Other implementation Integration of e rese‘nt'xtion,of the ESTI/NA6 Behavioural
Specific related developed MSC is P) specification with interactions are

no proof of validity.
Not recommended

for critical systems

detected informally,
Not recommended fo
critical systems

Table 4.7-Continued: Comparing IRIS with other semi-formal approaches

Kimbler and Sobrik

Application Phase

level Design

Design

Criteria IRIS Kuisch ef al, [42] Keck [43] [44]
Tables,
Notation Used Trigger events BCSM BCSM Use Case Models
charts
Approach Type Offline Offline Offline Offline
Al‘)) pllcz}tion General Telecomm Telecomm Telecomm
omain
Address
System Propertics Yes No No No
Interactions
Address
Resources Yes Partially Yes Yes
Interactions
Human Regular human Expert with Expert with knowledge of]
lnvolve;nen ¢ gev‘e]o or knowledge of Human developer telecomm. and Use Case
P telecomm. and BCSM Models
Reg. and high

Design

Req. and Design

Criteria with Rulcs about

Other
Specific
Limitations

design and
implementation
related interactions,
Not recommended
for critical systems

Don not address deep

is not an easy task, The
reference does not
describe types of
resource related
interactions that can be
detected, Not
recommended for
critical systems

Experience General interaction . L R .
. Human expertise | telecommunications scenario Human expertise
Factor scenarios . .
prone nteractions
Number of casc
studies reported 3 0 | 0
in the literature
The generated list contains The created use case
only interaction prone models cannot cover all
Specification in BCSM cenarios and this list must be | possible usage scenarios,

rnalyzed by another detection

approach for deciding which
features are really interacting,
The criteria used for
identifying interaction prone
scenarios is limited,
Specification in BCSM is not
an easy task, Not
recommended for critical

systems

The final interaction
detection relies totally on
experience with limited
definition of when two
features interact, The
criteria used for
identifying interactions

" between features is
limited, Not recommended

for critical systems

96

97
4.7 Summary
This chapter presented the proposed semi-formal approach IRIS for detecting
requirements interactions. IRIS uses tables and graphs along with interaction scenarios to
detect interactions. IRIS is a systematic six step approach that can detect interactions in
any domain. IRIS is also a customizable approach which means that it can have plug-ins
attached to its basic core to extend and enhance its capability and increase its interaction
detection thoroughness. Chapter 5 provides more discussion on the concept of
customization for IRIS along with details of what and how the different plug-ins can be

hooked to the basic core of IRIS to extend it and enhance its capability.

98
CHAPTER FIVE: IRIS CUSTOMIZATION

5.1 Introduction
This chapter continues on the previous chapter with a focus on IRIS customization. This
chapter describes how IRIS can be customized, the different plug-ins are that can be used
with IRIS, and how they can be used and inserted to extend the basic core of IRIS.
IRIS plug-ins are considered to be a very powerful feature in IRIS that can be used to
extend the performance of IRIS, increase the scope and thoroughness of interaction
detection to include design and resource interactions, make IRIS applicable to new
domains, and cope with any specific future needs by system developers.
This chapter is structured as follows: Section 5.2 describes the concept of customizing
IRIS and presents its advantages. In Section 5.3, IRIS hooks are described as insertion
points for the different plug-ins. It also contains a description of the characteristics of the
hooks used in IRIS. Section 5.4 gives details regarding the different plug-ins that can be
attached to the hooks. This includes a description of the general structure of the plug-ins,
and how plug-ins can be inserted to specific hooks and be integrated as part of the whole

approach. Finally, Section 5.5 summarizes this chapter.

99

5.2 The Concept of IRIS Customization

IRIS was designed to be a domain independent approach that can detect interactions at

different levels of thoroughness between software requirements using semi-formal-

methods. The challenge was to achieve this objective without creating a complicated

approach. For this reason, IRIS consists of a basic core that can be applied regardless of

the domain and is sufficient by itself to detect critical interactions within a software

system. This main core can then be supplemented with different plug-ins to extend it and

enhance its capabilities and ensure its successful application in new domains where

special needs may arise.

The advantages of extending IRIS with plug-ins can be summarized as follows:

IRIS basic core is a simple approach that can be easily applied in any domain to
detect critical interactions. Hence, the analysts can easily learn how to use and
apply IRIS.

The analyst only has to perform steps and create those tables and graphs that
necessary to detect interactions that meets his needs. For example; if the analyst
does not want to detect resources interactions, then s/he does not have to create
and fill the resources attributes identification tables nor apply interaction
scenarios related for the detection of resources interactions. This will greatly
reduce the overhead of applying IRIS.

The created plug-ins can provide different levels of thoroughness for detecting
interactions. It is up to the analyst to decide the required level for detecting
interactions. If the system is to be thoroughly analyzed, more plug-ins are to be

used.

100

e Some of the created plug-ins are used to add the optional attributes that were
described in Chapter 3 (e.g., Parameters and Parameters Range) to system axioms
and dynamic behaviour requirements.

e So far 10 plug-ins have been created based on the needs identified from the case
studies conducted in this research. However, additional plug-ins can be created by
analysts to accommodate new needs when IRIS is applied in new domains. This is
a very powerful feature, as IRIS is no longer a static approach that might get
useless over time, but can evolve over time. The analysts only have to watch that
they follow the general structure and format of plug-ins to ensure the integrity and
successful application of IRIS.

5.3 IRIS Hooks

5.3.1 Overview

IRIS was built with a basic core that consists of six main steps. Using these six steps, the
requirements are graduaily translated into a graphical and tabular representation and
finally specific interaction detection scenarios are applied to detect interactions.

In addition to these six steps, tables, graphs, and interaction scenarios, the basic core of
IRIS also contains specific point, so-called Hooks, into which plug-ins can be hooked to

extend IRIS. Figure 5.1 presents the basic core of IRIS and the different hooks.

101

Req. Docunent

Classify _Requirements(Reqs)

0.* 0. *% 1.2 l
A

Resources System Axioms il s e
ID: A, m: Y ID: T'y

iles i Description: T,
Description:A intion: P 2

P 2 Description: Y Pre-state: T
-w Rule: T3 Trigger event: 'y

Condition: Y, Action: Iy
Identify Attvibutes Next state: I'y
(5 —

Values(Reqs
ahues(Reqss0rcs) Identify_Attributes_

—p Values{Reqs,om) Identify_Attributes_Values(Reqs;,...)
»Ldentify Linked Events(I’,)
wExtract_Trigger Events(I',)

uses Represented
by
\ Interactions Detection Trigger Events Charts Representation
\ SCR1. SCR2. SCR3. SCR4,
\ SCRS, SCR10, SCR11,
SCR12, SCR13 * Generate Trigger Events_Charts(Reqsy,...)

Detect_Interactions(Reqs)

Figure 5.1: Basic core of IRIS showing points of the different hooks

5.3.2 Hooks Characteristics

The hooks which are represented by H1, H2, H3, H4, HS, H6, H7, and HS8 in Figure 5.1
are insertion points for plug-ins. Each hook has a unique name that starts with an H
followed by a unique number to identify this specific hook. The numbering order used is

arbitrary and is of no importance. The locations of the hooks were chosen based on:

102

e The need to add more attributes such as the optional attributes described in
Chapter 3 to describe system elements (e.g., system axioms, dynamic behaviour
requirements, and resources). This can be achieved through the hooks H2, H4,
and H6.

e The need to extend IRIS to ensure its Successful application in a diverse range of
domains. This need was obvious from the case studies conducted throughout this
research. This can be achieved through the hooks H1 and H3.

e The need to detect more thoroughly interactions using more interaction scenarios
other than the basic core interaction scenarios. This can be achieved through the
hook HS.

o The need to ensure the ability of IRIS to be extended to accommodate any
potential future needs. This can be achieved through the hooks H5 and H7.

In the following we give details on the characteristics of each hook and what plug-ins can
be inserted through each of these hooks.

5.3.2.1 Characteristics of Hook H1

Hook HI1 is an insertion point to add steps that need to be performed before the
application of the basic core steps of IRIS. For this reason H1 is located in the “Req.
Document” at the top of the IRIS class model as seen in Figure 5.1.

Hook H1 will accept only the insertion of plug-ins of type STEP (section 5.4.2) and
integrates them with the basic core steps of IRIS. The order of execution of the new

inserted plug-ins through hook H1 is prior to the execution of IRIS step 1.

103
5.3.2.2 Characteristics of Hook H2
Hook H2 is an insertion point to add attributes that are needed to fully represent system
axioms in the case that a system contains more data that cannot be represented by the
basic system axioms attributes. Examples of such attributes are the optional attributes
“Parameters” and “Parameters Range” discussed in Chapter 3. For this reason H2 is
located in the class “System Axiom” with other basic system axioms attributes as seen in
Figure 5.1.
Hook H2 accepts only the insertion of plug-ins of type ATTR (ATTR stands for
attributes) and integrates them with other basic system axioms attributes.
5.3.2.3 Characteristics of Hook H3
Hook H3 is an insertion point that allows the addition of steps that might need to be
performed on system axioms. For this reason H3 is located in the class “System Axioms”
with other basic system axioms steps as seen in Figure 5.1.
The Hook H3 accepts only the insertion of plug-ins of type STEP and adds them to other
basic system axioms steps.
5.3.2.4 Characteristics of Hook H4
Hook H4 is an insertion point to add attributes that are needed to fully represent dynamic
behaviour requirements in the case that a system contains more data that cannot be
represented by the basic dynamic behaviour attributes. Examples of such attributes are
the optional attributes “Parameters” and “Parameters Range” discussed in Chapter 3. For
this reason H4 is located in the class “Dynamic behaviour” with other basic dynamic

behaviour attributes as seen in Figure 5.1.

104
The Hook H4 only accepts the insertion of plug-ins of type ATTR and integrates
them with other basic dynamic behaviour attributes.
5.3.2.5 Characteristics of Hook H5
Hook H5 is an insertion point to add steps that might be needed to be performed on the
dynamic behaviour requirements. For this reason HS is located inrthe class “Dynamic
Behaviour” with other dynamic behaviour steps as seen in Figure 5.1.
The Hook H5 accepts only the insertion of plug-ins of type STEP and adds them with
other dynamic behaviour steps.
5.3.2.6 Characteristics of Hook H6
Hook H6 is an insertion point to add attributes that are needed to fully represent resources
in the case that a system contains more additional data. Examples of such plug-ins
attributes are the optional attributes “Availability”, “Performance”, and “Interface”
discussed in Chapter 3. For this reason H6 is located in the class “Resources” with other
basic resources attributes as seen in Figure 5.1.
The Hook H6 only accepts the insertion of plug-ins of type ATTR and integrates them
with other basic resources attributes.
5.3.2.7 Characteristics of Hook H7
Hook H7 is an insertion point to add steps that might need to be performed on the
resources. For this reason H7 is located in the class “Resources” with other resources
steps as seen in Figure 5.1. |
Hook H7 only accept the insertion of plug-ins of type STEP and adds them with other

resources steps.

105
5.3.2.8 Characteristics of Hook H8
Hook HS is an insertion point to add interactions scenarios that the analyst might use to
achieve more thoroughly detected interactions. For this reason H8 is located in the class
“Interactions Detection” with other IRIS basic core interaction scenarios as in Figure 5.1.
Hook H8 only accepts the insertion of plug-ins of type SCR (where SCR stands for
scenario) and adds them with other basic core interaction scenarios.
5.4 IRIS Plug-ins
5.4.1 General Structure of a Plug-in
A critical point when creating plug-ins for IRIS is to follow the general format and
structure of plug-ins to ensure their integrity.
The general structure of a plug-in to be used with IRIS has three main parts: The first part
identifies the type of the plug-in. The second part is the plug-in main body. The third part
identifies the location where this plug-in can be hooked to the basic core of IRIS. Figure

5.2 shows a description of the general structure of an IRIS plug-in.

..

Type of the plug-in:
STEP: Step Main body of the plug-in: Answers Location: Describes where
ATTR: Attribute the What . When, and How the plug-in can be inserted

SCR: Interaction Scenario
Figure 5.2: General structure of an IRIS plug-in

106

5.4.2 Plug-in Type

As shown in Figure 5.2, the Type is a three or four letter abbreviation that describes the

type of the plug-in. A plug-in can have one of the following types:

Step (STEP): A STEP plug-in is an independent step that generates its own set of
tables and graphs. This type of plug-in is needed when there is a certain step that
is not necessarily always applied, like representing‘ requirements in a graphical
notation to make sure that analyst understands how each requirement behaves.
Attribute (ATTR): An attribute is used to describe a specific part of a requirement
(see Chapter 3). For example, in the smart homes domain (presented in Chapter
8), many requirements have parameters: in their body and therefore the two
attributes “Parameters” and “Parameters Range” have been inserted as plug-ins
into IRIS to analyze the smart homes domain.

Interaction Scenario (SCR): An interaction scenario is a description of a situation
in which two requirements interact and how this interaction can be detected by a

human analyst.

5.4.3 Plug-in Main Body

The second part of a plug-in is the plug-in main body. The plug-in main body describes

what this plug-in is and when and how the analyst should use it. The plug-in body has the

following parts:

What: states what this plug-in is
o Name: A unique descriptive name of the plug-in
o Description: A textual description of what this plug-in is

o Construction: The internal construction of the plug-in

107
e When: states when to apply this plug-in
o Problems it overcomes: A description of what types of problems this plug-in
can overcome
o Expected enhancement: A description of the expected enhancement this plug-
in will provide
e How: states how to apply this plug-in
o Instructions: A set of instructions on how to insert this plug-in plus any other
instructions
o Example of application: A sample description of how to use the plug-in
5.4.4 Plug-in Location
The “Location”, as shown in Figure 5.2, describes where this plug-in can be inserted. For
instance, if a plug-in is inserted into hook H2, the “Location” of the plug-in is assigned
the value H2. This prevents any mis-location of plug—iﬁs.
5.4.5 Available Plug-ins for IRIS
So far 10 plug-ins have been designed that have thé structure described above and are
fully documented. Thesé plug-ins were identified and designed baséd on the case studies
carried out in this thesis and also based on the need to add optional attributes to the
system elements (e.g., adding the attributes parameters and parameters range to system
axioms or dynamic behaviour requirements). However, additional plug-ins can be
designed in the future by the author or by other developers if needed.
As an example, Table 5.1 presents a full description of the plug-in named “Graphical
representation of individual requirements”. It is worth mentioning that the interaction

scenario plug-in (SCR) is not described as it is fully detailed in Chapter 3 and Appendix

108

B. The remaining 8 plug-ins are briefly described below. However, Appendix D

presents the full details of each of the 8 Plug-ins using the structure described in

subsection 5.4.3.

Table 5.1: Details of the plug-in Graphical representation of individual

requirements

Type: STEP

Body: What

Name

Graphical representation of individual requirements

Description

A complete step that is carried out to graphically represent each
individual requirement. This is to ensure that the analyst fully
understands the behaviour of the requirements.

Construction

The execution of this step requires the following activities:

1. Select every requirement from the set of given requirements,
list it separately, and read it carefully.

2.1dentify a suitable graphical representation (e.g., UML
notations {143-146], CRESS [65], UCM[147-149]),.

3.Represent edch of the selected requirements graphically using
the chosen graphical notation.

4.1f it is difficult to represent the requirement, the analyst needs
to restate the requirement and possibly consult with the
source/stakeholder of the requirement in order to better
understand it.

5.Go back to activity 3 until all requirements have been
addressed.

When

Problems this
plug-in
overcomes

1. Complexity of requirements

2. Ambiguity of requirements

3. Lack of understanding of requirements

3. Clarification of wrong assumptions or wrong judgments

Expected
enhancements

1. Reduced requirements ambiguity

2.Reduced difficulty filling in the requirements tables in step 2
of the basic core of IRIS

3. Improved accuracy of the requirements attributes

4.Improved interaction detection and prevention of false
interactions

How

Instructions

1. This step is applied prior to step 1 of IRIS basic core.

Sample of
application

This step has been applied in a case study to identify interactions
between the requirements of a lift system. Refer to Chapter 6 for
an example application.

Location

Since this is a STEP plug-in that is needed to be performed prior to the application of IRIS
basic core steps, then this step is hooked to the hook H1

109

L ‘Parameter Assignment: This is a STEP plug-in and is used to find any
parameterized parts in the given set of requirements. These parameterized parts
are then replaced by parameters (e.g., X, Y ...etc). For example, consider a
requirement that has a part stating “the lights will switch on in a certain place
when night starts”. The “Certain place” is a parameterized part and the Parameter
Assignment plug-in replaces this part with the parameter X. The requirement now
reads “the lights will switch on in place X when the night starts”. Since this is a
STEP plug-in that is needed to be performed prior to the application of IRIS basic
core steps, this plug-in is hooked into the hook H1.

e Parameters: This is an attribute (ATTR) plug-in. It corresponds to adding the
attribute “Parameters” to the set of attributes used for representing system axioms
requirements or dynamic behaviour requirements. The use of this plug-in results
in a new column, called “Parameters”, in the tables created for the system axioms
or the dynamic behaviour requirements. This new column contains the different
parameters used in each requirement along with the data type allowed for these
parameters. This plug-in must be used in conjunction with the “Parameter
assignment”’ plug-in. Since this is an ATTR plug-in that is needed to add the
attribute Parameters to either system axioms or dynamic behaviour, then this
plug-in is hooked into the hooks H2 or H4.

o Parameters Range: This is an attribute plug-in that has to be used in conjunction
with the Parameters plug-in. It corresponds to adding the attribute “Parameters
Range” to the set of attributes used for representing system axioms requirements

or dynamic behaviour requirements. The use of this plug-in results in a new

110
column, called “Parameters range”, in the tables created for the system axioms
or the dynamic behaviour requirements. The new column describes the allowed
range of values that each parameter can have. Since this is an ATTR plug-in that
is needed to add the attribute Parameters Range to either system axioms or
dynamic behaviour, this plug-in is hooked into the hooks H2 or H4.
Functionalities identification: This is a STEP plug-in that 1s used when a single
requirement is complex and describes different functionalities. For example a
requirement for an intruder alarm has many functionalities within the same
requirement. The goal of this plug-in is to simplify the' parent requirement by
breaking it down into atomic functionalities that can be easily handled. Since this
is a STEP plug-in is needed prior to the application of IRIS basic core steps, this
plug-in is hooked into the hook H1.
Graphical representation of individual requirements: This is a STEP plug-in that
corresponds to a complete step that is performed prior to the application of IRIS
basic core. This plug-in is used when the given set of requirements are vague and
therefore must be fully understood before proceeding with the remaining IRIS
steps. A complete description of this plug-in was given in Table 5.1.
System axioms strategies: This is a STEP plug-in, i.e., a new step is carried out to
identify the different strategies used for the design and implementation of system
axioms. This plug-in creates a table to describe the system axioms design and
implementation strategies. Since this is a STEP plug-in that performs a certain

step on the system axioms, this plug-in is hooked into the hook H3.

111

o Availability: This is an attribute (ATTR) plug-in. It corresponds to adding the
attribute “Awvailability” to the set of aftributes used for representing resources
requirements. The use of this plug-in results in a new column in the table created
for the resources requirements. The new column contains the values of the
availability of each resource requirement. Since this is an ATTR plug-in that adds
the attribute “Availability” to the resources, this plug-in is hooked into the hook
He6.

e Performance: This is an attribute (ATTR) plug-in. It corresponds to adding the
attribute “Performance” to the set of attributes used for representing resources
requirements. The use of this plug-in results in a new column in the table created
for the resources requirements. The new column contains the values of the
performance of each resource requirement. Since this is an ATTR plug-in that
adds the attribute Performance to resources, this plug-in is hooked to the hook Hé.

e Interface: This is an attribute (ATTR) plug-in. It corresponds to adding the
attribute “Interface” to the set of attributes used for representing resource
requirements. The use of this plug-in results in a new column in the table created
for the resources requirements. The new column contains the values regarding the
interface for each reéource requirement. Since this is an ATTR plug-in that adds
the attribute Interface to resources, this plug-in is hooked into the hook H6.

e SCRi: The SCRi corresponds to the ith interaction scenario (SCR) plug-in. This
plug-in can correspond to the following plug-ins interaction scenarios: SCRS,
SCR6, SCR7, SCR9, SCR14, SCR15, SCR16, SCR17, SCR18, SCR19, SCR20,

SCR21, SCR22, SCR23, SCR24, SCR25, SCR26, SCR27, SCR28, SCR29,

112
SCR32, SCR33, SCR34, SCR35, SCR36, and SCR37. The details of each of
these interaction scenarios are described in details in Chapter 3 and Appendix B.
These interaction scenarios are used to increase the thoroughness for detecting
interactions between requirements. However, it is worth saying that some
interaction scenarios plug-ins cannot be used unlessﬁ other plug-ins are used. For
example, all the interaction scenarios plug-ins (SCR17, SCR18, SCR22, SC23,
SCR27, SCR32, and SCR35) which are aimed at detecting interactions due to a
requirement resource availability attribute, cannot be used unless the plug-in
“Availability” has been hooked to IRIS and is being used. Since this is an SCR
plug-in that is needed to add interaction scenarios to “Interactions Detection”, this

plug-in is hooked into the hook HS.

113
5.5 Summary
This Chapter presented the customization of IRIS to detect interactions in any domain
and at different levels of thoroughness. To achieve such a goal, IRIS was designed with a
basic core as well as extension hooks for expansion through the addition of plug-ins that
can be attached to the hooks.
The plug-ins can be used to ensure the successful application of IRIS in new domains and
also enhance the interaction detection results by providing more steps, tables, interaction
scenarios...etc to detect interactions more thoroughly. Currently lO'plug-ins have been
created in this thesis for extending and enhancing the performance of IRIS as needed.
However, as a powerful feature, new plug-ins can be developed by analysts who are
using IRIS to accommodate any special needs and hence to successfully apply IRIS to
detect interactions. When creating new plug-ins, an analyst must follow the general
structure of plug-ins to ensure the integrity of the approach and hence its sucrcessful
application to detect interactions. The next chapters describe the application of IRIS to
detect interactions in different domains using its basic core and some of the plug-ins

described in this chapter.

114

CHAPTER SIX: APPLYING IRIS IN THE CONTROL DOMAIN - THE LIFT
SYSTEM CASE STUDY |

6.1 Introduction
The lift system is a well recognized system from the control domain that is often used as
a benchmark for validating new approaches for interaction detection. This chapter
presents the application of the proposed semi-formal approach IRIS to detect interactions
in the lift system. The lift system case study consists of a set of 14 requirements that
describes the basic operation of a simple lift system. Hence, IRIS is applied to detect
interactions in this case study at the requirements level.
IRIS was able to detect 7 interactions between the lift system requirements. The results
were compared with the results reported by Heisel et al. in [18, 150]. IRIS was able to
detect all interactions reported by Heisel ez al. in [18, 150]. IRIS was also able to detect
an interaction that [18, 150] did not detect. Moreover, IRIS achieved a 17.6% reduction
in the number of comparisons that a human expert would have to do to compare all 14
requirements.
This chapter is structured as follows: Section 6.2 presents the requirements of the lift
system that were used in the case study. Section 6.3 shows how IRIS was customized to
more effectively detect interactions in the lift system. Section 6.4 describes in a step-by-
step manner the application of IRIS to the lift system requirements along with the results
obtained from each step. Section 6.5 contains a discussion and a comparison of the
obtained results with the results reported by Heisel et al. in [18, 150]. Finally, in section

6.6 a summary of the chapter is presented.

115

6.2 The Lift System Requirements

In the lift system case study, the following14 requirements describing the basic behaviour

of a simple lift have been identified [18, 150]:

R1.

R2.

R3.

R4.

RS.

R6.

R7.

R8.

RO.

R10.

RII.

R12.

R13.

R14.

The lift is called by pressing a call button, either at a floor or inside the lift.
Pressing a call button is possible at any time.

When the lift passes by floor K, and there is a call for this floor, then the lift will
stop at floor K.

When the lift has stopped, it will open the doors.

When the lift doors have been opened, they will close automatically after d
time-units.

The lift only changes its direction when there are no more calls in current
direction.

When there are no more calls, the lift stays at the floor last served.

As long as there are unserved calls, the lift will serve these calls.

When the lift is halted at floor K with the doors opened, a call from floor K is
not taken into account.

When the lift is halted at floor K with door closed and receives a call from floor
K, it reopens its doors.

Whenever the lift moves, the doors must be closed.

The closing of a door may be prevented by pressing an open-door button.

When something blocks the door, the lift interrupts the process of closing the
door and reopens the doors.

When the lift is overloaded, the door will not close.

116

6.3 Customizing IRIS for the Lift System Case Study

6.3.1 Plug-ins used in the Lift System Case Study

To illustrate what plug-ins have been used in the lift system case study, a list of the

problems encountered in this case study is described first. Then the plug-ins that were

used to overcome these problems are described.

1.

The initial textual description of the lift requirements was unclear and some
requirements did not provide a clear understanding on how the system should
behave when these requirements are triggered (e.g., R3 and R14). The plug-in
“Graphical representation of individual requirements” was used to graphically
represent requirements and understand their exact behaviour. This helped resolve
the ambiguities that existed earlier on by visually modeling these requirements.
This plug-in is hooked to hook H1 and therefore is carried out prior to the
execution of step 1 of the basic core of IRIS.

To detect all possible interactions between a system axiom and a dynamic
behaviour requirement, the interaction scenarios “SCR5”, “SCR6”, and “SCR7”
were inserted into IRIS as plug-ins at hook H8 and were used to provide
interaction detection between system axioms and dynamic behaviour
requirements. These interaction scenarios are applied as part of sixth step of IRIS.
To detect all possible interactions between two dynamic behaviour requirements,
four interaction scenarios have been inserted into IRIS as plug-ins at hook HS,
namely: SCR9, SCR14, SCR15, and SCR16. These interaction scenarios are

applied as part of the sixth step of IRIS.

117
6.3.2 Assumptions used in the Lift System Case Study

1. The lift system is described by a set of 14 requirements. Hence IRIS was applied
to detect interactions at the requirements level.

2. The set of 14 requirements were chosen as they explained the basic operation of a
simple lift system. Other requirements such as ;‘Executive floor” or “Multi-Car”
were not included in this case study for simplicity purpose.

6.4 Applying IRIS to Detect Interactions in the Lift System Case Study

This section presents the application of IRIS to the lift system requirements presented in
Section 6.2. The basic core steps of IRIS as well as the plug-ins used in this case study
are presented in the order of their execution.

6.4.1 Using the Plug-in “Graphical representation of individual requirements”

The plug-in “Graphical representation of individual requi/;ements"’ used the CRESS
notation [65] to graphically represent ambiguous requiremerits. VFigure 6.1 shows a

sample of using CRESS to represent requirements R1 and R3.

1. Lift passes by
floor K

Thereisa
call from clse
floor k

1. Press a call
button inside the
lift or at floor K

v

2. The liftis 2. Stop at
called this floor

Figure 6.1 CRESS [65] representation for R1 on the left and R3 on the right

118
Figure 6.1 shows that if the lift passes by floor K and there is a call from floor K, the
lift will stop at this floor. If there is no call the lift will proceed with normal operation and
no action is taken (represented by the empty oval on the right hand side of Figure 6.1).
6.4.2 Step 1: Requirements Classification |
After analyzing the lift system requirements, they are classified into system axioms and

dynamic behaviour requirements as shown in Table 6.1.

Table 6.1: Classification table for the lift system requirements
System Axioms R2,R6,R7,R8, and R11

Dynamic Behaviour Requirements R1,R3,R4,R5,R9, R10,R12,R13, and R14

6.4.3 Step 2: Requirements Attributes Identification
Table 6.2 contains the values of the different attributes of each system axiom, and Table

6.3 contains the values of the different attributes of each dynamic behaviour requirement.

Table 6.2: System axioms attributes identification table for the lift system,

1D Description Rule Condition
Pressing a call button is possible at Pressing any button is always
R2 - . True
any time. available to the user
The lift only changes its direction No more calls in
R6 when there are no more calls in the Changing direction is possible the current
current direction. direction

R7 \ﬁ?te;:;:r:t ?}rlee rﬁ%g;cﬁz tc:éij;etge Lift stays at floor last served No more calls
RS As long as there are unserved calls, The lift will always serve There are unserved

the lift will serve these calls. unserved calls calls
R11 Whenever the lift moves, the doors Doors are closed Lift is moving

must be closed.

119

Table 6.3: Dynamic behaviour attributes identification table for the lift system

doors will not close.

opened

1D Description Pre-State Trigger Event Action Next State
The lift is called by pressing Lift not Pressing a call
R1 | acall button, either ata & Call the lift Lift is called
g . called button
floor or inside the lift. :
When the lift passes by .
> s Lift passes by
R3 floor ?.K, and there isa c_all Lift is floor K AND Call [Stop at floor K Stopped at
for this floor, the lift will moving floor K
from floor K
stop at floor K.
R4 When the lift has stopped, it | Lift is Lift has stopped Open the Doors opened
will open the doors. moving doors
When the lift doors have Doors have
. . . Close the
been opened, they will close | Doors are | finished opening
RS ; . . : doors Doors closed
automatically after d time opened AND d time units .
. automatically
units. have elapsed
ﬂwo}:)inléh;iltgtﬂllselfgz: at At floor K Ignore call At floor K
R9 with doors | Call from floor K | from this with doors
opened, a call from floor K opened floor opened
is not taken into account. p P
When the lift is halted at At floor K
floor K with doors closed . Reopen the Doors are
R10 . with doors | Call from floor K
and receives a call from doors opened
. . closed
floor K, it reopens its doors.
The closing of a door may Doors are | Pressing open Prevent doors | Doors are
R12 | be prevented by pressing an . .
closing door button closing opened
open-door button.
When something blocks the interrunt door
doors, the lift interrupts the | Doors are | Something blocks Tup Doors are
R13 . .) closing and
process of closing the door | closing the doors reopens doors opened
and reopens the doors. P
R14 When the lift is overloaded, | Doors are Lift is overloaded Do not close Doors are opened

the doors

6.4.4 Step 3: Trigger Events Extraction

120

After analyzing the triggers required to trigger the dynamic behaviour requirements of the

lift system, 9 trigger events are extracted and identified as shown in Table 6.4.

Table 6.4: Trigger events extraction table for the lift system

Event ID Event Description Requirements Triggered by this Event

El Pressing a call button R1

E2 Call from floor K R3,R9, R10

E3 Lift passes by floor K R3

E4 Lift has stopped R4

E5 Doors have finished opening RS

E6 Pressing open door button R12

E7 Something blocks the doors R13

E8 d time units have elapsed RS

E9 Lift is overloaded R14

6.4.5 Step 4: Linked Events Identification

Table 6.5 shows the results of identifying linked events (step 4). It must be noted that the

event number does not imply the direction of the link as can be seen with E6 which is

linked to ES5.

Table 6.5: Linked events identification table for the lift system

Event ID Event Description Linked to Mathematical Representation

El Pressing a call button E2, E4 El ~>E2,El1 ~>E4

E2 Call from floor K E4 E2 ~>F4

E3 Lift passes by floor K E4 E3~>FE4

E4 Lift has stopped E5 'E4~>ES

ES5 Doors have finished opening E7,E9 E5 ~>E7,E5 ~>E9

E6 Pressing open door button ES5, E9 E6 ~> ES5, E6 ~> E9

ES8 d time units have elapsed Ei, E8 ~> Ej,
i=1,2,3,4,5,6,7,9 i=1,2,3,4,5,6,7,9

E9 Lift is overloaded E4, E8 E9 ~>E4, E9 ~> E§

6.4.6 Step 5: Trigger Events Charts Representation

Figure 6.2 shows the 9 trigger events and the requirements they trigger using trigger

events charts. It is worth mentioning that some requirements need to be triggered by more

121

than one trigger event in order to execute (e.g., R3). In this case, the extra trigger

events are represented in the state charts in the form of logical AND constraints which

are represented by the symbol (|||) (e.g., E3 and E2 triggering R3 at the top right hand side

of Figure 6.2).

]

El

Lift not
called

Call the lift

Lift is

called/

Liftis

Open the doors <,

Doors

moving

L

opened

—

Il E2 Stop at floor Stopped at
E3—> floor K

Il ES
E5s—>

Il E3
E2 - K wi . At floor K with
At floor Kwith ™ 1gnore call fror
doors opened -———MS foor doors opened
RI10
- At floor K Reopen doors Doors
> with doors opened
closed
RI12 | RI3
Doors \ Interrupt door closigg Doors
E Doors Prevent doo Doors E7— closing and reopen door: opened
EL—'é closing closing opened
‘ R5 ' R14
i E;] Doors Close doors Doors Eo—> Do not close Doors
E8 opened automatically closed opened the doors opened

Figure 6.2 Trigger events charts for the dynamic requirements of the lift system

122
6.4.7 Step 6: Interaction Detection
6.4.7.1 Summary of the Detected Interactions
In this step, the developer detects interactions between 1'equi_remenfs using interaction
scenarios that are either within the basic core of IRIS or interaction scenarios that are
inserted as plug-ins into IRIS. The detection is subjective which means that a developer
uses the different tables and graphs developed along with the provided interaction
scenarios to determine if there exists any interaction between two requirements. |
The developer now tries to find interactions as explained in Section 4'3'77 Table 6.6
provides a summary of the detected interactions in the lift systém casé study. However,
an illustration is given below on how these interactions were detected in the lift system

case study.

Table 6.6: A summary of the detected interactions in the lift system case study

Requirement Interacting Requirements
R9 R1
Ri2 RS and R8
R13 " RS and RS
R14 RS and R8

123
6.4.7.2 Interactions According to Main Interaction Category ©
In this interaction category, two interaction scenarios are used, namely: SCR1 and SCR2.
The developer has to pair-wise compare all system axioms with the aim of finding
interactions according to SCR1 and SCR2. |
The analysis of the system axioms of the lift system using SCR1 and SCR2 did not result

in any detected interactions.

6.4.7.3 Interactions According to Main Interacti(‘)nr Categories @ and @

Seven interaction scenarios are used under interaction categories @ and @, namely:
SCR3, SCR4, SCR5, SCR6, SCR7, SCR 30, and SCR31. The developer is required to |
examine the system axioms attributes ideﬁtiﬁcation table (Table 6.2) and the dynamic
behaviour requirements attributes identification table (Table 6.3). The developer has to
perform pair-wise comparison of every sysfem axiom and every dynamic behaviour
requirement with the objective of finding interactions according to the seven interactions
scenarios.

Three interactions were detected using the interaction scenario .SCR30. The three
detected interactions are: interaction between R12 and RS, interaction between R13 and
R8, and interaction between R14 and R8. The details of these interéctions are described

in Tables 6.7, 6.8, and 6.9, respectively.

124

Table 6.7: Interaction between R12 and RS in the lift system case study

Interaction ID

I5

Type of Interaction

Interaction between a dynamic behaviour requirement and a system axiom

Interacting R12 and R8
Requirements
Interaction Scenario SCR30
used \
Explanation of There is a contradiction between the value of the Action attribute of the
Interaction dynamic behaviour requirement (R12) and the value ‘of the Rule attribute

for the system axiom (R8). The action of R12 will override the rule of R8.
A possible interaction situation could be the following: A user keeps
pressing the open door button for a long time and hence the lift is unable to
serve other unserved calls.

Table 6.8: Interaction between R13 and RS in the lift system case study

Interaction ID

16

Type of Interaction

Interaction between a dynamic behaviour requirement and a system axiom

Interacting R13 and R8 :
Requirements
Interaction Scenario SCR30
used
Explanation of There is a contradiction between the value of the Action attribute of the
Interaction dynamic behaviour requirement (R13) and the value of the Rule attribute

for the system axiom (R8). The action of R13 will override the rule of R8.
A possible interaction situation could be the following: A user puts
anything like a rock to block the process of closing the doors and hence the
lift doors are always kept open and hence the lift is unable to serve other
unserved calls. -

Table 6.9: Interaction between R13 and RS in the lift system case study

Interaction ID

I7

Type of Interaction

Interaction between a dynamic behaviour requirement and a system axiom

Interacting R14 and R8
Requirements
Interaction Scenario SCR30
used
Explanation of There is a contradiction between the value of the Action attribute of the
Interaction dynamic behaviour requirement (R14) and the value of the Rule attribute

for the system axiom (R8). The action of R14 will override the rule of R8.
A possible interaction situation could be the following: A user is using the
lift to move furniture and puts many things which overload the lift.
Consequently the lift doors will not close and will remain open. If that user
does not remove some furniture out, then the lift doors are kept open and
will not be able to serve other unserved calls.)

125

6.4.7.4 Interactions According to Main Interaction Category @
The basic core of IRIS contains five interaction scenarios to be used for detecting
interactions between two dynamic behaviour requirements: SCR8, SCR10, SCR11,
SCR12, and SCR13. However, additionally four plug-ins interaction scenarios were
inserted and used which are: SCR9, SCR14, SCR15, and SCR16.
To detect interactions between two dynamic behaviour requirements, the analyst first
looks at trigger events charts in Figure 6.2 and the linked events tablé shown in Table 6.5
and identifies unique pairs of requirements that are triggered by the same trigger event or
by linked trigger events. This resulted in the foilowing pairs of requirements:
S(R3, R9), S(R3, R10), S(RY, R10), L(R1, R3), L(R1, R9), L(R1, R10), L(R1, R4), L(R3,
R4), L(R9, R4), L(R10, R4), DL(R4, R5), L(R5, R13), DL(RS, R12), L(R12, R14), L(R5,
R1), L(R5, R3), L(R5, R9), L(RS, R10), L(R14, R4),and DL(RS, R14).
The following symbols have been used to describe the pairs of requirements:

o S(Rj, Rj): The two requirements R; and R; are triggered by the same trigger event

e L(Rj, R;): The two requirements R; and R; are triggered by linked trigger events such

that E; ~> E;
e DL(R;, R;): The two requirements R; and R; are sequentially related through E; ~> E;
and also they are sequentially related through E; ~> E; (called dual linked events)

Now, the analyst has to analyze the requirements pairs listed above using the 9
interaction scenarios. This analysis resulted in the following interactions to be detected:
interaction between R12 and RS, interaction between R13 and R5, interaction between
R14 and RS, and interaction between R9 and R1. The details of these interactions are

described in Tables 6.10-6.13, respectively.

126

Table 6.10: Interaction between R12 and RS in the lift system case study

Interaction ID I1 -
Type of Interaction Interaction between two dynamic behaviour requirements
Interacting R12 and RS
Requirements
Interaction Scenario SCR12
used
Explanation of There is a contradiction between the value of the Action attribute of the
Interaction dynamic behaviour requirement (R12) and the value of the of the Action

attribute of the dynamic behaviour requirement (R5). The action of R12
will override the action of R5. A possible interaction situation could be the
following: After the doors are opened, a user keeps pressing the open door
button for a long time and hence the lift doors are unable to close after d
time units.

Table 6.11: Interaction between R13 and RS5 in the lift system case study

Interaction ID 12
Type of Interaction Interaction between two dynamic behaviour requirements
Interacting R13 and RS
Requirements
Interaction Scenario used SCR12

Explanation of
Interaction

There is a contradiction between the value of the Action attribute of the
dynamic behaviour requirement (R13) and the value of the of the Action
attribute of the dynamic behaviour requirement (R5). The action of R13
will override the action of R5. A possible interaction situation could be the
following: After the doors are opened, a user puts anything like a rock to
block the process of closing the doors and hence the lift doors are always
kept open and hence the lift doors are unable to close after d time units.

Table 6.12: Interaction between R14 and RS in the lift system case study

Interaction ID 13
Type of Interaction Interaction between two dynamic behaviour requirements
Interacting R14 and RS
Requirements
Interaction Scenario SCR12
used
Explanation of There is a contradiction between the value of the Action attribute of the
Interaction dynamic behaviour requirement (R14) and the value of the of the Action

attribute of the dynamic behaviour requirement (R5). The action of R14
will override the action of R5. A possible interaction situation could be the
following: After the doors are opened, a user uses the lift to move furniture
and puts many things which overload the lift. Consequently the lift doors
will not close and will remain open. If that user does not remove some
furniture out, then the lift doors are kept open and hence the lift doors are
unable to close after d time units.

127

Table 6.13: Interaction between R9 and R1 in the lift system case study

Interaction ID 14
Type of Interaction Interaction between two dynamic behaviour requirements
Interacting R9 and R1
Requirements
Interaction Scenario SCRI12
used
Explanation of There is a contradiction between the value of the Action attribute of the
Interaction dynamic behaviour requirement (R9) and the value of the of the Action

attribute of the dynamic behaviour requirement (R1). The action of R9 will
override the action of R1. A possible interaction situation could be the
following: The lift is at floor K with doors opened and are about to close
the doors in less than a second. Someone outside the lift system presses the
call button to call the lift. According to R1, the lift should be called and
give him sufficient time to ride the lift. However, according to R9, which
will override the action of R1. The call is ignored because the lift is at floor
k with its doors opened, and hence the call from this floor is ignored and
the doors start closing not giving the user, who pressed the call button,
sufficient time to ride the lift.

6.5 Discussion of the Results

6.5.1 Reduction in Number of Comparisons

IRIS can reduce the number of comparisons that needs to be performed by an expert to

informally detect interactions between the given set of requirements.

In the lift system case study, IRIS needed to perform 75 pair-wise comparisons as

follows:

e 10 comparisons to detect interactions according to main interaction category ®

(number of all possible pair-wise comparisons according to Table 6.2)

e 45 comparisons to detect interactions according to main interaction categories @

and @ (number of all possible pair-wise comparisons according to Table 6.2 and

Table 6.3)

128
e 20 comparisons to detect interactions aqcording to main interaction category

® (number of comparisons between two dynamic behaviour requirements

triggered by the same event or linked events as explained in Section 6.4.7.4)
If a human expert would have to pair-wise compare all of the lift system requirements
informally, s/he would have needed 91 comparisons. This means that IRIS has achieved a
17.6% reduction in number of comparisons.
Alzthough this 17.6% cannot be translated into the same percentage reduction of time and
effort due to the overhead associated with applying IRIS, it still shows that there is a
reduction in time and effort especially when an IRIS-trained developer conducts the case
study and the number of requirements is high.
6.5.2 Comparing IRIS Results with the Results by Heisel ef al. in [18, 150]
In section 6.4, IRIS was applied to detect interactionrs at the requirements level between

14 requirements of the lift system. The case study had the following numbers:

Number of Requirements 14

Number of detected interactions using IRIS 7

Number of performed comparisons using IRIS 75

Number of comparisons an expert would have to do 91
to compare all requirements

To discuss and evaluate the obtained results, we compare them with the results by Heisel
et al. in [18, 150].Heisel et al. [18, 150] reported results on detecting interactions
between requirements of the lift system. In [18, 150], Heisel et al. have detected 6
interactions between the 14 requirements of the lift system versus 7 interactions that were
detected using IRIS. IRIS was not only able to detect all the interactions reported by

Heisel et al. it also found an interaction between R14 and R8 which was missed by Heisel

129
et al. IRIS was able to detect this additional iﬁteraction as it analyses system axioms
and dynamic behaviour requirements with human involvement which the approach by
Heisel et al. [18, 150] lacks.

6.6 Summary

This chapter presented the application of the IRIS to the lift system case study from the
control domain. In general, the lift system had a set of 14 requirements. IRIS was
successful in detecting 7 interactions between the lift system requirements.fTo examine
the accuracy of the detected interactions, IRIS was compared to the results reported by
Heisel et al. in [18, 150]. IRIS was able to detect all the interactions that are reported in
literature by Heisel et al. [18, 150] and found an additional interaction between R14 and
R8 which the approaches described in [18, 150] failed to detect. Moreover, IRIS achieved
a 17.6% reduction in the number of comparisons that an expert would have to perform to
compare all the 14 requirements of the lift system which indicates reduction in time and

effort.

130
CHAPTER SEVEN: APPLYING IRIS IN THE TELECOMMUNICATIONS
DOMAIN - THE TELEPHONY FEATURES CASE STUDY

7.1 Introduction
This chapter presents the application of IRIS in the telecommunications domain. This
case study was conducted using a set of 8 telephony features that were provided by the
feature interaction contest held in 2000 [19]. The 8 telephony features are implemented
on top of the Plain Old Telephony System (POTS) [151]. IRIS was applied to detect
interactions between the 8 telephony features and hence IRIS is applied to detect
interactions at the features level.
IRIS was able to detect 21 interactions in this case study. To validate these results, a
comparison is made with other results reported by researchers using different approaches
in the Second Feature Interaction Contest held in 20007 (FIWO00) [19]. Moreover, IRIS
achieved a 17.9% reduction in the number of comparisons that a human expert would
have to do to compare all 8 telephony features.
The structure of this chapter is as follows: Section 7.2 presents a description of the 8
telephony features used in the case study. Section 7.3 shows how IRIS Was customized to
be applied in the telephony features case study. Section 7.4 shows the application of IRIS
to detect interactions among the 8 telephony features along with the results obtained from
each step of IRIS. Section 7.5 presents a discussion of the obtained results along with a
comparison of these results with other results reported in the FIWO00 contest. Finally,

Section 7.6 presents the chapter summary.

131
7.2 The Telephony Features
The second feature interaction contest was held in conjunction with the Sixth
International Workshop on Feature Interaction in Telecommunications and Software
Systems (FIW00) [19]. In this case study a set of 8 feafures given in the contest is used

for interaction detection with IRIS as shown in Table 7.1.

Table 7.1: A description of the telephony features used in the case study

Feature Name Feature. . Feature Informal Definition
Abbreviation
Call Forward on All calls to a subscriber line are redirected to a predefined
Busy Line CFBL number when the subscriber line is busy.
Teen Line TL During a pre-set time of the day, this feature restricts all outgoing

calls from the subscriber’s telephone unless a PIN is provided.

Terminate call All incoming calls to the subscriber’s telephone are screened
Screening TCS against a screening list. If the originator of an incoming call
matches an entry in the list, the call is terminated.

Call Waiting CwW This feature allows the subscriber to be notified of an incoming
call while s/he is busy and to accept the new call by putting the
original call on hold. Then s/he is able to toggle between the two
calls.

Three Way Calling | 3WC This feature allows a user already connected to another user to
bring a third party into the call. The subscriber can setup a
connection to the new party by putting the current partner on
hold, connecting to the third party and joining lines. The 3WC is
terminated by any side going on hook. .

Reverse Charge RC Allows the subscriber to be charged for all calls in which the
subscriber is the terminating party.

Ring Back when RBF When a call attempt is made to a busy line with this feature

Free active, the caller is informed that s/he will be called back when

the other person is free. Once the subscriber terminates his/her
call, a connection to the stored numbers will be established.

Voice Mail VM This offers the possibility to leave a message if the called party is
busy or not answering.

132
7.3 Customizing IRIS for the Telephony Features Case Study
7.3.1 Plug-ins used in the Telephony Features Case Study

1. The descriptions of the features provided by the contest organizers for the 2"
feature interaction contest [19] were very detailed and addressed all the questions
that might be asked about the behaviour and design of the features. Therefore,
only interaction scenarios plug-ins were inserted into IRIS at hook HS, and are
used to provide thorough interaction detection. Since all features are dynamic
behaviour features, four plug-ins interaction scenarios have been used: SCROY,
SCR14, SCR15, and SCR16. These plug-ins are applied as part of IRIS step 6.

7.3.2 Assumptions used in the Telephony Features Case Study

1. IRIS is being applied to detect interactions at the features level.

2. Informal definitions of the telecommunications features are used. Low-level
design or implementation details are not considered in this case study as they are
beyond the scope of IRIS (See section 4.5 regarding the limitations of IRIS).

7.4 Applying IRIS to Detect Interactions in the Telephony Features Case Study

7.4.1 Step 1: Features Classification

In the first step the features are organized into system axioms or dynamic. behaviour '
features. Since all the features in this case study describe the dynamic behaviour of the
system, they are classified as dynamic behaviour features.

7.4.2 Step 2: Features Attributes Identification

In this step, each dynamic behaviour feature is analyzed to identify the values of its
attributes. Table 7.2 presents the values of the attributes of the dynamic behaviour

features used in this case study.

133

Table 7.2: Dynamic behaviour attributes identification for telephony features

D Description Pre-state Trigger Action Next
Event state
All Calls to a subscriber Line are Call Redirect the
CFBL | redirected to a predefined number Busy request incoming call to a | Busy
when the subscriber line is busy. q predefined number
During a pre-set time of the day, this | Idle ||| Ask for PIN. If the
TL feature restricts all outgoing calls Time T in | Call PIN is ok connect | busy or
from the subscriber’s telephone restricted | attempt otherwise idle
unless a PIN is provided time zone disconnect
The originators of all incoming calls | Call request
to subscriber’s telephone are [l| calling
TCS screeqegl against a screening list. If Idle party is Terminate call Idle
the originator of an incoming call matching an
matches an entry in the list, the call entry in TCS
is terminated. list
This feature allows the subscriber to
. . . The user can accept
be notified of an incoming call .
hile busy and to accept the new Call the new call putting
Ccw W usy ¢ 0 aceep Busy the original on hold| Busy
call by putting the original call on request
. then he can toggle
hold. He is able to toggle between b
etween them.
the two calls.
This feature allows a user already
conmected to another user to bring a
third party into the call. The Connect to the
subscriber can setup a connection to Flash third party and
3WC | the new party by putting the current | Busy signal ||| then 'Iz)in }tl)o th Busy
partner on hold, connecting to the call attempt callsJ
third side and joining lines. The
3WC is terminated by any side
going on hook.
Allows the subscriber to be charged Call request Charee called
RC for all calls in which the subscriber | Idle [Il called art & Busy
is the terminating party. party answer party
When a call attempt is made to a
busy line with this feature active, Store number and
the caller is informed that he will be .
. Call automatically call
RBF called back when the other person is | Busy . Busy
. . request it back when
free. Once the subscriber terminates hone is free
his call, a connection to the stored p
numbers is established.
(Call request)
This offers the possibility to leave a | 1dje | NOT Idle
VM message if the called party is busy (called party .lAllow the caller to
ornotanswering. |eccecceoooofons answer) | ‘eaveamessage |
busy Call request busy

Where ||| represents a logical AND

134
7.4.3 Step 3: Trigger Events Extraction
In this step the developer identifies and extracts all the different trigger events of the
dynamic behaviour features listed in Table 7.2. The output of this step resulted in a list of
5 different trigger events which are listed in Table 7.3. Note that a call attempt indicates a

user initiating a phone call while call request indicates a user receiving a phone call.

Table 7.3: Trigger events extraction table for the telephony features case study

Event ID Event Description Features Triggered by this Event
El Call request CFBL, TCS, CW, RC, RBF, VM
E2 Call attempt TL, 3WC
E3 B matches an entry in TCS list TCS
E4 Flash signal 3IwWC
ES Called party answer RC

7.4.4 Step 4: Linked Events Identification
In this step, the developer identifies linked trigger events. The results of this step in the

telephony features case study are presented in Table 7.4.

Table 7.4: Linked events identification table for the telephony features case study

Event ID Event Description Linked to Mathematical
Representation

El1 ~>E3

El 4Call request E3, E4,E5 El ~>E4

El ~>E5

E2 ~>E4

E2 Call attempt E4,E5 E2 ~> E5

. E4 ~>E1l

E4 Flash signal El, E2 E4 > E2

ES Called party answer E4 E5 ~>E4

Where E; ~> E; indicated that event Ejis linked to event E;

nd
il E1 Idle Terminate call Idle EAEZ, @ ‘?;n;ecate:)]gm @
E3—» g both calls

E2

135

7.4.5 Step 5: Trigger Events Charts Representation

In this step, graphical trigger events charts are used to group and graphically represent
dynamic behaviour features from Table 7.2 that are triggered by the same trigger events.
Figure 7.1 shows the trigger events charts obtained in the telephony features case study.
Note that the upside-down triangle in E5 is a negation of event E5: If E5 is false and E1
happens then VM will be activated. This is a special case because the VM requires E1 to

happen and ES must not occur.

TCS | 3wWC

] |

Ask for PIN. Il X harge th
If not correct Busy or > called party
disconnect idle '

3wWC i ——TI

Connect to 3™ | N Allow the
1l Ej party then join It E1 caller to leave
both calls

amessage

Y

Figure 7.1: Trigger events chart for the telephony features case study

136

CFBL |
Redirect incoming
Busy PIGNG 10 predeline
phone number
TCS

ldle Terminate call ‘®
Ll
Cw l
Accept new call putting
original on hold then Busy
togglc between them
RC

:harge th
called party

El

Store calling number B
then call back when fice usy

Allow the caller Allow the
lINOT E5 Busy Jio leavea messagel Busy OR Siller o Teave

a message

Figure 7.1-Continued: Trigger events chart for the telephony features case stady

137
7.4.6 Step 6: Interaction Detection
7.4.6.1 Summary of the Detected Interactions
According to the interaction taxonomy presented in Chapter 3, there are 9 main
interaction categories under which all interaction scenarios reside. However, in the
telephony features case study, there are no system axioms or resources that have been
identified. All the features used in this case study are dynamic behaviour features. Hence,
only the main interaction category @ “Interactions between Two Dynamic Behaviour
Features” is relevant in this case study.
Table 7.5 presents a summary of the detected interactions. As can be seen in Table 7.5,
IRIS was able to detect 21 interactions among the set of 8 telephony features used in the
case study. However, IRIS missed 2 interactions. A discussion about the obtained results
is provided in Section 7.5. To provide a better understanding of how these results were
obtained, a detailed description is given in the next subsections on the application of the
interaction scenarios used for detecting interactions.

Table 7.5: Summary of detected interactions in the telephony features case study

[CFB L TCS CW 3WC RC RBF VM
CFBL | x SCRIS | SCR8 | SCRI5 | SCR15 | SCR8 | SCR8
TL SCR15 X SCR13
TCS SCR15 | SCRIS5 SCR15 | SCRIS
cwW SCR15 SCRS | SCRS
3WC o | SCRI5 | SCRI15 | SCRIS
RC SCRS | SCRS
RBF # ¢ 8l SCRIS
VM e

Table Svmbols:
SCRi: Interaction detected using the ith interaction scenario

X: Missed or wrongly detected interaction

138
7.4.6.2 Interactions According to Main Interaction Category @
The interaction category @, “Interactions between Two Dynamic Behaviour Features”,
contains interaction scenarios aimed at detecting interactions between two dynamic
behaviour features. The basic core of IRIS contains five interaction scenarios to be used
under this category: SCR8, SCR10, SCR11, SCR12, and SCR13. However, 4 additional
interaction scenarios plug-ins were used which are: SCR9, SCR14, 'SCRIS, and SCR16.
To detect interactions between two dynamic behaviour features, the developer first looks
at trigger events charts in Figure 7.1 and the linked events table shown in Table 7.4 and
identifies unique pairs of features that are triggered by the same trigger event or by linked
trigger events. This resulted in the following pairs of features:
SL(CFBL, TCS), S(CFBL, CW), SL(CFBL, RC), S(CFBL, RBF), S(CFBL, VM),
SL(CW, TCS), SDL(RC, TCS), SL(RBF, TCS), SL(VM, TCS), SIL(CW, RC), S(CW,
RBF), S(CW, VM), SL(RBF, RC), SL(VM, RC), S(RBF, VM), SDI(TL, 3WC),
DL(CFBL, 3WC), DL(TCS, 3WC), DL(CW, 3WC), DL(RC, 3WC), DL(RBF, 3WC),

DL(VM, 3WC), L(TL, RC),

The notations S(R;, Rj), L(R;, R;), and DL(R;, R;) have the same definitions given in
Chapter 6. The other notations are defined as follows:
e SL(R;, Ry): The two requirements R; and R; can be triggered by the same trigger event
or they can be triggered by linked trigger events such that E; ~> E;
e SDL(R;, Rj): The two requirements R; and R; can bc.a triggered by the same trigger
event or they can be sequentially related through E; ~> E; and also they can be

sequentially related through E; ~> E; (called dual linked events)

139

Now, the analyst has to analyze the requirements pairs listed above using the 9

interaction scenarios.

A summary of the results of the analysis of the telephony features is listed in Table 7.5.

To better understanding these interactions, Table 7.6 presents each interaction along with

the scenario that has been used to detect it and an explanation.

Table 7.6: Explanation of telephony features case study interactions

Interaction

Detection
Scenario

Explanation

CFBL&TCS

SCRI15

A has TCS with B on the screening list. A has CFBL to C. A is busy talking to
D. B calls A and hence B is forwarded to C when it should have been screened
and rejected. Hence CFBL has bypassed TCS. This is because TCS is
activated only when A has idle prestate.

CFBL&CW

SCR8

A has CFBL to B. A has CW. A is busy talking to C. D calls A. The system
faces a next state non-determinism situation on which state it should transfer
to (CW state or CFBL state).

CFBL&3WC

SCR15

A has 3WC and CFBL to B. A is busy talking to C. A flashes and talks to D
then joins both calls with C and D. E Calls A. E gets a busy signal instead of
being forwarded to B. This is because A is in a 3WC state which will not
allow the activation of CFBL. Hence 3WC has bypassed CFBL.

CFBL&RC

SCRI15

A has RC and CFBL to B. A is busy talking to C. D calls A. The system
forwards incoming call to another number and A is not charged. Hence
CFBL has bypassed RC..

CFBL&RBF

SCR38

A has RBF and CFBL to B. A is busy talking to C. D calls A. The system
faces a next state non-determinism situation on which state it should transfer
to (RBF state or CEBL state).

CFBL&VM

SCR8

A has VM and CFBL to B. A is busy talking to C. D calls A. The system
faces a next state non-determinism situation on which state it should transfer
to (VM state or CFBL state).

TL&3IWC

SCR15

A has TL and 3WC. B calls A and A answers. A uses the 3WC to place
another call to anyone else without having to enter the TL PIN. A was able to

do so because TL is activated only when the system has an idle prestate.
Hence 3WC has bypassed TL.

TL&VM

SCR13

A has VM and TL. A picks the phone to call VM. A has to enter the TL PIN
first. Hence, VM has been negatively impacted by the TL in terms of delay
until A enters the required PIN (IF A does not enter the PIN then the TL will
override the VM and prevents A from accessing his voice mail)

140

Table 7.6-Continued: Explanation of telephony features case study interactions

Interaction

Detection
Scenario

Explanation

TCS&CW

SCR15

A has CW and TCS with B on the screening list. A is busy talking to C. B
calls A and he gets through and is put on hold although he should have been
screened. Hence CW has bypassed TCS. This is because TCS works only
when A is in an idle prestate. '

TCS&3WC

SCR15

A has TCS with B on the screening list. C has 3WC. B calls C. C flashes and
uses 3WC to call A and then joins both calls from A and B. B is now talking
to A although he should have been screened. Hence 3WC has bypassed TCS.

TCS&RBF

SCR15

A has RBF and TCS with B on the screening list. A receives a call from B
and transits to TCS state to initiate a rejection message. At that time, A
receives a call from C but RBF is not activated as the system is in TCS state.
Hence TCS has bypassed RBF. ‘

TCS&VM

SCR15

A has VM and TCS with B on its screening list. A is busy talking to C. B calls
A and VM is activated to allow B to leave a message. Hence VM bypassed
TCS because TCS is activated only when the system has an idle prestate.

CW&3IWC

SCRI15

A has CW and 3WC. A is talking to B and C. D calls A. CW is not activated
since the system is in 3WC state. Hence 3WC has bypassed CW.

CW&RBF

SCR8

A has CW and RBF. A is busy talking to B. C calls A. There is a system state
non-determinism on which state the system should transfer to (CW or RBF).

CW&VM

SCRS8

A has CW and VM. A is busy talking to B. C calls A. There is a system state
non-determinism on which state the system should transfer to (CW or VM).

3WC&RC

SCRI15

A has 3WC. B has RC. A is busy talking to C then A flashes to use 3WC to
call B. A is still being charged for that call although B has RC. This is
because the RC works only when the system prestate is in basic call state.

3WC&RBF

SCR15

A has 3WC and RBF. A is busy talking to B and C using 3WC. D calls A.
RBF is not activated and D number is not stored because the system is in
3WC prestate. Hence 3WC has bypassed RBF.

3WC&VM

SCR15

A has 3WC and VM. A is busy talking to B. A flashes to make another call
to the VM message centre. However, VM is not activated because there is no
transition available from a 3WC state to a VM state and hence VM does not
work. Hence 3WC has bypassed VM. ‘

RC&RBF

SCR8

A has RC and RBF. A is busy talking to B. C calls A. The system faces a
next state non-determinism situation on which state it should transfer to (RC
state or RBF state).

RC&VM

SCR38

A has RC and VM. B calls A. The system faces a next state non-determinism
situation on which state it should transfer to (RC state or VM state).

RBF&VM

SCR15

A has RBF and VM. A is connected to the message centre to hear his voice
mail. This means that the system is in a voice mail state. B calls A. RBF does
not start because the system is a VM state not basic call busy state. Hence
VM has bypassed RBF.

141
7.5 Discussion of the Results
7.5.1 Reduction in Number of Comparisons
The developer has to perform 23 comparisons of features using IRIS as explained in
Section 7.4.6.2.
When a human expert informally pair wise compares the 8 features used in this case
study, s/he would need to carry out 28 comparisons. This means that the application of
IRIS resulted in 17.9% fewer comparisons. This percentage cannot be translated to the
same percentage of reduction in time and effort, but it still inciicates a reduction of time
and effort.
7.5.2 Comparing IRIS Results with Other Results Reported in the Literature
Section 7.4 showed the application of IRIS to the telephony features case study. In order
to evaluate the efficiency of the results obtained from applying IRIS to the set of 8
telephony features, these results are compared with results obtained by other approaches
used by contestants in the second feature interaction contest held in 2000, FIW00 [19].
Table 7.7 shows the results reported by Samborski [142], by Plath and Ryan [152], by
Nakamura et al. [153] and by Hall [141]. Note that the submission by Plath and Ryan,

Samborski, and Hall scores very well whereas the submission by Nakamura comes last.

142

Table 7.7: Interactions reported by different contestants in the FIW00 contest

CFBL TL TCS CW 3wC RC RBF VM
Wl HPN HPN HPN HPN HPN HPSN | HPN
TL ‘ ' H HPNS HPN |HN
TCS : HPN HPNS HPNS | P
cwW = | HPNs HPNS |HP
3WC '~ |HPN |HPNS [HPN
RC 4 HPN PN
RBF | HPNS
. ; :
Table Symbols:
P: Interaction detected by Plath and Ryan S: Interaction detected by Samborski
H: Interaction detected by Hall. N: Interaction detected by Nakamura et al.

Table 7.8: Comparing IRIS results to others results from the FIW00 contest

IRIS P N H S
Common detected interactions 21 22 21 22 8
Missed interaction 2 1 2 1 15

The outcome of the comparison of IRIS with other results in the literature is shown in
Table 7.8. The following explain the results in more details:

1. The row common detected interactions in Table 7.8 indicates the number of

interactions detected by a specific approach provided that only interactions are

counted that were confirmed by at least one other approach.

143
. A specific approach is said to have missed an interaction, as indicated in the
row missed interactions in Table 7.8, if this interaction is detected by at least two
other contestants and this specific approach failed to detect it.

. IRIS is the only approach that uses semi-formal methods. All other approaches
reported in Table 7.7 use formal methods.

. As can be seen from Table 7.8, IRIS missed only 2 interactions which is a very
good result considering that it does not use formal methods: The best contestant
missed 1 interaction while the worst one missed 15 interactions.

. As seen from Table 7.5, the two missed interactions had the TL feature as one of
the interacting features. The problem with TL is the wait period between the user
going off hook and the user entering a valid PIN. It is not clear how to treat this
period between going off hook and entering the PIN. This period of time can be
treated as a teen line (TL) state or it can be treated as a regular busy state. If this
period of time is considered as a TL state then the interaction between CFBL and
TL and the interaction between TL and RBF could have been detected using
SCR15 as CFBL or RBF would not be triggered because the system is not in a
basic call state. However, because we assumed that the system is in a regular
basic call state, the two interactions were missed.

. The interaction between TL and 3WC was detected by IRIS using SCR15 because
the bypass would be from 3WC bypassing TL and hence the problem encountered
in the point number 5 above does not apply to this interaction. Also, The TL and
VM interaction was detected by IRIS because there is an obvious negative impact

that can be detected using the interaction scenario SCR13.

144

7.6 Summary

This chapter presented the application of IRIS to a telephony features case study frém the
telecommunications domain. The telephony features case study had a set of 8 features
that belong to the category of dynamic behaviouf features. The application of IRIS
resulted in the detection of 21 interactions among the 8 telephony features. IRIS only
missed 2 interactions. To evaluate the efficiency of these results, IRIS was compared to
the results reported by other approaches in the FIW00 contest and it was able to achieve
very good results compared to these formal approaches. Also IRIS achieved a 17.9%
reduction in the number of comparisons that a human expert would have to carry out to
informally detect interaction among the set of 8 telephony features used in this case

study.

145
CHAPTER EIGHT: APPLYING IRIS IN THE POLICIES DOMAIN - THE
SMART HOMES CASE STUDY

8.1 Introduction
This chapter presents the application of IRIS in the policies domain. Hence IRIS is
applied to detect interactions at the policies level.
The policy research literature [154-157] has recognized that there are interaction issues
between policies and has referred to it as policy conflicts. However, so far very little
research has been done to address the problem of policy conﬂicts. For example, [158]
defines policies in a hierarchical way to prevent policy conflicts. However, if a policy in
the hierarchy changes, policies can still conflict. The work in [159, 160] promote the use
of meta-policies, i.e., policies about creating policies, as a way to prevent conflicts. The
work in [161] acknowledges the inevitability of policy conflicts and suggests a
negotiation approach for their resolution. The work in [162] describes the use of policies
in the telecommunications domain. It suggested the use of a feature interaction manager
where policies are used to control the composition of services and features in telephony
features, therefore avoiding the problem of feature inferactions. The work in [163]
proposed a policy architecture for enhancing telephony features and even promoted the
use of policies as the features of the future. The work in [68] addresses the problem of
interactions in policies but from a social perspective to try to understand what social
factors (e.g., stakeholders roles) would cause interactions between two policies.
Most of the work done so far has not comprehensively addressed the problem of policy
interactions. For‘ example, the work in [162] and [163] has been limited towards the use -

of policies in the traditional telecommunications domain. The work in [159] and [161]

146
only look at the prevention of policy interactions and not their detection. However, so
far no prevention technique can guarantee that no interactions will occur. Furthermore, so
far there has not been a precise definition of when two policies are considered iqteracting.
Even though policies are heavily used in defining user preferences in‘ smart homes, no
work has been done so far on investigating policy interactions in this domain.
In this case study, IRIS was applied to detect policy interactions in smart homes among
35 user policies.
This chapter is structured as follows: Section 8.2 presents the cbncepts of features and
policies and a novel view on their relationship especially in smart homes. Section 8.3
presents a description of the smart homes features used in the case étudy. Section 8.4
shows how IRIS was customized to be applied in the smart homes case sfudy. Section 8.5
shows the application of IRIS to detect intera(;,tions as well as the results obtained from
each step. Section 8.6 presents a discussion on the obtained results along with a
comparison of these results with other results reported in the literature. Finz;llly, Section

8.7 presents a summary of the chapter.

147
8.2 Features and Policies
During the Feature Interaction Workshop (FIW VII) held in 2003 [30], it became obvious
that there is a growing interest in policies and their interactions. However, the differences
and interrelationships between policies and features were still very unclear. In this
section, a new view on the relationship between features and policies is presented.
8.2.1 Understanding Features and Policies
A feature is defined as a coherent and identifiable bundle of system functionality that
helps characterize the system from the user perspective [150]. Features are built by
system developers as user-requested expansions of a base system. Features have been
attractive as they allow the developers of long-lived systems to enrich system
performance by adding features over time on top of the base system. An example of a
feature in the telecommunications domain is Call Forward on Busy Line (CFBL). CFBL
is a feature that, when active, will forward an incoming phone call to a busy subscriber to
a predefined phone number.
A Policy is defined as information that is used to modify the behaviour of the system
[159]. Policies are created by different stakeholders (e.g., normal user, administrator,
manager) to reflect personal, organizational or system goals. The attractiveness of
policies stems from the fact that people can express their preferences by setting their own
policies to customize the system with greater flexibility. An example of a policy set by a
user is: “If someone gets out of bed between 10pm and 7am then the lights in the
bedroom and the hallway switch on at initially 50% of illumination ramping up to 100%
over 1 minute and the bathroom fan is switched on. After leaving the bathroom, the

bathroom light and the bathroom fan automatically switch off. After the person gets back

148
into bed the bedroom light is dimmed from 100% to 50% over 1 minute and then
switched off”.

There is a major difference between features and policies. The user has very limited
control, if any, over the behaviour of a feature. He can activate or deactivate the feature
or supply a certain value for a parameter of the feature. But s’/he cannot customize the
feature to work in a certain way to meet his/her needs. For example, consider the feature
Teen Line (TL) from the telecommunications domain which restricts outgoing calls from
the phone during a predefined time period unless a PIN is provided. The only control that
a user has over this feature is to activate/deactivaté it, specify the restricted time frame,
and change the PIN. But the user cannot customize this feature to allow outgoing calls in
case of emergencies, such as fire, to allow anyone to call 911. However, such
customization is possible with policies. For instance, the user can set the policy: “The
systefn shall override the Teen Line PIN restriction when the fire alarm is triggered”.
8.2.2 Relationship between Features and Policies

As defined earlier, a feature is a bundle of system functionalities. This means that each
feature provides different functionalities to the system. For example, the windows control
feature is a feature that allows the control of windows within a smart home and contains
the following functionalities:

Ow1: The windows can be opened/closed at any time by occupants using a remote control.
Ow2: The system shall open/close the windows between time X1 and time X2

Owa: The system shall open/close the windows when day/night begins

where Oy;: the operation i associated with feature w (windows)

149
Now, a policy is information that is used to allow the modification of system
behaviour. Policies achieve this modification and customization of system behaviour
through the invocation of one or more functionalities within one or more features. For
example, consider the following policy set by an occupant in a smart home: “Open the
windows between 5:00 pm and 6:30 pm”. This policy invokes only one functionality,
Oz, in the windows control feature and executes the action of opening the windows
when the clock of the system indicates 5:00 pm and closes them again at 6:30 pm.
The relationship between features and policies can be described from an object oriented
perspective: A policy is a specific Run that the user wants the system to execute to exhibit
a specific behaviour using values that accommodate his/her special needs. Now, the
system is composed of a set of features. Each feature can be thought of as an Object.
Also, each feature will have different functionalities in it (e.g., the windows control

feature). These functionalities can be considered as Methods.

System boundaries

/ Featurel (objectl)\
& Varl: datatype

Invoke:
Featurel.Functionality I (Varl/1:00
Feature2. Functionality2 (Var2/45)

Policy
(Run)

Functionalityl

\ (methodl) /

/ Feature2 (object2)

Varl: datatype
Var2: datatype

Functionality!
(methodl)
Functionality2

(method?2) /

Figure 8.1: Object-oriented description of relationship between features and policies

150
A user can then set a run with specific values that invokes one or more methods from
the same or different objects replacing the parameters in these methods with the values
provided by the user in the run. A similar concept describes the relationship between
features and policies. The user can set a policy (a run) with specific values to replace
parameters in the functionalities. This policy will invoke one or more functionalities
(methods) from the same or different features (objects) replacing the parameters within
these functionalities with the values provided by the user in the policy to achieve its task.
The diagram in Figure 8.1 illustrates this point.
8.2.3 Features and Policies in a Smart Home Architecture
After defining features, policies, and their relationship, we now want to describe how
features and policies look like in a smart home architecture. Figure 8.2 presents an overall
architecture showing policies, features and physical elements of smart homes. Physical
elements are responsible for carrying out the physical actions of the different
functionalities when triggered (e.g., actuators, appliances, air conditioning, heating, light
bulbs, etc).
The policy layer contains all the policies of the smart home including policies set by the
occupants (user policy) or policies that are set by the system administrator and developer
(system policy). The feature layer includes all the features within the smart home.
Finally, the physical elements layer contains all the physical elements that are connected
to the smart home network. Usually, all physical elements are connected to a central
network where the master control software coordinates all the operations of the physical

elements.

151

User Policy System Policy
/ . Policy Layer
7 1
@ —p’ le P2| P3 P4J st ‘
User /\\ <] /”'m

Feature
Layer
Invoked features

functionalities

Physical Elements

Layer
Master
Control

Figure 8.2: Features, policies, and physical elements within smart homes

When a user has a certain preference for the behaviour of one or more physical elements
he defines a user policy in the policy layer describing his preference. This user policy
then invokes the functionalities controlling the behaviour of the affected physical
elements. The invoked functionalities pass on the user preferences described in the user
policy to the master control in the physical elements layer. Finally, the master control
activates the required physical elements according to the user-defined behaviour.

8.2.4 Simple Policies and Compound Policies

Smart homes are controlled by users setting different policies according to their
preferences. However, the complexity of these policies can vary greatly. Therefore, we
introduce the concepts of simple policy and compound policy. A simple policy is a policy
that causes a direct invocation of only one functionality in only one feature. A compound

policy is a policy that causes an invocation of more than one functionality within the

152
same or different features. In other words, a compound policy can be seen as the
concatenation of two or more simple policies. Consider a policy that states “Close the
water tap when the water level reaches 75% of the sink in the kitchen”. This policy is
considered a simple policy because it directly invokes only one functionality which is
P11.1 in the Water Overflow Control Feature (see section 8.3). On the other hand, the
policy “Close the water tap when the water level reaches 75% of the sink in the kitchen
and call the main occupant of the house on his cell phone”, is considered a compound
policy because it invokes two functionalities, namely: functionality: (1) “Close the water
tap when the water level reaches 75% of the sink in the kitchen”, and (2)‘ “Call the main
occupant of the house on his cell phone” in the communication feature.

According to the above discussion, detecting policy interactions in general can be
achieved by detecting simple policy interactions. This even ca;m provide more precise
results than detecting interactions between two compound policies. This is because
detecting interactions at the simple policy level can detect interactions within a single
compound policy by detecting interactions between two simple policies in the body of
this compound policy.

Since by definition a simple policy invokes only one functionality in one feature,
detecting interactions between functionalities is equivalent to detecting interactions
between simple policies. Therefore, the remainder of this chapter uses the terms
functionality and simple policy interchangeably.

8.3 Smart Homes Features

Before IRIS can be applied to the smart homes case study, the features of a smart home

have to be defined. Smart homes can contain many different features, some of which are

153
not very common due to their high cost and technical difficulties. Furthermore, many
features are designed to help people with specific disabilities and therefore ‘are not
installed in all smart homes. This case study investigates only the common features that
are likely used in most smart homes. Figure 8.3 shows an overview of these features.
Feature 1: Intruder Alarm Feature
This is a security feature. The occupants can activate/deactivate the intruder alarm from
inside the house using the alarm switch. The intruder alarm feature, when active, can be
triggered by a magnetic reeds sensor indicating that a window has been opened, by the
main door lock sensor indicating that the main door lock has been opened, by a Passive
Infra Red (PIR) sensor indicating movement in some areas, or by pressure pads indicating

that a person stepped on a predefined area.

Feature of a smart home

|
l l i l l

Security Entertainment Environmental Communication Appliances
Features Features Control Features Features Control Features
E1: Intruder F4: Audio/ .. F6: HVAC F12: Remote ., F14: Stove
> Alarm Visual Control Access Control
Control F7: Wat F15: F:
F2: Vacation . > : water : : ren
Control F5: Audio Temp. Control F13: Telephone Control
Level
. F3: Main Control > F8: Lights F16. Various
Door Control Control > Appliances
. . Control
F9: Curtains
/Blinds
Control
s F10: Windows
Control
F11: Water
= Overflow
Control

Figure 8.3: Overview of the features of a smart home

154

Feature 2: Vacation Control Feature

Thi; feature can be used when the occupants are on vacation for an extended period 6f
time. It uses predefined time settings to automatically turn on TV and lights for 60
minutes in predefined areas. The feature is activated/deactivated by a switch from the
interior of the house.

Feature 3: Main Door Control Feature

This feature that locks the main door lock of the house using an electronic lock When the
main door is shut. The occupants can use an interior switch to unloc;k and open the main
door from the inside. For safety purposes the main door automatically unlocks and opens
when the Gas/Heat/Smoke sensor is triggered.

Feature 4: Audio/Visual Control Feature

This feature allows the occupants to control A/V devices through remote controls or to
ask the system to turn certain A/V devices on/off at predefined time settings.

Feature 5: Audio Level Control Feature

This feature allows the occupants to preset the audio level of different A/V devices to
certain levels when they are turned on during the day or night. It also allows the
occupants to set a maximum audio level throughout the house that cannot be exceeded.
This maximum audio level is chosen by the occupant to avoid loud noise or disturbance

during the day/night.

155

Feature 6: Heating, Ventilation and Air Conditioning Control Feature
The Heating, Ventilation aﬁd Air Conditioning (HVAC) control feature controls the |
temperature of the house. This feature increases/decreases the temperature inside the
house to a user-preset temperature when the thermostats’ readings are different from this
preset temperature. This feature also allows the occupants to define a program to
increase/decrease the temperature of the house at predefined time intervals.

Feature 7: Water Temperature Control Feature

This feature controls the temperature of the hot water in the house. It maintains the
temperature of the hot water from the hot water tap in the kitchen at 45 °C and that of the
hot water tap in the bathroom at a temperature of 40 °C

Feature 8: Lights Control Feature

This feature controls the intensity of light inside the house. It increases/decreases light
intensity to correspond to the increase/decrease of a light dimmer. During the night, this
feature increases the light intensity in a certain part of the house to the maximum within 2
minutes when a positive PIR signal is received from that part. When the PIR signal is
negative for 15 minutes, the lights are automatically switched off. Finally, this feature can
be set to automatically turn on the lights according to a daylight senéor when the night
begihs.

Feature 9: Curtains and Blinds Control Feature

This feature can be used to automatically open/close the curtains and blinds in a certain
area at predetermined time settings. It can also be set to automatically open/close the

curtains and blinds in a certain area according to a daylight sensor.

156

Feature 10: Windows Control Feature

This feature opens/closes the windows in predefined areas based on predefined time
settings.

Feature 11: Water Overflow Control Feature

This safety feature shuts down the water tap when the water reaches or exceeds 75% of
the total volume of the sink in the kitchen or the tub in the bathroom.

Feature 12: Remote Access Feature

This feature allows the occupants to remotely activate any feature within the smart home
from any location via the telephone. The occupants call the home phone number, and
when there is no answer after a user-defined number of rings a remote access module is
activated asking for a PIN to allow the remote control of home features.

Feature 13: Telephone Feature

This feature enforces the presence of a Plain Old Telephone Sgrvice (POTS) [151] or
Voice over Internet Protocol (VoIP) telephone line [164]. It has an énswer machine
installed to record messages when receiving a phone call with no answer for a certain
number of rings.

Feature 14: Stove Control Feature

This safety feature can be used to shut down and prevent any activation of the stove
during predefined time periods. This feature is also used to shut down the stove when the

Gas/Heat/Smoke sensor is triggered.

157
Feature 15: Fan Control Feature
This feature automatically turns on the kitchen fan when the humidity sensor is triggered.
When the sensor signal is lost for 20 minutes while the fan is on, , the fan is automatically
switched off.
Feature 16: Control of Various Appliances Feature
This feature allows occupants of the house to control various appliances like the food
processor, water boiler, etc. using remote controls.
8.4 Customizing IRIS for the Smart Homes Case Study
8.4.1 Plug-ins used in the Smart Homes Case Study
The domain of smart homes is relatively new. It contains numerous features and physical
network elements the functions of which are détennined by user policies. The system is
reasonably complex and distributed, so several plug-ins were needed to customize IRIS
for this case study. The following plug-ins were used:

1. Since each feature in the smart homes is complex and describes many
functionalities in its body, the plug-in “Functionalities Identification” was used to
break down the complex textual description of each feature into atomic simple
functionalities. This plug-in is inserted into hook H1 as a complete step prior to
IRIS step 1. |

2. Several functionalities in the case study had many parameterized parts in their
textual descriptions. Hence, the plug-in “Parametefs Assignment” was used to
replace these parameterized textual parts with parameters such as X or Y. This

plug-in is inserted also into hook H1 prior to IRIS basic core step 1.

158

3. The parameters identified from the execution of the plug-in “Parameters
Assignment” means that the textual requirements have parameters in their body
and they must be dealt with using the appropriate attributes. In order to do this,
the plug-in “Parameters” was used to enforce the use of the attribute
“Parameters”. Recall that the attribute Parameters was an optional attribute and is
not used unless there are parameters in the textual description of 'requirements.
This plug-in is applied during step 2 of the basic core of IRIS. |

4. The plug-in “Parameters Range” must be used in order to indicate the allowed
range of values that each parameter can have. The values assigned to each
parameter have a major influence on possible interactions between functionalities.
This plug-in is applied during IRIS basic core step 2.

5. To detect all possible interactions between system axioms simple policies and
dynamic behaviour simple policies, the plug-ins interaction scenarios “SCR5”,
“SCR6”, and “SCR7” were inserted into hook H8. These interaction scenarios are
applied as part of the sixth step of IRIS.

6. To detect all possible interactions between dynamic behaviour simple policies,
four plug-ins interaction scenarios have been inserted as plug-ins into hook H3,
namely: SCR9, SCR14, SCR15, and SCR16. These interaction scenarios are

applied as part of the sixth step of IRIS.

159

8.4.2 Assumptions used in the Smart Homes Case Study

In the case study described in this chapter, the following assumptions were made:

1.

2.

IRIS is being applied to detect interactions at the policy level.

Interaction detection between functionalities is equivalent to interaction detection
between user policies (see section 8.2.4).

Throughout the case study the two terms simple policy and functionality are
equivalent and are used interchangeably (see section 8.2.4)

The vacation control feature is assumed to turn on/off TV and lights at predefined
time settings. This limitation was imposed for simplicity.

Only the answer machine feature from the set of traditional telecommunications
features (Feature 13) was used because answer machine can be installed without
having to install a more comprehensive set of features.

The features used in the case study were defined by the investigator based on
several different resources (e.g., [165-168]) as no complete definitions for the
smart homes features were found in one resource.

All devices and sensors are connected to a central network controlled by the
master control software. This master control software is used to control and
coordinate all operations of the different devices based on user policies.

States are described using state variables. Within a certain state only variables of
interest to the policy under investigation are listed. This simplification is possible
since other state variables have no effect on the outcome of the interaction

detection step.

160
8.5 Applying IRIS to Detect Interactions in the Smart Homes Case Study
8.5.1 Using Plug-ins “Functionalities Identification” and “Parameters Assignment”
As mentioned in Section 8.4.1, the two plug-ins “Functionalities Identification” and
“Parameters Assignment” are applied at the beginning prior to the execution of the first
step of IRIS basic core. The application of the two plug-ins are presented together in this
subsection. It must be noted that the two plug-ins are indepehdent and can bé executed in
any order, i.e., it is possible to identify the functionalities within each feature first then
look for parameterized text and assign it to parameters. Also, it is possible to identify
parameterized text within features first and assign it to parameters then identify different
functionalities within each feature.
Each functionality (simple policy) is given a unique ID that starts with a P followed by
the number of the feature and the number of the functionality/simple policy (e.g. P3.2
stands for simple policy number 2 in feature 3).
¢ Functionalities (simple policies) in the Intruder Alarm Feature
P1.1: Activated/deactivated by a switch from inside the house called alarm switch.
P1.2: Alarm is triggered when the feature is active and a magnetic reed sensor indicates
that a window is being opened
P1.3 Alarm is triggered when the feature is active and the main door lock sensor indicates
that the main door lock is being opened
P1.4 Alarm is triggered when the feature is active and a PIR sensor indicates movement
in X1, where X1: Location, X1= {Living room, Bedrooms, Hallway, Kitchen}
P1.5 Alarm is triggered when the feature is active and pressure pads indicate the presence

of a person in X2, where X2: location, X2= {Living room, Bedrooms, Hallway}

161

» Functionalities (simple policies) in the Vacation Control Feature

P2.1 Activated/deactivated by a switch from inside the house called vacation switch.

P2.2 Turns on TV for 60 minutes at X3, where X3: Time, X3=00:00-23:59

P2.3 Turns on lights for 60 minutes at X4 in Xé, where X4: Time, X4=00:00-23:59 and
X5: Location, X5= {Living room, Bedrooms}

o Functionalities (simple policies) in the Main Door Feature

P3.1 Locks the main door lock of the house when the main door is shut.

P3.2 Occupants can unlock and open the main door from inside by interior switcﬁ

P3.3 Unlocks and opens the main door when the Gas/Heat/Smoke sensor is triggered.

¢ Functionalities (simple policies) in fhe Audio/Visual Control Feature |

P4.1 Occupants can control all A/V devices through remote controls

P4.2 Turns on/off X6 A/V device at X7, where X6: A/V device, X6={TV, CD, DVD}
and X7: Time, X7=00:00-23:59

¢ Functionalities (simple policies) in the Audio Level Control Feature

P5.1 Presets the audio level of audio device X8 to X9' when turned on, where X8 AV
device, X8= {TV, CD, DVD} and X9: Audio level, X9 = {1..63}

P5.2 Occupants can set X10 as a maximum audio level throughout the houée, where X10:

Audio level, X10 = {1..63}

162

o Functionalities (simple policies) in the MHeating, Ventilation and Air
Conditioning Control Feature

P6.1 Increases/decreases the ambient temperature inside the house to X11 when the
readings from the thermostats are different from this preset temperature, where X11:
Temperature, X11 = {15..35}
P6.2 Increases/decreases the temperature of the house to X12 at X13, where X12:
Temperature, X12 = {15..35} and X13: Time, X13=00:00-23:59
¢ Functionalities (simple policies) in the Water Temperature Céntrol Feature
P7.1 Maintains the temperature of the hot water from the hot water tap: in the kitchen ét
45 degree centigrade.
P7.2 Maintains the temperature of the hot water from the hot water tap of the bathroom at
40 degree centigrade.
« Functionalities (simple policies) in the Lights Control Feéture
P8.1 Increases/decreases the light intensity to correspond to the increase/decrease of a
light dimmer .
P8.2 Increases the light intensity during night in X14 to the maximum within 2 minutes
when a positive PIR signal is received from X14, where X14: Location, X14= {Living
room, Bedrooms, Bathroom}
P8.3 Automatically shuts down the lights during night in X15 when a PIR signal is
negative for 15 minutes from X15, where X15: Location, X15= {Living room,
Bedrooms, Bathroom, Hallway}
P8.4 Automatically turns on the lights according to a daylight sensor when the night

begins.

163
¢ Functionalities (simple policies) in the Curtains and Blinds Control Feature
P9.1 Automatically opens/closes the curtains and blinds in X16 at X17, where X16:
Location, X16= {Living room, Bedroom} and X17: Time, X17=00:00-23:59
P9.2 Automatically opens/closes the curtains/blinds in X18 according to daylight sensor,
where X18: Location, X18= {Living room, Bedroom}
¢ Functionalities (simple policies) in the Windows Control Feature
P10.1 Opens/closes the windows in X19 at X20, where X19: Location, X19= {Living
room, Bedroom} and X20: Time, X20=00:00-23:59
¢ Functionalities (simple policies) in the Water Overflow Control Feature
P11.1 Closes the water tap when the water reaches or exceeds 75% of the total volume of
the sink or the tub either in the kitchen or in the bathroom
¢ Functionalities (simple policies) in the Remote Access Feature
P12.1 Activates a remote access module when an incoming telephone call has not been
answered within X21 rings, where X21: number of phone rings, X21 = {2..8}
¢ Functionalities (simple policies) in the Telephone Feature
P13.1 Enforces the presence of a telephone line with either standard POTS or VOIP
P13.2 Activates an answer machine to record messages when receiving a call with no
answer for X22 rings, where X22: number of phone rings, X22 = {2..8}
e Functionalities (simple policies) in the Stove Control Feature
P14.1 Shut down and prevent any activation of the stove during X23 and X24, where

X23 and X24: Time, X23 and X24=00:00-23:59

164
¢ Functionalities (simple policies) in the Fan Control Feature
P15.1 Automatically turns on the kitchen fan when the humidity seﬁsor is triggered
P15.2 Automatically switches off the kitchen fan when the humidity signal is lost for 20
minutes while the fan is on
¢ Functionalities (simple policies) in the Control of Various Appliances Feature
P16.1 Occupants can control various appliances like the food processor, water

boiler...etc. using remote controls

8.5.2 Step 1: Simple Policies Classification
The first step is used to organize the simple policies into system axiom simple policies
and dynamic behaviour simple policies. The results of the application of the first step are

shown in Table 8.1.

Table 8.1: Classification table for the smart homes case study

System Axioms P4.1,P5.2,P7.1,P7.2,P13.1,P16.1
Simple policies

Dynamic Behaviour | P1.1,P1.2,P1.3,P1.4,P1.5,P2.1,P2.2,P2.3,P3.1,P3.2,P3.3,P4.2, P5.1,
Simple Policies P6.1,P6.2,P8.1,P8.2,P8.3,P8.4,P9.1,P9.2, P10.1, P11.1, P12.1,P13.2,
P14.1,P14.2,P15.1, P15.2.

165
8.5.3 Step 2: Simple Policies Attributes Identification
This step identifies different attributes within the smart homes policies. Table 8.2
contains attributes of system axioms whereas Table 8.3 contains attributes for dynamic
behaviour simple policies. It is worth saying that the execution of the two plug-ins
“Parameters” and “Parameters Range” resulted in adding two columns to Tables 8.2 and
8.3.
State variables were used to describe the attributes pre-state and next state of the system
in Table 8.3. For example, MainDoorLock=closed states that the main door lock is in a
closed state. Not every state will have a vaiue assigned to it.‘ The value DxR in the table
corresponds to a “don’t care” value. The don’t care value is necessary to represent certain
cases as in P6.2 where it does not matter what the value of the previous temperature is
because the objective of P6.2 is to increase/decrease the temperature to the predefined

setting regardless of the previous temperature.

Table 8.2: System axioms attributes identification table for the smart homes policies

ID Description Rule Condition Parameters Parameters
Range
P4.1 Occupants can control all A/V devices Control all A/V devices T
. § i Ny rue - -
through remote controls through remote controls
P52 Occupants can set X10 as a maximum | Set X10 as a maximum audio Teue X10:Audio {1.63}
) audio level throughout the house level throughout the house § level a
Maintains the temperature of the hot Maintains the temperature of
P7.1 water from the hot water tap in the the hot water of the hot water True - -
kitchen to 45 oC tap in the kitchen to 45 oC
Maintains the temperature of the hot Maintains the temperature of
P72 water from the hot water tap of the the hot water of the hot water Tiue - -
bathroom to 40 oC. tap of the bathroom to 40 oC.
Enforces the presence of a telephone A telephone line is always
P13.1 line with either standard POTS or present with cither standard True - -
VOIP POTS or VOIP.
occupants can control various Control various appliances b
P16.1 appliances like the food processor,) pp. Y True - -
. remote control
water boiler...etc by remote controls

Table 8.3: Dynamic behaviour attributes identification table for the policies

166

ID Description Pre-state Trigger Action Next State Parameters| Parameters
Event Range
Security Alarm is Activate/
Activated/deactivated by . . deactivate Activate/ .
Pl.1 a switch from inside the Secug}f)"//(;l’ann— sccurity alarm| deactivate Sec:nlri//A;?nn
house called alarm switch security alarm on/o - -
switch. is pressed
Alarm is triggered when | SecurityAlarm .
the featurc is active and a =on, Window i Set it =Secu/1:1ty A'ﬂ““l
P12 magnetic reeds sensor | Alarm=not_set, ! o»\('ils ° siccun 4 m:i, walg)z;e;
indicates that a window [Windows(DxR) opene afarm windows() B i
L _ open
is being opened =closed
Alarm is triggered when | SecurityAlarm . : .
the feature is active and =0n, Main d.o o1 . _Secuuty Alilm ‘
. e X L lock is Set security =on, Alarm=set,
P1.3 | the main door lock sensor | Alarm=not_set, onened alar MainDoorLock=
indicates that the main | MainDoorLock pen m n 00(;1 ¢ - -
door lock is being opened =closed P
Alarm is triggered when | SecurityAlarm . .
the feature is active and a =on, Movements Set security _SecuntyA]E_nn X1: {LivRm,
Pl1.4 R _ . - =on, Alarm=set, . BdRm,
PIR sensor Indicates Alarm=not_set, in X1 alarm . Location .
. _ : PIR= positive Hall, kitch}
movement in X1 PIR=negative
Alarm is triggered when Secul_‘ltyAlann)] SecurityAlarm .
g . =on, pressure pad . = o i {LivRm,
the feature is active and o . ; Set sccurity | =on, Alarm=set, X2:
P15 § Ny P Alarm=not_set, inX2is)) " . BdRm,
pressure pads indicate the S i alarm PressurePad= | location
) . PressurePad= pressed .. Hall}
presence of person in X2. . positive
negative
Vacation Control is Activate/ Activate/
Activated/deactivated by . : deactivate . .) -
. o VacationControl . deactivate | VacationControl
P2.1 a switch from inside the _ vacation . - -
. =off/on) . vacation = on/off
house called vacation control switch)
- control
switch Is pressed
P22 Vacation control Turns on|VacationControl Time=X3 Turmnon TV | VacationControl X3: Time {00:00-
i TV for 60 min. at X3 =on, TV=off for 60 min. =on, TV=on i 23:59}
. .) .) X4: X4={00:00-
Vacation control turns on [VacationControl Turn on VacationControl Time 23:59)
P2.3 lights for 60 minutes at =0n, Time=X4 lights for 60 =on, ’ X 5_’ X5= .Liva
X4in X5 Lights(X5)=off min, in X5 Lights(X5)=on Location BdRm}
Main Door lock feature MainDoor=onen MainDoor
P31 will Lock the main door MainDoorL(?ck Main dooris | Lock the main =closed
: lock of the house when _ shut door lock MainDoorLock - _
.) =open _
main door shut. =closed
Occupants can qnlock. M_amDoor Unlock main Unloc.k the main MainDoor= open
and open the main door =closed o door lock and . }
P3.2 R L . ’ door switch . MainDoorLock
from inside by interior | MainDoorLock| =, " ° open the main _ - -
y _ is pressed) =open
switch =closed doot
Unlocks and opens the MainDoor Unlock the mainy , , . -
P33 main door when the Gas/ =closed ng(l)slgz?r{sor door lock and Mﬁ:ﬁ%‘:ﬁ& [:;ckn
’ Heat/ Smoke sensor MainDoorLock| ~. .7~ open the main _ - -
- _ is triggered) =open
triggers. =closed doot)
X6={TV.
Turn on/off X6: AV ¢
pag | TumsowolfX6 AV yeo—fisetud Time=X7 the AV [X6On=Truc/false | device, |2 DVD}
device at X7 . s X7={00:00-
device X6 X7: Time, g
23:59}
Presets the audio level of X80n=False X8 is turned Preset the X80n=True, X8:A/V | X8={TV,
P5.1 audio device X8 to X9 X8Audio_ on audio level | X8Audio_level= device, [CD, DVD},
when turned on level =DxR of X8 to X9 X10 X9: level {X9={1..63}
Increases/Decreases the Increases/
temp. inside the house to Thermostals Decreases the 1L
P6.1 | X11 when the reading from| Temp=DxR en;(l) temp, inside | Temp=X11 Tem. {15..35}
thermostats are different the house to p-
from this preset temp. X1l
) Increase/ X12: X12=
Increases/decreases the decrease tem . Tem {15.35)
P6.2 | temperature of the house | Temp=DxR Time=X13 fthel P Temp=X12 X13?. X1 3_" 00:0
to X12 at X13. of the house {9 13: ={00:
X12 Time 0-23:59}

Table 8.3 —Continued: Dynamic behaviour attributes identification table

167

20 min. while fan is on

20 minutes

ID Description Pre-state Trigger Action Next State Parameters| Parameters
Event Range
Increase/
increases/decreases light Increase/ decrease light
Ps.1 intensity to correspond to | Lightlntens decrease of intensity to LightIntens.
: the increase/decrease of a =DxR the dimmer | match increase/| =DimmmerSlider
light dimmer slider slider decrease of the) i
slider
Increases the light increase the
intensity dunng‘mght in l_)ayllght=fa_lse] light intensity l?ayhght=fa_lse {LivRm,
P8.2 X14 to a maximum Lights(X14)=oflf Movement in i X14 t Lights(X14)=on X14: BdR
i within 2 minutes when a |LightIntens(X 14| X114 ! ;04 Lightintens.(X14)| Location m
positive PIR signal is =0 max. within 2 =max bathRm}
received from X14. minutes
Automatically shuts Daylight=false s .
down the lights during |Lights(X15)=on| O Daylight=false | {LivRm,
P83 | nightin X15 when a PIR Lishtintens movements Shut down | Lights(X15)=off X15: BdRm,
: signal o rorative for 15 (x% SDxp | XIS for the lights | LightIntens.(X15)| Location | bathRm,
£na g‘ 15 minutes =0 hall
minutes from X15.
Automatically turns on
the lights according toa | Daylight=True . . Tutn lights on} Daylight=false
P8.4 daylight sensor when the Lights=off Night begins automatically Lights=on - -
night begins.
Automatically opens/ CurtainsBlinds Open/ﬁ:losc CurtainsBlinds XIG.: X16={LivR
. - . the blinds _ Location, {m, BdRm}
Po.1 closes the curtains and (X16)=close | Time=X17 . (x16) =open/ . (.
blinds in X16 at X17 fopen and curtains close X17: - 1X17={00:0
i in X16 Time 0-23:59}
Automatically open/close | Daylight= false Onen/close Daylight= true /
P92 the curtains and blinds in Jtrue,CurtainsBl{ Day/night cu?mins and false, X18: {LivRm,
’ X18 according to inds(X18)=close begins blinds in X18 CurtainsBlinds | Location | BdRm}
daylight sensor /open (x18) =open/ close
. [X19={LivR
Opens/closes the Windows(X19) . O.p en/closp Windows(X19)= Xl9_. m, BdRm}
P10.1 . f _ Time=X20 windows in Location, AN,
windows in X19 at X20 =close/open open/close e 1X20={00:0
X19 X20: Time; 0-23:59}
Shuts down the water tap
when the water reaches
PIL1 or exceeds 75% of the Tap/shower- Water level Shutdown {Tap/showerValve=
’ total size of the sink or Valve=open =>75% water closed } }
the tub either in the
kitchen or the bathroom
Activates a remote access Telephone=idle Receive a call Activate Telephone=bus X21:
module when receives a P _| request AND remote P X’ number
Pi21 telephone call for X21 RemoteAccess= no answer for access RemoteAccess= of phone 2.8}
>Cplone catfor A1 idle 0 answer 1o ‘ Active p
rings with no answet rings =X21. module rings
Activates an answer Receive a call X22:
machine to record Telephone=idle equest 1(\ND Activate [Telephone=busy, | number
P13.2 | messages when receiving JAnswerMachine requ et for answer AnswerMachine= | of phone {2..8}
a call with no answer for =idle no.anS\lv ! machine - on rings
X22 rings rings=X22
Shut down and prevent Shutdown and
any activation of the _ - prevent any _ X23,X24 | {00:00-
Pl4.1 stove during X23 and Stove=DxR Time=X23 activation of the] Stove=off : Time 23:59}
X24. stove till X24
Shutdown the stove when Gas/heat/ Shutdown
P14.2 the Gas/Heat/Smoke Stove=DxR | Smoke sensor Stove=off
- o the stove - -
sensor is triggered is triggered
Automatically turns on -
the kitchen fan when the |{,,. _ Hl'ln'ql.ty Turn on . -
P15.1 e . KitchenFan=off] sensoris . KitchenFan=on
humidity sensor is S kitchen fan - -
tripgered triggered
Automatically shutoff the Humidity
P15.2 k“.d.] en fan w}'len the KitchenFan=on sensor is Tl."n off the KitchenFan=off
humidity signal is lost for negative for kitchen fan
8

8.5.4 Step 3: Trigger Events Extraction

168

In this step, the developer identifies and extracts all the different trigger events from

Table 8.3. The idea behind this step is to identify different simple policies that are

triggered by the same trigger event. The results of this step are shown in Table 8.4.

Table 8.4: Trigger events extraction table for the smart homes case study

Event ID Event Description Simple Policies Triggered by this Event
Activate/ deactivate security alarm switch is
El P1.1
pressed

E2 A Window is opened P1.2

E3 Main door lock is opened P1.3

F4 Movements P1.4,P8.2

ES Pressure pad is pressed P1.5

E6 Activate/ deactivate vacation control switch is P21

pressed

E7 Time P2.2, P2.3, P4.2, P6.2, P9.1,P10.1, P14.1

E8 Main door is shut P3.1

E9 Unlock main door switch is pressed P3.2
E10 Gas/heat/Smoke sensor is triggered P3.3,P14.2
Ell A/V device is turned on P5.1
El12 Thermostats # preset temperature P6.1
E13 Increase/ decrease of the dimmer slider P8.1
El4 No movements for 15 minutes P8.3
E15 Day begins P8.4,P9.2
El6 Night begins P9.2
E17 Water level >75% P11.1
E18 Receive a call request, and no answer P12.1,P13.2
E19 Humidity sensor is triggered P15.1
E20 Humidity sensor is negative for 20 minutes P15.2

169
8.5.5 Step 4: Linked Events Identification
As explained in Chapter 4, this step is important to identify linked trigger events and
hence examine the actions of the policies that might be triggered sequentially by linked
events. The results of this step are shown in Table 8.5.

Table 8.5: Linked events identification table for the smart homes case study

D Event Description Linked to Mathematical Representation
Act.lvate/ deact1yate. E2, B3, E4, ES, E6, El<~>E2, E1<~>E3, El<~>F4, E1<~>ES5,
El| security alarm switch is El<~>E6, El <~>E8, E1~>E9, E1<~>E13
E8, E9,E13, E18 ? i i
pressed E1~>E18
E2 A Window is opened E9, E12, E18, E20 E2<~>F9, E2~>E12, E2~>E18, E2~>E20
E2, E4, E5, E6
! . . 2= 00 e R3A>E2, E3<~>E4, E3<~>ES, E3<~>E6, E3~>E11,;
E3| Main door lock is opened] El }51%1%21314, E3<~>E13, E3~>E14, E3~>E18, E3~>E20
B4 Movements E2, E5, E6, E8, E9,| E4~>E2, E4<~>ES5, E4~>E6, F4~>E8, E4~>E9,
El11,E13,E18 F4~>El11, E4~>E13, E4~>E18
Es| Pressure pad is pressed E2, E6, E8, B9, | E5~>E2, E5~>E6, E5<~>ES8, E5~>E9, E5~>El11,
pac1sp Ell, E13, EI8 E5~>E13, E5~>E18
Activate / deactivate
E6| vacation control switchis| o Eg’EL;?’ El4, | p6<->E8, E6~>E9, E6~>E13, E6~>El14, E6~>E18
pressed
E7 Time Ei, where i=1..20 E7~>FEi, where i=1..20
E8 Main door is shut E2, E9, E10, E11, |[E8~>E2, E8~>E9, E8~>E10, E8~>E11, E8<~>E13,
E13, El4, E18 E8~>E14, E8~>E18
E9 Unlock main door switch| E3, E12, E13, E14, E9~>E3, E9~>E12, E9~>E13, E9~>E14,
is pressed E18 E9~>E18
E10 Gas/heat/Smoke sensor is| E2, E3, E4, ES, E9, E10~>E2, E10~>E3, E10~>E4, E10~>ES5,
triggered Ei2, E18, E19 E10~>E9, E10<~>E12, E10~>E18, E10~>E19
Ell] A/V device is turned on E18 E11~>E18
glg| Thermostats # preset E18, E19, E20 E12~>E18, E12~>E19, E12~>E20
temperature
E13 Increas'e/ decregse of the E18 E13~>E18
dimmer slider
E14 No movements for 15 E18 E14~>E18
minutes
E1, E2, E3, E4, ES, E15~>El, E15~>E2, E15~>E3, E15~>E4,
E15 Day begins E9, E11, W12, E15~>E5, E15~>E9, E15~>El1l, E15~>E12,
E13, E18 E15~>E13, E15~>E18
El, E2, E3, E4, E5, E16~>El, E16~>E2, E16~>E3, E16~>E4,
E16 Night begins E9, E11,E12,E13,| E16~>ES, E16~>E9, E16~>Ell, E16~>E12,
Ei14, E18 E16~>E13, E16~>E14, E16~>E18
. E4, ES, E10, E18, E17~>E4, E17~>ES, E17~>E10, E17~>E1S,
E17 Water level =75% E10 E17~>E19
E19| Humidity sensor is triggere E18 E19~>E18
poo| Humidity sensor is E18 E20~>E18
negative for 20 minutes

170

8.5.6 Step 5: Trigger Events Charts Representation
The graphical representation by the trigger events charts facilitates the detection of
interactions between the dynamic behaviour simple policies. The result of this step is

shown in Figure 8.4.

P1.1 | P12

sSecurityAla-
m= on/off

Security Alarm
=on, Aram=set,
windows(_)= oper

SecurityAlarm
=on,Alarm=not_sc'
Windows(_)=close

Activate/ deactivat
security alarm

Security Al-
rm=off/on

)
AS)

Set scurity

alarm

A\

P14

SecurityAlarm . . . E4 .
E3 | =onAlarm=not_set Set scoury” Secur X),,Al‘il mt > Security Alarm SecurityAlarm
MainDoorLock D_ on:L ka_se y m,Alarm=not_set, =on, Aram=set,
= closed oorl.ock= open PIR=negative PIR= positive

SecurityAlarm
m,Alarm=not_set,
PressurePad

Daylight=false
Lights(X14)=on
Lightintens.(X14)

SecurityAlarm
=on, Aram=set,
>res.Pad= positive

Daylight=false Increase light

9(Lights(X14)=off
lghtlntcns (X14)

Set security
alarm é

max. in 2 niin

=negative \ =max
P2.1
P3.3
E6. [VacationCo- . . VacationCo- E10 .
=l nwol=offion JActivate/ deactivat ntrol=on/off N MainDoor MainDoor=open
Vacation Control =closed Unlock main; MainDoorL pk
MainDoor- door lock & =oa]en oorL.oc
3 Lock=closed / open main door P

[P14z [

MainDoor=open MainDoor

E MainDoorLock % =closed o
main door MainDoorLock 7 Stove=off

=open
=closed

Figure 8.4: Trigger events chart of the smart homes dynamic behaviour policies

Ell X8 Audio_level X8Audio_level
—_> =DxR =X9
of X8 to X9
P8.1
Increase/ decrease .
E13 g lioht i : @tlmens
5 LightIntens 1ght mntensity to N .
¢ atch increase/ 4 Dimmer

P5.1

X80n=False, X80n=True,

=DxR Slider

decrease of slider

P2.2
E7. Va;:at:onCo- VacationCo-
ntrol=on, - rol=
4 for 60 min ntrol=on,

TV=off

VacationCo-
ntrol=on
Lights(X5)=off

VacationCon-
trol=on,
JAghts(X5)=on

Turn on/off
the A/V

X60n=true X60n=true

Open/close the CurtainBl

CurtainBlinds

171

P6.1]

E12 . _ Increases/ Decreases
— l‘gnlr{— he temp. nside the > @
X house to X11
P8.3

Daylight=false
Lights(X15)=off

[ghtlnten.(X14)=0

)
1 nien
EVIDXR

the lights

P8.4

E1S

Daylight
=True
Lights=off

Daylight
=false,
Lights=on

P9.2

Daylight Daylight
CartainBiing Curmiablind
T : v urtainBlin
(X‘ilSz;Ec](;rsle/ Cul‘t{llns,blln S (X] 8)= open/
in X18 close

anen

P9.2

> /false [false Daylight Daylight
= false/true = true/false,
E% CurtainBlind s bl CurtainBlind
P62 (X18)= close/ curtains,blinGs (X18}= open/
: anen in X18 close
N T Increase/
(emp=)gecrease temp of s Temp=X12 _‘_—I .
DxR house to X12 O PILI
Tap/shower-\ _Shutdown water Tap/shower
P9.1 Elg valve=open Valve= clos¢

(x16) =close/ _‘11‘_@5_‘% _inds (x16) Pi2.1 l
curtains in X1 =open/ close
Telephone Telephone=busy
E—S-} =idle, ivate r RemoteAccess=
Remote (ﬁcc_ Activate r e;n(;t Active
. ess=idle access modulé
£N V}/)l?ldgo)v:vs Open/clos Windows(X19) -
close/open windows in X;i N, = 013011/010y Pi3.2 |
| P14.1 | Telephone Telephone=bus;
Shutd r =idle, Ans»l\)/erMachinz
,Ut ow ’ > Ree?gf(ﬁgc- ‘Machine =Active
> activation till X24 .@)
PI5.1 I
P32
- . : E20 KitchenFan Tum o{r‘x KitchenFan
mol [noskang (Nempoerron Y oL S AR s T
) ¢ ainDoorLoc ‘
R L T o i P52
=close main door i
E19 KitchenFan Turn off KitchenFan
—> =on kitchen fan oft=

Figure 8.4 - Continued: Trigger events chart of the smart homes dynamic behaviour
policies ' :

172
8.5.7 Step 6: Interaction Detection
8.5.7.1 Summary of the Detected Interactions
In this step, the developer detects interactions between simple policies using the
interaction scenarios that are part of the basic core of IRIS (sixth step) or interaction
scenarios that are inserted as plug-ins in the sixth step of IRIS. The developer tries to find
interactions as explained in Section 4.3.7.
Table 8.6 presents the summary of all obtained results. The simple policy column.
contains the simple policy under investigation while the interacting simple policies
column lists the simple policies that interact with the simple policy under investigation.
Note that when an interaction is detected between two simple policies (e.g. P1.1 and
P1.2), then this interaction is listed in the row of the first policy (P1.1) only and will not
be repeated as part of the interactions of the second policy (P1.2). The total number of
detected unique interactions is 83 interactions (as can been seen from the interactions in

Table 8.6).

Table 8.6: Results summary of detected interactions among smart homes policies

173

Policy | Interacting policies Policy | Interacting policies

P1.1 | P1.2,P1.3,P1.4,P1.5,P3.2,P10.1,P12.1 P1.2 P3.2,P10.1,P12.1

P13 P3.2,P3.3,P12.1 P1.4 P3.2,P8.2,P12.1

P1.5 P3.2,P8.2,P12.1 P2.1 P2.2,P2.3,P10.1,P12.1
P22 | P4.1,P42,P52,P9.1,P9.2,P10.1,P12.1 | P23 | T 6'1’1};‘?3’1}3_‘2 PP1£<§)21 783,84,
P3.1 P3.3,P12.1 P3.2 P6.1,P6.2,P12.1

P33 P6.1,P6.2,P12.1 P4.1 P42, P5.1,P5.2,P12.1

P4.2 P5.2,P12.1 P5.1 P5.2,P12.1

P5.2 P12.1,P16.1 P6.1 P6.2,P10.1,P12.1

P6.2 P10.1,P12.1 P7.1 No Interactions

P7.2 No Interactions P8.1 P8.2,P8.4,P12.1

P8.2 P12.1 P8.3 P12.1

P8.4 P12.1 P9.1 P9.2,P12.1

P9.2 P12.1 P10.1 P12.1
P1L1 P12.1 P12.1 P13.1,P13.2, 11’)114;.'11,P14.2,P15.1,
P13.1 No Interactions P13.2 No Interactions
P14.1 P16.1 P14.2 P16.1
P15.1 Pi6.1

8.5.7.2 Interactions According to Main Interaction Category ©

This interaction main category contains interactions that occur between two system

axioms. There are two interaction scenarios used to detect interactions under this main

interactions category: SCR1 and SCR2. The developer is required to examine the system

axioms table (see Table 8.2) developed in IRIS step 2. The developer has to pair-wise

compare all system axioms with the aim of finding interactions according to either SCR1

or SCR2.

174
According to Table 8.2, there are 15 comparisons necessary in order to examine all
system axioms in the smart homes case study. Table 8.7 provides an example of such an
interaction that was detected. Full results of interactions between two system axioms are
listed in Appendix E.

Table 8.7: Example of interaction between two system axioms using SCR1

Interaction ID 152

Type of Interaction Interaction between two system axioms

Interacting simple | P4.1 and P5.2

policies

SCR used SCR1

Explanation There is a contradiction between the value of the Rule of P4.1 and the value

of the rule attribute of P5.2. The rule of P4.1 can override the rule of P5.2
and vice versa. An interaction scenario can be “what happens when the user
tries to use the remotes to go beyond the max audio level of the house?” If
the system allows the user to use the remote control to exceed the
maximum audio leve] then the P4.1 rule has overridden the P5.2 rule. But if
the system will not allow the user to use the remote to go beyond the
maximum audio level then the P5.2 rule has overridden P4.1 rule.

8.5.7.3 Interactions According to Main Interaction Categories @ and @

The two main interaction categories @ and @ have seVén interaction scenarios: SCR3,
SCR4, SCRS5, SCR6, SCR7, SCR30, and SCR31. The developer has to compare pair-
wise every dynamic behaviour simple policy with every system axiom with the objective
of finding interactions according to any one of the seven interaction scenarios.

There are 174 comparisons necessary in order to detect all possible interactions between
a system axiom and a dynamic behaviour simple policy in the case of the smart homes
case study. Table 8.8 provides an example of an interaction detected between a system
axiom simple policy and a dynamic behaviour simple policy. The full results of detected

interactions are listed in Appendix E.

175

Table 8.8: Example of interaction between a system axiom and a dynamic
behaviour simple policy using SCR30

Interaction ID 124

Type of Interaction Interaction between a dynamic behaviour simple policy and a system axiom
simple policy

Interacting simple | P2.2 and P4.1

policies

SCR used SCR30

Explanation There is a contradiction between the value of the Action attribute of the

dynamic behaviour simple policy (P2.2) and the value of the Rule attribute
for the system axiom (P4.1). The action of P2.2 overrides the rule of P4.1.
A possible interaction scenario could be the following: A user gets home
while the vacation control P2.2 is active and the action of it is being
executed. The user tries to use the remote control to switch off the TV
(P4.1). According to the definition of the vacation control P2.2, the control
of the TV is now exclusively done by it and the remote control will not be
able to switch off the TV. Hence, the action of P2.2 has overridden the rule
of P4.1.

8.5.7.4 Interactions According to Main Interaction Category ®

The third interaction main category contains interactions that would occur between two
dynamic behaviour simple policies. There are 5 basic core interaction scenarios used
under this main interaction category: SCR8, SCR10, SCR11, SCR12, and SCRI3.
Moreover, there are 4 plug-ins interaction scenarios used under this interaction main
category: SCR9, SCR14, SCRI15, and SCR16. The developer compares every two
dynamic behaviour simple policies that are triggered by the same trigger event or by
linked trigger events.

There are 319 comparisons necessary in order to detect all possible interactions between
two dynamic behaviour simple policies (25 comparisons resulting from examining
dynamic behaviour simple policies triggered by the same trigger event plué 294
| comparisons resulting from examining dynamic behaviour simple policies trigger;:d by
linked trigger events). Due to the large number of comparisons, they have been listed in

Figure 8.5 where an L indicated linked events between the two simple-policies in the row

176
and column of that cell. Similarly an S indicates that the two policies in the
corresponding row and column simple policies are triggered by the same trigger event.
The developer has now to analyze the dynamic behaviour simple policies pairs indicated

in Figure 8.5 using the 9 interaction scenarios listed above.

2 23 31 32 33 41 42 B0 52 B 62 11 72 @1 B2 83 84 91 92 W01 M @1 1 12 W1 M2 61 62 8
L L L LiL Lil:Lit L Lil v
L L Ll L Lil L1 L LiLilL L
L L1l L Ll i il L LiLiL L
L Ll L L 8 Lil LiLitlt LiLil
L Ll Lil L LiLiCiLiLiL it
L L L Lit:l L L L LiL]
5 § L L § LilibiLig lisilil LIsiLiLil
2 § L L 5 Lil Lilis. L.5 L. L LisitiLil
3 Lot L Lilil L L L LiLET
32 L L L Lilipiriuinil L LiLiL
3 L Lot L L LiLil LiListl
4
¥ L LiLis L siLL LisitiL L
51 Lo
52
B! LILihELl
52 LisiL L L
1
72
81 Lot
82 LililL
83 LIl
34 Lk
i LiSiLil i
a2 L1l
X LisiL L L
i LILITTL
121 S LIl LI
fi1
12 LI L
!
142
1
52
1

Figure 8.5: List of the comparisons needed to detect interactions between dynamic
behaviour simple policies in the smart homes case study

177
Table 8.9 provides an example of a detected interaction between two dynamic
behaviour policies triggered by the same trigger event and Table 8.10 provides an
example of a detected interaction between two dynamic behaviour simple policies

triggered by linked trigger events. All other interactions between two dynamic behaviour

simple policies are listed in Appendix E.

Table 8.9: Example of interaction between two dynamic behaviour simple policies
triggered by the same trigger event using SCR11

Interaction ID

163

Type of Interaction

Interaction between Two Dynamic Behaviour Simple Policies

Interacting simple | P6.2 and P10.1

policies

SCR used SCR11

Explanation Both simple policies are triggered by E7 AND they have the same pre-

states AND there is a negative impact between the two actions of the two
simple policies. The action of P10.1 has a negative impact on the action of
P6.2. An example of an interaction scenario: “The system opens the
windows and at the same time tries to raise the temperature of the house”. It
is obvious that if the temperature outside the house is too cold (or too hot)
then action of P10.1 has negative impact on action of P6.2.

Table 8.10: Example of interaction between two dynamic behaviour simple pollcles
triggered by linked trigger event using SCR12

Interaction ID

165

Type of Interaction

Interaction between Two Dynamic Behaviour Simple Policies

Interacting simple | P8.1 and P8.2

policies

SCR used SCR12

Explanation These two simple policies are triggered by the linked events E4 and E13

where E4 ~> E13. The action of P8.1 overrides and cancels the action of
P8.2 before its completion. An example of an interaction scenario is the
situation when someone wakes up at night and tries to increase the light
through the light dimmer. According to P8.2 a person that wakes up at
night and walks into a specified part of the house causes the lights to
increase in that part to a maximum over the period of two minutes. But the
user can turn the light dimmer after 30 seconds to increase/decrease the
light intensity. In such a situation, P8.2 was triggered first by E13, i.e., the
system starts increasing the light over a period of two minutes. But then
that person changes the light dimmer to increase/decrease the lights and
thus triggering P8.1 which in turn overrides the action of P8.1 before its
completion.

178
8.6 Discussion of the Results
8.6.1 Reduction in Number of Comparisons
IRIS required the following 508 comparisons to be done:
e 15 comparisons necessary to detect interactions according to main interaction
category 1 (number of all possible pair-wise comparisons according to Table 8.2)
e 174 comparisons necessary to detect all possible interactions according to main
interaction categories 2 and 7 (number of all possible pair-wise comparisons
according to Table 8.2 and Table 8.3)
e 319 comparisons necessary to detect interactions according to main interaction

category 3 as discussed in Section 8.5.7.4.

A human expert, however, would need 630 comparisons to pair-wise compare all simple
policies of the smart homes case study. Thus we have achieved a 19.3% reduction in the
number of pair-wise comparisons.

8.6.2 Comparing IRIS Results with Other Results Reported in the Literature

The smart homes case study had the following number of features and simple policies as
presented in Table 8.11:

Table 8.11: statistics on the smart homes case study

Number of Features 16
Number of simple policies 35
Number of detected interactions using IRIS 83

This section evaluates the results from applying IRIS in the smart homes case study.
Accuracy shows how precise was the detected interactions and if any interactions were

missed. Unfortunately, there are no fully documented results in the literature with which

179
we could have compared our results. However, Kolberg et al. in [21] lists an
overview of some interactions that arise between services supporting networked
appliances in a smart home environment. This overview included some interaction
examples. All interaction examples mentioned in [21] were detected using IRIS.

8.7 Summary

This chapter proposed the use of the IRIS semi-formal approach to detect interactions in
the smart homes domain. A comprehensive view of the distinction between policies and
features was presented. A case study was carried out for detecting interactions among
policies in smart homes using the proposed semi-formal approach and was presented in
this chapter. The proposed approach was successfully customized and applied in the
smart homes domain. It was able to detect 83 interactions among 35 user policiues using
only 508 pair-wise comparisons as apposed to 630 a human expert would have to do and
thus achieving a reduction of 19.3% in the number of comparisons. These results support
the chapter’s main claim of being able to use our semi-formal approach, IRIS, to
successfully detect interactions between policies. Further, these results serve as the first

fully documented results of interactions between policies in the smart homes domain.

180
CHAPTER NINE: IRIS TOOL SUPPORT

9.1 Introduction
This chapter introduces IRIS-TS which stands for Identifying Requirements Interactions
using Semi-formal methods -Tool Support. IRIS-TS is a tool support for applying IRIS to
detect interactions between a set of requirements. For this reason, IRIS-TS was designed
and implemented as an add-on that can be added to DOORS [23] which is one of the
most famous and commonly used requireménts management tools in both academia and
industry.
This chapter presents the general architecture of IRIS-TS. Section 9.2 describes a general
overview of the architecture and design of IRIS-TS. Section 9.3 thén presents an
overview of a prototype that was created for IRIS-TS in DOORS. This section also
includes screen shots taken from applying the IRIS-TS prototype on the smart homes

case study. Finally, Section 9.4 presents the summary of this chapter.

181
9.2 Architecture of IRIS-TS
IRIS-TS is a tool support that is implemented as independent code files that can be
inserted as an add-on to DOORS to facilitate the detection of requirements interactions
using IRIS. DOORS is one of the most commonly used requirements management tools
for documenting and managing requirements for software systems. However, DOORS
does not have any sort of interaction detection support built in it. IRIS-TS is implemented
to be installed as an add-on to extend DOORS to support requirements interaction
detection using IRIS. In this section, we focus first on describing the general architecture
of IRIS-TS.
DOORS consists of modules that contain data and interfaces to show the data contents of
these modules. A module is the way that DOORS uses to store data. A module is like a
sheet on which data is written and stored. For example, in a specific software system that
uses DOORS, there will be a module that contains all the system requirements and a
module that contains all the tests for validating the final product. Each module consists of
Objects and Attributeé which corresponds to rows and columns, respectively. Objects and
attributes are used to represent the information stored within a module. For example, the
requirements module will contain an object (row) O1 that represents a requirement R1.
The object O1 has attributes that describe requirement R1 such as ID, Object text,
Created by, and Modified on. These attributes are part of the default set of attributes that
comes with DOORS. Figure 9.1 shows a screen shot of the module “Functional
Requirements” that has the requirements of smart homes and how the requirements are

stored in the module as objects (rows) and attributes (columns).

182

Type of Attributes
interfae lA\

| Formal module /Smart Homes/f unctional Requirements’ current 0.0 - PDURS

58 w2 i
,gfdardview E v %l L | EF
= Functional Requirements ~llp (OW ok o o U Cioted Ol {CresedDA 4 Obiect
- il et % 1.1 Activaledideactvated by a SWCh n se calied al April 9005 Admunis e
1.1 Adtivated/deactivab 1A cachivated by a switch from ingide the house called alarm 11 Apnl 2 mistrate) .L_
1.2 Nlarm is triggered wh Wh
1.3 Marmis triggered w % 1.2 Alarmis triggered when the feature is active and amagneticreed 11 April 2005 Administrator
14 f:i"" b W’e; ":; sensor indicates that a window s being opened
. zv;‘;m C:rf,:fz;m % 1.3 Alarmis triggered when the feature is active and the main door lock 11 April 3005 Administrator
2.1 Adtivatedjdeactivate sensor indicates that the main door lock is being opened
2.2 Turn on T for 60 mi 21 1.4 Alamis triggered when the feature is active and a PIR sensor 11 April 2005 Administrator
2.3 Turn on ights or €0 indicates movement in X1, where X1: Location, X1= {Living room,
w3 "?lit’k:ﬂ; s Bedrooms, Halway, Kitchen
3.2 Occupants can rkoc % 15 Alarm is tiggered when the feature is active and pressure pads 11 April 2005 Administrator
3.3 Unlocks the main doc indicate the presence of a person in X2, where X2 location, X2=
= 4 Audiof¥isual COntrol Featu ¥ {Living room, Bedrooms, Hallway} %
’ 5 | 4 | wal
Uemame: Advinshator Echsveedtmde /

Figure 9.1: An example of modules, objects, and attributes

The interface, or sometimes called the view, is the graphical representation that DOORS
uses to display the contents of the modules to the user. For example, in Figure 9.1,
DOORS uses the interface type “standard view” to display the contents of the module
Functional Requirement. Of course the interface itself is the whole screen.

The concept of attributes has been used in IRIS-TS to correspond to the requirements
attributes that are used as part of IRIS. Only this time, new customized attributes are
created in DOORS through the IRIS-TS code to represent the requirements attributes
being used in IRIS. For example, IRIS-TS when executed will create new attributes that
are applicable for all modules of DOORS such as “PreState”, “Action”, and “NextState™.
The concept of modules has been used by IRIS-TS to represent the tables and graphs that

are generated through the different steps of IRIS. For example, IRIS-TS will create a

183
module called “Trigger Events Extraction Table” to correspond to the table created in
the trigger events extraction step in IRIS.

This brief introduction was important to understand the architecture of IRIS-TS which is
shown in Figure 9.2. As can be seen, the IRIS-TS is implemented as an add-on that can
be integrated into DOORS and communicate with its modules and interfaces. On the
other hand, the analysts does not have to deal with IRIS-TS code or the creation of the
new modules but rather he deals with the interfaces that are either used to display the

contents of the modules or created by IRIS-TS to display/request data for/from analyst.

; I
..AQ@:‘.".!?.QQQB?I ' Modules rrmmmmeemecTt el
l

Gommands
i [Data

A

Interface

I

|

User Forms | | |
l

I

Existing Modules : '\ Analysts

: > Req. Classification I %

Table i :

System Axioms Attributes -
Identification Table |

'
'

4 » Dynamic Behavior Attributes ; i»| Modules
! Identification Table i Interface

IRIS-TS

tommands
i IData

Resources Attributes .
Identification Table '

Trigger Events
Extraction Table

Linked Events
Identification Table

Figure 9.2: Architecture of IRIS-TS

184
The architecture of IRIS-TS can be explained in a high abstraction level as follows:
When the IRIS-TS is executed it will communicate with the module that has the
requirements of the system stored in it (which is shown in Figure 9.2 as the module Req.
Document). The communication carried out with the Req. Document module will be in
the form of data regarding the requirements stored in this module or commands to create
new attributes for requirements and store data in these attributes. IRIS-TS will also
communicate with the analyst to interactively execute the different steps of IRIS in an
ordered manner. During the execution of the different steps of IRIS, the tool will create
customized interfaces (windows) that either display or request data to/from the analyst.
The tool will also create new modules and assign customized attributes to these modules

to store the data obtained after the execution of each step of IRIS.

Commands/Data
toffrom User Forms Interface

IRIS-TS

v

#

User Forms Engine }

4

IRIS Engine

A

DOORS Modules
Management Engine

g

E S

Commands/Data
toMfrom Modules
SRR

Figure 9.3: Internal structure of IRIS-TS

185
The way IRIS-TS manages these tasks is through the three engines in its interior as
shown in Figure 9.3. The IRIS Engine is the main engine in the tool and is responsible for
determining the next IRIS step to be carried out and what exactly needs to be done. If the
IRIS step being executed requires data or creation of attributes to store data in the main
Req. Document, then the IRIS engine will communicate with the Req. Document module
,<through the “DOORS Modules Management Engine”, to request data or create attributes
to store specific data. If the IRIS step being executed requires communicating with the
analysts to request or display data, then the IRIS engine will request that the User Forms
Engine creates an interface with the necessary data and/or fields that needs to be entered
by the analyst. The User Forms Engine will create the requested interface and send it to
the interfaces part of IRIS to be displayed to the analyst. Once the analyst provides the
adequate response, then that response and the data collected, when required, will be
returned to the IRIS engine to determine what needs to be done. The IRIS enginé after the
execution of a complete step of IRIS will request from the DOORS Modules
Management Engine to create new modules to store the data/tables/graphs that was
created so that they can be used later. The DOORS Module Management engine, once it
receives a request for module creation or data manipulation in a specific Vmodule, will

issue the appropriate DOORS commands to carry out the request it receives.

186
9.3 A prototype of IRIS-TS
9.3.1 Implementation
As described in section 9.2, IRIS-TS was created as an add-on to DOORS. The IRIS-TS
tool was programmed using DOORS programming language DXL (DOORS eXtension
Language). The programming language DXL is a scripting language specially developed
for DOORS. DXL can be used provide many featﬁres, such as file format importers and
exporters, impact and traceability analysis and inter-module linking tools. DXL can also
be used to develop larger add-on packages such as IRIS-TS presented in this chapter.
This capability to extend or customize DOORS is available to users who choose to
develop their own DXL scripts. The DXL language is bésed on an underlying
programming language whose fundamental data types, functions and syntax are largely
based on C and C++. To support the needs of script writing, there are some differences.
In particular, concepts like main program are avoided, and mandatory semicolons and
parentheses have been discarded.
The way DXL is used is to either enter individual scripts in a specific window in DOORS
and run these scripts to see how they work, or the other alternative would be to develop
an add-on package that can be added to DOORS and with some specific scripts the DXL
script can appear as a menu on the top bar of DOORS. In this thesis, IRIS-TS was
developed as a complete add-on package that needs only to be installed in the add-on
subdirectory located inside the DOORS main installation directory. Figure 9.4 shows
how IRIS when installed as an add-on package would appear és a drop dowﬁ menu in

DOORS.

187
To give an example of the implementation of IRIS-TS using DXL, Appendix F
presents part of the DXL code for executing the first step of IRIS to give a feeling of how
the DXL code, that was written for IRIS-TS, looks like. It is worth mentioning that the

complete DXL code of the tool is more than 70 pages using the format of Appendix F.

RIS-TS

| Formal module ‘/Smart Homes/F unctional Regi*~...cins . -0t 0.0 - DDORS
File Edit View Insert Link Analysis Table Tog
HE8® (BEIV ¥ IF

istandard view :J iallevels | e

Interactions JatU]

P9 Detect usng IRISTS

Review Previous History
About IRIS-TS

A Lo 8 N R
ézéa‘;%}vﬂ ~ BT

= Funictional Requirements ~| it Obje.ctText g[et
= 1 Intruder Alarm Feature o
1.1 Activatedjdeactivat 22 1 Intruder Alarm Feature
' 1-2 ::a"“ is t""?g"'e‘; W: 24 1.1 Activatedideactivated by a switch from inside the house called alarm switch
.3 Alarm is triggerad wi 5 ; . .
1.4 Alarm s triggered wh 25 1.2 Alarm is triggered when the feature is active and a magnetic reed sensor
1.5 Alarm is triggered wl indicates that a window is being opened
-2 Yacation Control Feature 26 1.3 Alarm is triggered when the feature is active and the main door lock sensor
g; ﬁ“t'“‘e‘:{/d:“:;m indicates that the main door lock is being opened
. urnon or e " N 5 & ¥ "
2.3 Turn on lights For 60 27 1.4 Alarm is triggered when the feature is active and a PIR sensor indicates
= 3 Main Door Featurel movement in X1, where X1: Location, X1= {Living room, Bedrooms, Hallway,
3.1 Lock the main door Ic Kitchen}
3.2 Occupants can unloc 28 15 Alarmis triggered when the feature is active and pressure pads indicate the

3.3 Unlocks the main doc
= 4 Audiofvisual COntrol Featu
-+ 4,1 Occupants can contr

presence of a person in X2, where X2: location, XZ= {Living room,
Bedrooms, Hallway}

4.2 Tum onjoff X6 AV d 30 2 Vacation Control Feature
= idio L . ; . .
. g ::'et::;if';ﬁ 4 2.1 Activatedlideactivated by a switch from inside the house called vacation
5.2 Occupants can set X switch
=16 HVAC Control Feature 32 2.2 Turn on TV for 60 minutes at X3, where X3: Time, X3=00.00-23:59
:; i“"easesmwems 33 2.3 Tum on lights for 50 minutes at X4 in X5, where X4 Time, X4=00.00-23:59
.2 Increases/decreases 42 . P
7 Water Temperature Contre and X5: Location, X5= {Living room, Bedrooms}
-+ 7.1 Maintain the temper: 34 3 Main Door Featurel
7.2 Maintain the temper: 5 ; !
- 8lights c:::f;’ i 35 3.1 Lock the main door lock of the house when the main door is shut
8.1 Increase/decrease tt 36 3.2 Occupants can unlock the main door from inside by interior switch
8.2 Increase the light int . : i
o nasmcaly sht & 8 :33 Un|o.c.k5 t{we main door when the Gas/Heat/Smoke sensor is triggered
8.4 Automatically turn or ¥ 4 Audio/Visual COntrol Feature
O Aot 41 4.1 Occupants can control all AV devices through remote controls o
I(i _j M.‘j‘”'
IUsernarﬁe':"hdrnifistratov Exclusive edit mode - ‘ |

Figure 9.4: IRIS-TS implementation in DOORS

188
9.3.2 Applying the IRIS-TS Prototype on the Smart Homes Case Study
To demonstrate and describe the IRIS-TS when it is executed in the DOORS
environment on an actual requirement document, this section presents screen shots taken
from applying IRIS-TS on the smart homes case study that was presented previously in
Chapter 8. For each step of IRIS, two screen shots are presented. The first screenshot
shows how IRIS-TS performs the IRIS step being executed. The second screenshot
shows the result that IRIS-TS has generated from performing the IRIS step being
considered. As can be seen from Figure 9.4, the developer will have to open the
Interactions drop down menu and choose “Detect using IRIS-TS”. This will execute
IRIS-TS code to detect interactions between the requirements of the smart homes. The
requirements of the smart homes are stored as objects. Each requirement will have an ID
attribute which uniquely identifies it and an object text attribute that contains the textual
description of the requirement. In the following we present the screenshots of applying

IRIS-TS to detect interactions.

189
9.3.2.1 Requirements Classification using IRIS-TS
The first step of IRIS is requirements classification into system axioms, dynamic
behaviour requirements, or resources. This step is carried out as shown in Figure 9.5.
IRIS-TS will display a message for each requirement and ask the analyst to classify it as a
system axiom or a dynamic behaviour requirement or a resource.
Once finished displaying all requirements to the analyst to be classified, IRIS-TS will
create a new module to correspond to the requirements classification table created in IRIS
step 1 (see Section 4.3.2). The created module contains all the requirements along with
their classification stored in an attribute called classification. The results of this table is

shown in Figure 9.6

ﬂalﬁ r %wv & o v T ﬁ':&'ﬁ!\ v L
{standard view :j (Al levels i e b ww EEEE | R: -C: m hvd sl L B E B
= Functional Requirements Al ObjeciTen gl

=1 Intruder Alarm Feature
1.1 Activatedjdeactivats
1.2 Alarm is triggered wh
1.3 Alarm is triggered wi
1.4 Alarm is triggered wk ¢
1.5 Alarm is triggered wi

_1Intruder Alarm Feature e
24 1.1 Activatedideactivated by a switch from inside the house called alarm switch

25 1.2 Alarm is triggeraed when the feature is active and a magnetic reed sensor
indicates that a window is being opened

=i 2 ¥acation Control Feature 26 1.3 Alarm is triggered when the feature is active and the main door lock sensor
i-f ?“W"i‘ff"’c"x# indicates that the main door lock is being opened
2 non r mir i " 3 .
L - 27 1.4 Alarm is triggered when the feature is active and a PIR sensor indicates

2.3 Turn on lights for 60

3 Main Door Featurel
3.1 Lock the main door ¢
3.2 Occupants can unloc
3.3 Unlocks the main doc

4 Audiofvisual COntrol Feabu
4.1 Occupants can contr
4.2 Turn onjoff %6 Afv d

S Audio Level Control Featur
5.1 Presets the audio le*
5.2 Occupants can set X

6 HYAC Control Feature
6.1 Increases/decreases
6.2 Increasesjdecreases |

7 Water Temperature Contre
7.1 Maintain the temper:

movement in X1, where X1: Location, X1= {Living room, Bedrooms, Hallway,
Kitchen}
1.8 Alarmis triggered when

the feature is active and pressure pads indicate the
)) — 4 jvi

Alaim is iggered when the feature is active and a magnetic reed sensor indicates that 3 window is being opened

is Classified as'

Resource % N/A %

i

System Aviom | Finish |

7.2 Maintain the temperz
8 Lights Control Feature

i

3.1 Lock the main door lock of the house when the main door is shut

8.1 Increasefdecrease tt 36 3.2 Occupants can unlock the main door from inside by interior switch
::g L"ut':r::::’h"‘g:r"g 38 3.3 Unlocks the main door when the GasfHeat/Smoke sensor is triggered
8.4 Automatically turn or 3 4 Audio/Visual COntrol Feature
=9 Cu;t'éir: ::hd f:nfim:?' 41 4.1 Occupants can control all AV devices through remote controls o
£ | 4] _»_rj
Username: Admirstr ator Exclusive edit mode

Figure 9.5: Performing requirements classification using IRIS-TS

| Farmal module 'Smart Homes!f unctional Requirements’ current 0.0 - DOORS

File Edit View Insert Link Analysis Table Tools Interactions Help
HE® ¥ e U TR R i oo B W R D
istandard view i iAllevels wil e o st CRTM aBw
= Functional Requirs & | 1y = ¢ ¥ : » 2 TR
= 1 Intruder Alar - “ - - M
1.1 Active 43 5 Audio Level Control Feature A
12 M | 44 5.1 Presets the audio level of audio device X8 to X9 when turned on, where X8 Dynamic
"j::a""' ANV device, X8={TV, CD, DV} and X9: Audio level, X2 = {1 63} Behavior
1. larm i .
15 Alam 46 5.2 Occupants can set X10 as a maximum audio level throughout the house, System
= 2 Vacation Cor where X10; udio level, X10 = {1.63} Axiom
it 47 6 HVAC Control Feature NiA
2.3Tumno 48 6.1 Increases/decreases the ambient temperature inside the house to X11 when Dynamic
= 3 Main Door Fe the readings from the thermostats are different from this preset temperature, Behasnor
3.1 Lockth where X11. Temperature, X 11 = {15..35}
gz 8;2:: 49 6.2 Increases/decreases the temperature of the house to X12 at X13, where X12. Dynamic
% 4 AudofVisual Temperature, X12 = {15.35} and X13 Time, X13=00:00-23:59 Behawmor
4.1 Ocaup. 50 7 Water Temperature Control Feature Nia
2T ¢ s
- ,,:d‘o L:::,.O 51 7.1 Maintain the temperature of the hot water from the hot water tap in the kitchen System
5.1 Presel at 45 degree centigrade Axiom
5.2 Oceup- 52 7.2 Maintain the temperature of the hot water from the hot water tap of the System
7 5”":‘51@""‘ bathroom at 40 degree centigrade Axiom
.1 Increa b
6.2 Incres 53 8 Lights Control Feature Ni&
= TwaterTemp || 54 8.1 Increase/decrease the light intensity to correspond to the increasefdecrease of Dynamic
I peta, alight dimmer Behavior
72Mantav |l __TF e . - ¢
< 3 i yf
Username: Admnistrator Exclusive edit mode

Figure 9.6: Results of requirements classification using IRIS-TS

9.3.2.2 Requirements Attributes Identification using IRIS-TS

190

The second step of IRIS is attributes identification for system axioms, dynamic behaviour

requirements and resources. In the smart homes case study, IRIS-TS will start displaying

messages to the analyst asking him to identify the attributes of the system axioms first

(Rule and Condition) and then to identify the attributes of the dynamic behaviour

requirements (Prestate, Trigger Event, Action, and Next State). Note that the attributes ID

and Description are obtained automatically for the original requirement module. Also, the

attributes Parameters and Parameters range were not implemented in IRIS-TS.

For the sake of aiding the analyst to be consistent in using the same terminologies for

defining the attributes, a drop-down buffer is available with each attribute to list all

previously entered attributes during the execution of IRIS-TS.

191
Once IRIS-TS finishes all requirements attributes identification, it will create two
new modules with attributes corresponding the requirements attributes to save all the data
collected from the analyst. These two modules correspond to the system axiom attributes
identification table and dynamic behaviour attributes identification table created in step 2
of IRIS (see Section 4.3.3).
Figures 9.7 and 9.8 shows screenshots for messages to the analyst to enter values for the
system axiom and dynamic behaviour requirements attributes respectively. Figures 9.9
and 9.10 shows screenshots for the created modules for the system axiom attributes

identification and dynamic behaviour attributes identification, respectively.

| Formal module 'fSmart Homes/F unctional Requirements’ current 0.0 - DOORS

File Edit view Insert Link Analysis Table Tools Interactions Help
H&s s e ¥ix o Te ‘
) alllevels vl 3
= Functional Requirements « o _gﬁﬁn‘d'fm s A s
. o . . .
= 1 Intruder Alarm Feat.
1.1 Activated]des 47 6 HVAC Control Feature , e
8.1 Increases/decreases the ambient temperature inside the house to X11 when

1.2 Alarm is trigaet 4‘8
1.2 Mlorm i brigoed the readings from the thermostats are different from this preset temperature,
where X11: Temperature, X11 = {15..35}

1.4 Alarm is trigget
6.2 Increases/decreases the temperature of the house to X 12 at X13, where

PR EMFEERIDG
BT A Bw

1gStant:lemti view

1.5 Alarm is trigge
2 Vacation Control Fez 49

2.1 Activatedidea X12. Temperature, X12 = {15.35} and X13: Time, X13=00:00-23:59
2.2 Turnon TV for 50
2.3 Tun onlights | 7 Water Temperature Control Feature
2 3 Main Door Featurel 51 7.1 Mai 0 in the kitchen
3.1 Lock the main at 4
srcauwllll m 72vef M b cine
3 IO e me o
% 4 AudiojVisual COn m; hatlf Occupants can contwl all AN devices thiough remote controls
4.1 Occupants car 53 8 Lig Rule: {Control all 8/ devices through remote controls -
4.2 Turn onjoff X6 i ; 25
= 5 Audio Level Cortrol 54 B.1Incrf condiion {True 7] Jaseidecrease
5.1 Presetsthe au of g .
5.2 Occupants car 55 8.2 Incr] Done ’ Qut | fwithin 2
= 6 HVAC Control Featur 11T e pppopeepmeye repmprrer © X 14

6.1 Increasesfdec
6.2 Increasesjdec
7 Water Temperature

Location, X14= {Living room, Bedrooms, bathroom}‘
56 8.3 Automatically shut down the lights dunng night in X15 when a PIR signal is

$

7.1 Maintain the te
7.2 Maintain the te
8 Lights Control Featu
8.1 Increase/decre
8.2 Increase the I
>

negative for 15 minutes from X15, where X15: Location, X15= {Living room,
Bedrooms, bathroom, hallway}

57 8.4 Automatically turn on the lights according to a daylight sensor when the night
begins

<] i

Username: Administrator

Exclusive edit mode

Figure 9.7: Performing system axioms attributes identification using IRIS-TS

192

| Formal madule ‘fSmart Homes/F unctional Requirements’ curcent 0.0 - DOORS
File Edit View Insert Link Analysis Table Tools Interactions Help

HOF LB Y > (Fais Ly FEEH D
{Standard view] falleves ¥l e o of 1 TEREYH v BW
=+ Functiorial Requirements « | 1y 40*’!"37&" g SRR BEAY i SR e BB &~A*
= 1 Intruder Alarm Featy i :
1.1 Activatedjdes 47 6 HVAC Control Feature
1.2 Alarm s trigges 43 6.1 Increases/decreases the ambient temperature inside the house to X11 when
ij :'::’;::P?: the readings from the thermostats are different from this preset temperature,
s t:;gg where X11: Temperature, X11 = {15.35}
- 2 Vacation Coritrol Fez 45 6.2 Increasesfdecreases the temperature of the house to X12 at X13, where
2.1 Activated/dea X12: Temperature, X12 = {15. 35} and X13: Time, X13=0000-23.59

2.2 Turnon TV for
2.3 Turn on lights 1
3 Main Door Featurel
3.1 Lock the main «
3.2 Occupants car
3.3 Unlocks the me
4 AudiofVisual COntrol Alarmn is triggared when the feature is active and the main door lock sensor indicates that the main door lack is being opened

4.1 Occupants car T ——
4.2 Turn onfoff ¥6 PreState: |Securitylam=on, Alsrame=not_set, MainDoorL ack=closed =i i

o

o 7 Water Temperature Control Feature

| Dynamic PreState-TrigperEvent-Action-NextState - DDORS

Requrement.

= 5 Audio Level Control f #
T 3 o
5.1 Prasets the ar nagert vent: IMar‘.DoaLock is opened :‘j
5.2 Occupants car Action: {5t secuity alaim ,!
=i 6 HYAC Control Featur % 5
6.1 Increasesdec NextState: {Securtyélam=on, Al MainDoorLock=opened vi
6.2 Inc Jdea
=i 7 \Water Temperature
7.1 Maintain the te
7.2 Maintain the te Bedrooms, bathroom, hallway}
E 5“‘38"*15;‘(’;‘:;2'8‘;:1 & 57 8.4 Automatically turn on the lights according to a daylight sensor when the night
. 2y Cre
8.2 Increase the i ¥ begins H
£ 2 «f | 2
sername: Administrator Exchusive edit mode : 4

Figure 9.8: Performing dynamic behaviour attributes identification using IRIS-TS

Formal module ‘/Smart Homes/System AxiomsAttributesTable' current 0.0 - DOORS

¢

File Edit View Insert Lk Analysis Table Toals Interactions Help
HE8F FBE ¥V X 5508 R R R ol
| Standard view wilalleves < Mmook EEEE 2 CBVYSH A Bw
=i System Axiom! . o i ObjectTent Ei Adorfde il o S
10 nt: it AfY —]
7;@% sk 41 Cccupants can control all A/V devices through remote Control all A7V devices True
2 Occupants can set X10 as am
) controls through remote
3 Maintain the temperature of t Eeala
4 Maintain the temperature of th S
46 Occupants can set ¥10 as a maximum audio level Set ¥10 as a maximum True
throughout the house, where X10: udio level, X10 = audio level throughout
{1..63} the house
51 Maintain the temperature of the hot water from the Maintain the True

hot water tap in the kitchen at 45 degree centigrade temperaturs of the hot
water frora the hot
water tap at 45 °C

Maintain the temperature of the hot water from the Maintain the True
hot water tap of the bathroom at 40 degree centigrade temperature of the hot

water from the hot

water tap 40 °C

&8

-

|55 2f

Userriame: Admiristrator Exclusive edit made

Figure 9.9: Results of system axioms attributes identification using IRIS-TS

193

| Farmal module ‘Smart Homes/DynamicBehaviorAttributesidentification’ current 0.0 - BOORS

File Edt WView Insert Link Analysic Table Tools Interactions Heip
&g s ¥ j¥ E B FEEH O
{Standard view SHidleves v Momse EEZEE LSBT R
= i 2 i ¥ SR e T R P i -~
D’"?"m;:ﬁ:ﬁ:ﬁf D |Requiement , § DymanicEaState | DynamecTigge ver, DynamcAstion | BynamichehtStals _a§
2 Narm i triggered when the fel 24 Activated/deactivated by a switch from inside the SecurityAlarm Activate/Deact Activate/D SecurityAlarm= H
3 Adarm is triggerad when the fe house called alarm switch =offion 1vate security eactivate on/off i
4 Alarm s triggered when the fe alarm swntch security i
S Alarm is triggered when the fe 15 pressed alarm §
6 Activated/deactivated by asw| 25 Alarm 15 triggered when the feature is active and SecurityAlarm Window 13 Set SecurityAlarm= _}
7 Turn on T¥ for 60 minutes at X a magnetic reed sensor indicates that a window 15 =on, opened security on, Alaram=set,
8 Turn on lights For 60 minutes a| being opened Alaram=not_s alarm Windows(_)
9 Lock the main door lock of the et, Windows() =opened
10 Occupants can unlock the ma =closed
11 Unlacks the main door whent| 1 26 Alarm is triggered when the feature is active and SecurityAlarm MainDoorLock Set SecurityAlarm=
12 Turn onfoff %6 /v device at the main door lock sensor indicates that the main =on, 15 opened security on. Alaram=set,
13 Presets the audio level of au door lock 15 being opened Alaram=not_s alarm Maan Door Lock=
14 Increases/decreases the amt et, opened
15 Increasesjdecreases the tem MaunDoor Lock
16 Increasejdecrease the light it =closed
17 Increase the light intensity &1 £ 97 Alarm 13 triggered when the feature is active and SecurityAlarm Movements Set SecurityAlarm=
18 Automatically shut down the a PIR sensor indicates movement in X1, where =on, security on, Alaram=set,
19 Automatically turr on the igh ¥1 Location, ¥1= {Living room, Bedrooms, Alarar=not_s alarm PIR=positive
20 Automatically openjclose the Hallway, Fitchen) et,
i:l Automatically openjclose the FIR=nsgative
;mﬂti‘:‘:m:ﬂ: 28 Alarmis tnzgured when the feature is active and SecunityAlarm Set SecurityAlarm=
S Acate & inoba BOES T pressure pads indicate the presence of a person in =on, security on, Alaram=set,
SIS dry e s X2, where X2 l-r.a::on, X2= {Living room Alaram=not_s alarm PressurePads=p
26 Shut down and pravent any Bedrooms, Hallway) et, ositive
27 Shutdown the stove when th PressurePads
28 Automatically turn on the kitc Pnegaiive
29 Automatically switche off the| | 40 Activatedideactivated by a switch from inside the VacationContr Activate/Deact Activate/D VacationControl
house called vacation switch ol=offéon ivate vacation eactivate =on/off v
< * o b S
Username: Administrator Exclusive edi: mode A

Figure 9.10: Results of dynamic behaviour attributes identification using IRIS-TS

9.3.2.3 Trigger Events Extraction using IRIS-TS

The Trigger events extraction step is automatically done with no input from the analyst.
IRIS-TS will examine the dynamic behaviour attributes identification (Figure 9.10) and
automatically extracts all unique trigger events and links them to the requirements they
trigger. After that, IRIS-TS will create a new module to correspond for the trigger events
extraction table created in step 3 of IRIS (see Section 4.3.4). The created module will
contain all unique trigger events and the requirements that each of the trigger events

trigger (Figure 9.11).

194

| Formal module 'fSmart Honves/ TriggerEventExiraction’ current 0.0 - DOORS

File Edit View Insert Unk Analysis Table Tools Interactions Help
HE®F s ¥V T e : P¥EE O
{Standard view v]ijalevels 1! e o ol i ECE TN AW
e valomsmtesocey of P RIS SO]] Reameren: Topedly e vt *
2 Window s opened 11 Activate/Deactivate security alarm switch is R4
f::f,::,f“s opened pressed
§ Pressure Pad s pressed 2 2 Window is opened R3S
sacdetsipestiatevacstend) 3 3 MainDoorLock is opened R
8 MainDoor is shut 4 4 Movements R27,RS5
w5 5 Pressure Pad is pressed RS
:“T‘Ld;;:t . {‘{'fflm 5 6 Activate/Deactivate vacation control switchis ®4
13 Increase | decrease of the di pressed
14 No movements in %15 for 15 7 7 Time R33,R33 R42,R49,R59,R62,
15 Night begins RT1
s e i # 8 MainDoor is shut R35
:3 i:::dvtey ag:::l;e:»:‘s; :n; nt! 2 9 Unlock main door switch is pressed R36
oHumidty sensor s negatve £ 2010 Gas/Heat/'Smoke sensor is triggered R38,R78
1 11 AV device is turned on R4
12 12 Thermostats <> X11 -
15 13 Increase / decrease of the dimmer slider B4 3
4 14 No movements in X15 for 15 minutes RS6
5 15 Night begins RS7
15 16 Day begins Re0
1717 Water level > 75 % R&4 .
.. : | e e
fLisername: Adrministr ator Exclusive edt mode

Figure 9.11: Results of trigger events extraction

9.3.2.4 Linked Events Identification using IRIS-TS

The linked events extraction step is performed by having IRIS-TS examining the trigger
events module that was created in the previous step (Figure 9.11). Then, IRIS-TS
displays messages to the analyst asking him to determine if the event under investigation
is linked to other events. The analyst can choose from a drop down menu that contains all
other available events and the analyst can choose as many as he wants. Once IRIS-TS
finishes receiving input from the analyst, it will create a module that corresponds to the
linked events table created in IRIS step 4 (see section 6.3.5). Figure 9.12 shows the
execution of the linked events identification while Figure 9.13 shows the created module

by IRIS-TS that corresponds to the linked events identification table of step 4 of IRIS.

[Formal module 'fSmart Homes/F unctional Requirements’ current 0.0 - DDORS

File Edt View Irsert Li

Analysis Table Tools Interactions Help

<

{

Heg s me ¥ T T
iStandard view levels i M sl ;: & T o ~BW
= Functional Requrements = | [ig™ T ogpaaran : T g 2]

1 Intruder Alarm Featt
1.1 Activatedjdes

=

7 6 HVAC Control Feature

1.2 Alarm is trigger
1.3 Alarm is trigge:
1.4 Alarm is trigge:
1.5 Alarm s trigge
2 Wacation Control Fes
2.1 Activateddea
2.2 Turnon TV for
2.3 Turn on kights |
3 Main Door Featurel
3.1 Lock the mamn
3.2 Occupants car
3.3 Unlocks the me
4 Audiofvisual COntrol
4.1 Qucupants car
4.2 Turn onfoff %6
S Audio Level Control f
5.1 Presetsthe a
5.2 Occupants car
6 HYAC Contral Featur
6.1 Increasesjdec
6.2 Increases/deci
7 Water Temperature
7.1 Maintain the te
7.2 Maintain the te
8 Lights Control Featu
8.1 Increasefdecre
8.2 Increase the i ¥
v

4

48 6.1 Increasesidecreases the ambient temperature inside the house to X11 when
the readings from the thermostats are different from this preset temperature,
where X11 Temperature, X11 = {1535}

48 6.2 Increasesidecreases the temperature of the house to X112 at X13, where

| Event Links - DDORS

250

80 7

§1 7.1 inthe followng the kitchen
if the event has MULTIPLE finks {more than one fink] then use the button ADD to add

52 7§ anewlnk Usethe Add/Done for the last ik to finish th mutiple ink s for this svent i the
if the event has ONLY ONE Ink then use the button ADD/DONE

53 8} ifthe event ha: NO link then use the button NO LINK.

54 8, /decrease
The Event: E1 - Activate/Deactivate securty alarm switch is pressed

55 8 rLikedtothe event: 5 PG ~ihin2

14
56 8. signal is

Bedrooms, bathroom, hallway}

57 8.4 Automatically turn on the lights according to a daylight sensor when the night

begins

[Lesc ~
negative for 15 rinutes from X15, where X15. Location, X15= {Living room

Username: Administrator

fExdt:sw}e edit mode

| Formal modul,

Figure 9.12: Performing linked events identification

mari HomesA inkedEventsidentification’ current 0.0

DROORS

Fle Edt Yiew [nsert Unk Analysis Table Iools Interactions Help
HeE e ¥ B mlw ey s W e O
[standard view e vk EBEE CEHVIH ABW
e [T Evert ol Deserpton B rked To bt 2
4] T1E1 “Activate Deactivate security alarm switch is pressed ES, E5, B4, B5, B6, E8, E9, E13, E16
3E3 2E2 Window is opened E1, EO, E12, E18, E20
;:; 3E3 MainDoor Lock is cpened E1, E2. E4, ES, EG, E1l. E13. E14, E18, E20
j;‘: 4 E4 Movements E1, E2, E3, ES, B6, B8, ES, E11, E13, E18
3Es 5E5 Pressure Pad is pressed E1, E2, E3, E4, ES, ES, ES, E11, E13, E18
?;zm 6 E6 Activate/Deactivate vacation control switch is pressed El, E3, B4, B5, ES, EO, E13, E14, E18
s 7 E7 Time E1, B2, E3, E4. ES, E, B8, ES, E10, E11, E12,
e E13, E14, E15, E16 E17, E18 E19, E20
P 8 ES8 MaunDoor 12 shut E1, EZ, ES, E6, ES, E10, E11, E18, E14, E18
1SE1S 9 E9 Unlock main door switch is pressed E2, E3, E12, E13, E14, E18
l?ii? 10 E10 GasiHeat/Smoke sensor is triggered EZ2, E3, E4, ES E9, E12, E18, E10
o 11 E11 AN device is turned on E18
20820 12E12 Thermostats <> ¥11 E10, E18, E18, E20
13E13 Increase / decrease of the dimmer slider E1, E3, E3, E18
14 E14 Na movernents in X15 for 15 minutes E18
15E15 Night begins E1 E9, E3, E4, ES, E9, E11, E19, E15, E18
16 E16 Day begins E1, E2, E3, E4, E5, ES, E11, E12, E13, E14, E18
17 E17 Water level > 75 % E4, ES, E10, E18, E19
18E18 Receive a call request, and no answer for X21 rings Not Linked
19 E19 Humidity sensor 12 triggered E18
20E20 Hurmidity sensor is negative for 20 minutes “E18
ssname: Admiizhestor Exciusve ek mods

Figure 9.13: Results linked events identification

195

196
9.3.2.5 Trigger Events Charts Representation using IRIS-TS
The final step in IRIS-TS automatically, without any input from the developer, generates
the trigger events charts and saves them in a module called trigger events charts module.
Figure 9.14 shows a sample of the generated trigger event charts for event E4. It is worth
saying that in Figure 9.14 the button Toggle Length will display the complete text in the
diagram or, when repressed, will display a clipped portion of the text to provide uniform

non-overlapping display.

EReh“om’“pompu([)OQRS T — e Q@@i

N

] et | bt

Figure 9.14: Results Trigger Events Charts Representation

9.4 Summary

This chapter presented IRIS-TS which is a tool support that was created as an add-on to
DOORS to detect requirements interactions. IRIS-TS was implemented using the
DOORS DXL programming language. To show how IRIS-TS works, screenshots are
presented from the execution of IRIS-TS on the smart homes policies. These screenshots
show that IRIS-TS facilitated the execution of IRIS and provided some automation for

the execution of IRIS.

197
CHAPTER TEN: CONCI;USIONS AND FUTURE WORK

10.1 Summary and Conclusions
Developing software systems has evolved over the years and one of the areas that is
considered to be a major key for the success of any new software being developed is
requirements engineering. The development of a clear and correct set of stakeholders
requirements will heavily cqntribute to the success of the software being developed.
However, in real life, there are always negative relationships and conflicts between
requirements which are termed as requirements interaction.
This thesis is devoted to tackle the problem of requirements interactions in software
systems. In this regard, a semi-formal approach called IRIS was developed to detect
requirements interactions in software systems. IRIS is a semi-formal systematic six step
approach that uses tables, graphs, interaction scenarios, and subjective judgment to detect
interactions in software systems. IRIS can also be customized by adding plug-ins to its
basic core to enhance its performance and make adaptable to any new software domain.
IRIS enjoys the advantage of reducing the number of necessary pair-wise comparisons
that have to be performed between requirements by discarding irrelevant comparisons
that will not lead to interactions. Hence, this can result in a clear réduction in the number
of comparisons and consequently reduction in time and effort.
As part of IRIS, a general requirements interaction taxonomy was developed to identify
when two requirements are considered interacting. This requirements interaction
taxonomy enjoys an in-depth level of details that was lacking in other taxonomies
reported in the literature. The requirements interaction taxonomy defines 9 main

interaction categories, 24 interaction subcategories, 37 interaction types, and 37

198
interaction scenarios where each interaction scenario has a corresponding interaction
detection guideline that describes how this interaction can be detected.

To validate the proposed IRIS approach, it was applied in three different case studies
from different domains. The results obtained by applying IRIS to these case studies have
been compared, when possible, to other results reported in the literature. IRIS scores very
well compared to other results taking into account that these other approaches used
formal methods compared to IRIS which is a semi-formal approach. Although the first
two case studies have been exercised by other approaches reported'in the literature, the
third case study on smart homes can be considered as a main contribution because, to the
author’s knowledge, no fully documented results for the smart homes case study
currently exist in the literature.

Finally, this thesis introduced IRIS-TS, which is a tool support for IRIS that was
developed to work within the commercial DOORS requirements management software.
IRIS-TS was developed using DOORS DXL which is a special programming language
for DOORS that enables users to build their own applications and integrate it in DOORS.
The developed code for IRIS-TS would add a separate drop down menu in DOORS main
tool bar that enables the user to choose to detect interactions between requirements that
are stored in DOORS. IRIS-TS will provide a step by step application of the different
steps of IRIS and generate the necessary tables and graphs to facilitate the detection of

interaction between requirements.

199
10.2 Future research
The future research areas should focus on maturing the work done in this thesis and also
introducing new ideas that extend the work presented in this thesis.
Future research should focus on the following four areas: Experimental measurement for
the effort required to apply IRIS, the development of a framework for interaction
detection that combines IRIS with already existing informal and formal approaches, the
application of IRIS in new case studies especially in the World Wide Web domain, and
finally further development of IRIS-TS. In the following a highlight is given on each of
these points.
10.2.1 Experimentation with IRIS
Currently there is a joint research project between the author and fourth year
undergraduate students at the Department of Computer Science at the American
University in Sharjah. The aim of this project is to provide experimental data regarding
the application of IRIS to detect interactions between telephony features. The data will be
used to measure IRIS effectiveness.
10.2.2 Development of a three layer framework
The development of a 3-layer framework is one major extension to this thesis. The three
layers will be: Informal detection using expert systems, Semi-formal detection using
IRIS, and formal detection using a formal language. Aside form studying each layer, the

three layers are interconnected to define the potential of cost, effort, and time savings.

200
10.2.3 Application of IRIS to new Case Studies
The application of IRIS to new case studies is essential to gain more maturity for the
approach. The new case studies will help also in designing new plug-ins that can be used
by others when applying IRIS in new domains. Finally, new case studies will provide
documented interaction results that can be used by developers when developing new
software systems to avoid these interactions as early as possible. Currently, there is an
interest to apply IRIS in the World Wide Web domain. Future plans include applying
IRIS to detect non-functional requirements interactions in the TPC-W Benchmark which
is a bench mark used for validating the creation of new E-commerce web sites.
10.2.4 Further Development of IRIS-TS
As it can be seen from Chapter 10, IRIS-TS will execute the first five steps of IRIS and
develop the required tables and graphs required to detect interactions in the sixth step of
IRIS. However, the tool stops at this point and does not provide any support for the sixth
step of IRIS. The reason for that was the reliance on the developer to look at the correct
figures and tables and use the interaction scenarios to decide if the two requirements
under investigation are interacting. Future plans include the development of a support
system to perform the sixth step in DOORS using IRIS-TS. The support will display the
correct tables and figures for the two requirements under investigation and choose and
display the set of interaction scenarios that are appropriate and can be used with the two
requirements being investigated.
Another future improvement of IRIS-TS is to allow the developer to add plug-ins easily
through a special window interface and then add these plug-ins automatically to all steps

being executed by IRIS-TS.

201

REFERENCES

[1]

(2]

[3]

[4]

[3]

[6]

[8]

J. O. Palmer and N. A. Fields, "An Integrated Environment for Requirements
Engineering," IEEE Sofiware, vol. 9, pp. 80-85, 1992.

L. Bray, An introduction to requirements engineering. Harlow: Addison-Wesley,
2002.

J. A. Goguen and M. Jirotka, Requirements engineering : social and technical
issues. London: Academic Press, 1994.

E. Hull, K. Jackson, and J. Dick, Requirements engineering. London: Springer,
2002.

L. Sommerville and P. Sawyer, Requirements engineering : a good practice guide.
Chichester, Eng. ; New York: Wiley, 1999.

U. Nikula, J. ‘Sajaniemi, and H. Kalviainen, "A State—of—the—Practice Survey on
Requirements Engineering in Small- and Medium-Sized Enterprises," TBRC
Research Report 1, Telecom Business Research Center Lappeenranta,
Lappeenranta University of Technology. 2000.

C. McPhee and A. Eberlein, "Requirements engineering for time-to-market
projects," Ninth Annual IEEE International Conference and Workshop on the
Engineering of Computer-Based Systems, pp. 17-24, 2002.

K. E. Emam and A. Birk, "Validating the ISO/IEC 15504 Measure of Software
Requirements Analysis Process Capability," IEEE Transactions on Software

Engineering, vol. 26, pp. 541-566, 2000.

[9]

[10]

[11]

[12]

[13]

(14]

[15]

202
L. Jiang, A. Eberlein, and B. H. Far, "A Methodology for RE Process
Development," 11th IEEE International Conference and Workshop on the
Engineering of Computer-Based Systems (ECBS), Czech Republic, pp. 263-272,
24-27 May 2004.
M. Shehata, A. Eberlein, and J. Hoover, "Requirements Reuse and Feature
Interaction Management," 15th International Conference on Software & Systems
Engineering and their Applications (ICSSEA’02), Paris, December 3-5, 2002.
W. N. Robinson, S. D. Pawlowski, and V. Volkov, "Requirements interaction
management," 4CM Computing Surveys (CSUR), vol. 35, pp. 132-190, June
2003.
N. G. Leveson, Safeware, System Safety, and Computers: Addison-Wesley Pub.
Co. Inc., 1995.
P. Gibson, "Feature requirements models: Understanding interactions," in
Featutre interactions in telecommunication networks IV, P. Dini, R. Boutaba, and
L. Logrippo, Eds. Amsterdam: IOS press, June 1997, pp. 46-60.
B. Boehm, P. Bose, E. Horowitz, and M. J. Lee, "Software requirements
negotiation and renegotiation aids: a theory-W based spiral approach," ICSE-17
Workshop on Formal Methods Application in Software Engineering Practice, pp.
243-253, 1995.
B. Boehm and H. In, "Identifying quality-requirement conflicts," Proceedings of
the Second International Conference on Requirements Engineering, Los Alamitos,

CA, USA, pp. 218-228, 1996.

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

203
J. Ellsberger, A. Sarma, and D. Hogrefe, SDL : formal object-oriented
language for communicating systems, 2. ed. London: Prentice Hall, 1997.
M. Heisel and J. Souquiéres., "A heuristic algorithm to detect feature interactions
in requirements.," in Language Constructs for Describing Features, S. Gilmore
and M. Ryan, Eds.: Springer-Verlag London Ltd, 2000/2001, pp. 143-162.
M. Heisel and J. Souquiéres., "Detecting Feature Interaction - A heuristic
approach," First FIREworks Workshop, Germany, pp. 30-48, May 1998.
M. Kolberg, E. Magill, D. Marples, and S. Reiff-Marganiec, "Second Feature
Interaction Contest," in Feature Interactions in Telecommunications and Software
Systems, M. H. Calder and E. H. Magill, Eds.: IOS Press, 2000, pp. 293-310.
E.J. Cameron, N. D. Griffeth, Y.-J. Ling, M. E. Nilson, W. K. Schnure, and H.
Velthuijsen, "A feature interaction benchmark for IN and beyond," Proceedings of
2nd International Workshop on Feature Interactions in Telecommunications
Software Systems, Amsterdam, Netherlands, pp. 1-23, 1994.
M. Kolberg, E. H. Magill, and M. Wilson, "Compatibility Issues between
Services Supporting Networked Appliances," IEEE Communications Magazine,
vol. 41, pp. 136 - 147, 2003.
S. Reiff-Marganiec and K. J. Turner, "Feature Interaction in Policies," Computer
Networks, vol. 45, pp. 569-584, March 2004.
Telelogic DOORS, hitp://www.telelogic.com/products/doorsers/doors/, Last

Viewed On May 21, 2005

204

[24] N. Griffeth, R. Blumenthal, J.-C. Gregoire, and T. Ohta, "Feature Interaction
Detection Contest of the Fifth International Workshop on Feature Interacti;)ns,"
Computer Networks, vol. 32, pp. 487-510, 2000.

[25] N. Griffeth and Y.-J. Lin, Feature Interactions in Telecommunications Systems.
St. Petersburg, Florida, USA: IOS Press Inc., 1992. |

[26] L. G.Bouma, H. Velthuijsen, and IEEE Communications Society, Feature
interactions in telecommunications systems. Amsterdam: IOS Press, 1994.

[27] K. E. Cheng and T. Ohta, Feature Interactions in Telecomunications III. Kyoto,
Japan: IOS Press Inc., 1995.

[28] X.Kimbler and L. G. Bouma, Feature Interactions in Telecommunications and
Software Systems V. Lund, Sweden: IOS Press, 1998.

[29] M. Calder and E. Magill, Feature Interdctions in T elecoﬁémunication;s' aﬁd
Software Systems VI. Glasgow, Scotland: IOS Press Inc., 2000. |

[30] D. Amyot, Feature Interactions in Telecommunications and Software Systems
VII. Ottawa, Canada: IOS Press Inc, 2003.

[31] P.Dini, R. Boutaba, and L. Logrippo, Feature Interactions in
Telecommunications Networks. Montreal, Canada: IOS Press inc,, 1997.

[32] IEEE Digital Library, http://www.ieee.org, Last Viewed On May 21,7 2005

[33] ACM Digital Library, http://www.acm.org, Last Viewed On May 21, 2005 '

[34] CITESEER Digital Library, http://www.citeseer.com, Last Viewed On May 21,

2005

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

205
D. Amyot and L. Logrippo, "Directions in Feature Interaction Research," in
Computer Networks, Volume 45, Issue 5: ElseVier Sceince Direct, pp. 563-685,
August 2004.
M. Calder, M. Kolberg, E. H. Magill, and S. Reiff-Marganiec, "'Feature
interaction: a critical review and considered forecast," Computé:‘ Networtks, vol.
41, pp. 115-41, 2003.
D. O. Keck and P. J. Kuehn, "The feature and service interaction problem in
telecommunications systems: a survey," I[EEE Transactions on Software
Engineering, vol. 24, pp. 779 - 796, October 1998.
Y. Wakahara, M. Fujioka, H. Kikuta, H. Yagi, and S. I. Sakai, 'fA Method for
Detecting Service Interactions," IEEE Communications, vol. 31, pp. 32-37,
August 1993.
J. Mierop, S. Tax, and R. Janmaat, "Service Interaction in an Object-Oriented
Environment," IEEE Communications, vol. 31, pp. 4651, August 1993.
K. Kimbler, E. Kuisch, and J. Muller, "Feature Interaction Among Pan-European
Services," in Feature Interactions in Telecommunications Systems, L. G. Bouma
and H. Velthuijsen, Eds. Amsterdam: IOS Press, May 1994, pp. 73-85.
D. D. Dankel, M. Schmalz, W. Walker, K. Nielsen, L. Muzzi, and D. Rhodes,
"An Architecture for Defining Features and Exploring Interactions," in Feature
Interactions in Telecommunications Systems, L. G. Bouma and H. Velthuijsen,
Eds. Amsterdam: I0OS Press, May 1994, pp. 258-271.
E. Kuisch, R. Janmaat, H. Mulder, and 1. Keesmaat, "A Practical Approach to

Service Interactions," IEEE Communications, vol. 31, pp. 24-31, August 1993.

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

206
D. O. Keck, "A Tool for the Identification of Interaction-Prone Call
Scenarios," Proceedings of the 5th International Workshop on Feature
Interactions in Telecommunications and Software Systems, pp. 276-290, 1998.
K. Kimbler and D. Sobirk, "Use Case Driven Analysis of Feature Interaétions," in
Feature Interactions in Telecommunications Systems, L. G. Bouma and H.
Velthuijsen, Eds. Amsterdam: IOS Press, May 1994, pp. 167-177.
1. Sommerville, Software engineering, 6th ed. Harlow, England ; New York:
Addison-Wesley, 2000.
L. Doldi and L. Doldi, Validation of Telecom Systems with SDL: John Wiley &
Sons, June 2003.
P. H.J. V. Eijk, C. A. Vissers, and M. Diaz, The Formal Description Technique
Lotos: Results of the Esprit/Sedos Project: North-Holland, April 1989.
J. D. Hay and J. M. Atlee, "Composing Features and Resolving Interactions,"
ACM International Symposium on the Foundations of Software Engineering
(FSE), pp. 110-119, November 2000.
K. Braithwaite and J. Atlee, "Towards Automated Detection of Feature
Interactions," in Feature Interactions in Telecommunications Systems: 108 press,
1994, pp. 36-59.
B. Kelly, M. Crowther, J. King, R. Masson, and J. DeLapeyre, "Service
Validation and Testing," in Feature Interactions in Telecommunications Systems
III, K. E. Cheng and T. Ohta, Eds. Amsterdam: 10S Press, October 1995, pp.

173-184.

[51]

[52]

[53]

[54]

[55]

[56]

[57]

207
J. Bredereke, "Families of Formal Requirements in Telephone Switching," in
Feature Interactions in Telecommunication Networks VI, M. H. Calder and E. H.
Magill, Eds. Amsterdam: IOS press, May 2000, pp. 257-273.
P. Zave, "Architectural solutions to feature-interaction problems in
telecommunications," Proceedings of 5th International Workshop on Feature
Interactions in Telecommunications Software Systems, 29 Sept.-1 Oct. 1998,
Lund, Sweden, pp. 10-22, 1998.
P. Zave and M. Jackson, "A Component-Based Approach to Telecommunication
Software," IEEE Software, vol. 15, pp. 70--78, 1998.
P. Zave and M. Jackson, "New feature interactions in mobile and multimedia
telecommunication services," in Feature Interactions in T eZecommunications
andSoftware Systems VI, M. Calder and E. Magill, Eds. Amsterdam: IOS press,
May 2000., pp. 51-66. |
P. Zave and M. Jackson, "Distributed feature composition: A virtual architecture
for telecommunication services," IEEE Transactions on Software Engineering
XXTV, vol. 10, pp. 831-847, October 1998.
Y. Iragi and M. Erradi, "An experiment for the processing of feature interactions
within an object-oriented environment," in Feature Inferactions in
Telecommunication Networks IV, P. Dini, R. Boutaba, and L. Logrippo, Eds.
Amsterdam: IOS Press, June 1997, pp. 298-312.
C. Prehofer, "An object-oriented approach to feature interaction," in Feature
Interactions in Telecommunication Networks IV, P. Dini, R. Boutaba, and L.

Logrippo, Eds. Amsterdam: IOS Press, June 1997, pp. 313-325.

[58]

[59]

[60]

[61]

[62]

208
G. Utas, "A pattern language of feature interactions," in Feature Interactions
in Telecommunications and Software Systems V, K. Kimbler and L. G. Bouma,
Eds. Amsterdam: IOS Press, September 1998, pp. 98-114.
L. Blair and J. Pang, "Aspect-Oriented Solutions to Feature Interaction Concerns
using Aspect]," in Feature Interactions in Telecommunications qnd Software |
Systems VII, D. Amyot and L. Logrippo, Eds. Amestrdam: IOS Press, 2003, pp.
87-104.
D. Amyot, L. Charfi, N. Gorse, T. Gray, L. Logrippo, J. Sincennes, B. Stépien,
and T. Ware, "Feature Description and Feature Interaction Analysis with Use
Case Maps and LOTOS," in Feature Interactions in Telecommunications and
Software Systems VI, M. Calder and E. Magill, Eds. Amestrdam: IOS Press, 2000,
pp. 274-2.89.
C. Prehofer, "Plug-and-Play Composition of Features and Feature Interactions
with Statechart Diagrams," in Feature Interactions in Telecommunications and
Software Systems VII, D. Amyot and L. Logrippo, Eds. Amsterdam: IOS Press,
2003, pp. 43-58.
K. Berkani, R. Cave, S. Coudert, F. Klay, P. LeGall, F. Ouabdeséelam, and J -L
Richier, "An Environment for Interactive Service Specification," in Feature
Interactions in Telecommunications and Software Systems VII, D. Amyot and L.

Logrippo, Eds. Amestrdam: IOS Press, 2003, pp. 25-41.

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

209
A. Metzger and C. Webel, "Feature Interaction Detection in Building Control
Systems by Means of a Formal Product Model," in Feature Interactions in
Telecommunications and Software Systems VII, D. Amyot and L. Logrippo, Eds.
Amsterdam: IOS Press, 2003, pp. 105-122.
A. Metzger, "Feature interactions in embedded control sy;tems," Computer
Networks, vol. 45, pp. 625-44, 2004.
K. J. Turner, "Formalising the Chisel Feature Notation," in Feature Interactions
in Telecommunication Networks VI, M. H. Calder and E. H. Magill, Eds.
Amsterdam: IOS press, May 2000, pp. 241-256.
K. Turner, "Modelling SIP services using CRESS," Formal Techniques for
Networked and Distributed Systems (FORTE XV), Berlin, Germany, pp. 162—
177, Nov. 2002.
K. J. Turner, "Representing New Voice Services and Their Features," in Feature
Interactions in Telecommunications and Software Systems VII, D. Amyot and L.
Logrippo, Eds. Amsterdam: IOS Press, 2003, pp. 123-140.
S. Reiff-Marganiec and K. J. Turner, "Feature interaction in policies," Computer
Networks, vol. 45, pp. 569-84, 2004.
P. Zave, H. H. Goguen, and T. M. Smith, "Component coordination: a
telecommunication case study," Computer Networks Journal, Elsevier Science
Publishers, vol. 45, pp. 645-664, 2004.
P. Zave, "Ideal Address Translation: Principles, Properties, and Applications," in
Feature Interactions in Telecommunications and Software Systems VII, D. Amyot

and L. Logrippo, Eds. Amsterdam: IOS Press, 2003, pp. 257-274.

[71]

[72]

[73]

[74]

[73]

[76]

[77]

210
J. H. Choi, H. S. Kim, W. J. Lee, and Y. R. Kwon, "A Petri-Nets Based
Approach for Detecting Feature Interactions in Telecommunications Services,"
12th Int’] Conference on Computer Communication (ICCC), Seoul, pp. 596-601,
August 1995.
J. Bredereke, "Detection of feature interactions‘ in intelligent networks by
verification," Sofiware-Concepts and Tools, vol. 17, pp. 121-39, 1996.
J. Bredereke, "Formal criteria for feature interactions in telecommunications
systems," The IFIP TC6 Conference on Intelligent Networks and New
Technologies, London, UK, pp. 68-83, 1996.
C. Klein, C. Prehofer, and B. Rumpe, "Feature Speéiﬁcation and Reﬁnément with
State Transition Diagrams," in Feature Interactions in Telecommunications
Networks and Distributed Systems IV, P. Dini, Ed. Amestrdam: IOS Press, 1997,
pp- 284-297.
M. Faci and L. Logrippo, "Specifying features and analysing their interactions in
a LOTOS environment," in Feature Interactions in Telecommuniactions Sys'tems,
L. G. Bouma and H. Velthuijsen, Eds. Amestrdam: IOS Press, 1994, pp. 136-151.
J. Blom, B. Jonsson, and L. Kempe, "Using temporal logic for modular
specification of telephone services," Proceedings of 2nd International Workshop
on Feature Interactions in Telecommunications Software Systems, pp. 197-213,
1994.
J. P. Gibson, "Towards a feature interaction algebra," Proceedings of 5th
International Workshop on Feature Interactions in Telecommunications Software -

Systems, 29 Sept.-1 Oct. 1998, Lund, Sweden, pp. 217-31, 1998.

[78]

[79]

[80]

[81]

[82]

[83]

211
P. Gibson, G. Hamilton, and D. Méry, "A taxonomy for triggered interactions
using fair object semantics ,," in Feature Interactions In Telecommunications and
Software Systems VI, M. Calder and E. Magill, Eds. Amestrdam: IOS Press, 2000,
pp- 193-210.
A. Felty and K. Namjoshi, "Feature specification and automatic conflict
detection," in Feature Interactions in T elecommunica‘tions and Software Systems
VI, M. Calder, E. Magill, Eds. Amsterdam: IOS Press, May 2000, pp. 179-192.
S. M. Rochefort and H. J. Hoover, "An exercise in using constructive proof
systems to address feature interactions in telephony," in Feature Interactions in
Telecommunication Networks IV, P. Dini, R.VBoutaba, and L. Loérippo, Eds.
AMestrdam: 10S Press, June 1997, pp. 329-341.
M. Frappier, A. Mili, and J. Desharnais, "Detecting feature interactions in
relational specifications," in Feature Interactions in Telecommunication Networks
IV, P. Dini, R. Boutaba, and L. Logrippo, Eds. Amestrdam: IOS Press, June 1997,
pp- 123-137.
M. Bostrom and M. Engstedt, "Feature interaction detection and resolution in the
Delphi framework," in Feature Interactions in Telecommunications Systems I,
K. E. Cheng and T. Ohta, Eds. Amestrdam: IOS Press, October 1995, pp. 157-
172.
M. Calder and A. Miller, "Generalising Feature Interactions in Email," in Feature
Interactions in Telecommunications and Software Systems VII, D. Amyot and L.

Logrippo, Eds. Amestrdam: IOS Press, 2003, pp. 187-204.

[84]

[85]

[86]

[87]

[88]

[89]

[90]

212
A. Lee, "Formal Specification—A Key to Service Interactions Analysis,"
Eight Conference on Software Engineering for Telecommunication Systems ahd
Services (SETSS 1992), pp. 62-66, March 1992.
A.Y. H. Lee, "Formal Specification and Analysis of Intelligent Network Services
and their Interaction." Australia: Ph.D. Thesis, University of Queensland,
December 1992.
M. Butler, "Feature interaction analysis using Z," Technical Report, Broadcom
Eireann Research, Dublin, 1993.
R. J. Hall, "Feature combination and interaction detection via foreground/
background models," Computer Networks Journal, Elsevier Science Pu‘blishers,
vol. 32, pp. 449--469, 2000.
M. Plath and M. Ryan, "Defining features for CSP:Reﬂecﬁon on the feature
interaction contest," in Language construct for deﬁniﬁg features, S. Gilmore and
M. Ryan, Eds.: Springer verlag, 2000, pp. 202-216. |
G. Bruns, P. Mataga, and 1. Sutherland, "features as service transformers," in
Sfeature interactions in telecommunications and software systems, K. Kimbler and
W. Bouma, Eds. Amsterdam: IOS press, September 1958, pp- 85-97.
J. Blom, "Formalisation of requirements with emphasis on feature interaction
detection," in Feature Interactions in Telecommunication Networks IV, P. Dini, R.

Boutaba, and L. Logrippo, Eds. Amestrdam: I0S Press,VJuhe 1997, pp. 61-77.

[91]

[92]

[93]

[94]

[95]

[96]

[57]

213
P. K. Au and J. M. Atlee, "Evaluation of a sate-based model of feature
interactions," in Feature Interactions in Telecommunication Networks IV, P. Dini,
R. Boutaba, L. Logrippo, Eds. Amestrdam: IOS Press, June 1997, pp. 153-167.
J. Bergstra and W. Bouma, "Models for feature descriptions and interactions," in
Feature Interactions in Telecommunication Networks IV, P. Dini; R. Boutaba, and
L. M. S. Logrippo, Eds. Amestrdam: IOS Press, 1997, pp. 31--45.
T. F. LaPorta, D. Lee, Y.-J. Lin, and M. Yannakakis, "Protocol feature
interactions," FORTE-PSTV, pp. 59-74, 1998.
A. Khoumsi, "Detection and resolution of Interactions between Services of the
telephone Network," in Featutre interactions in telecommunication networks IV,
P. Dini, R. Boutaba, and L. Logrippo, Eds. Amestrdam: IOS press, June 1997, pp.
78-92.
A. Khoumsi and R. J. Bevelo, "A detection method developed after a thorough
study of the contest held in 1998," in Feature Interactions in Telecommunications
and Software Systems VI, M. Calder and E. Magill, Eds. Amsterdam: IOS press,
May 2000, pp. 229-240.
Y. Inoue, K. Takami, and T. Ohta, "Method for Supporting Detection and
Elimination of Feature Interaction in a Telecommunication System," Int'l
Workshop Feature Interactions in Telecommunications Software Systems, pp. 61-
81, December 1992.
Y. Inoue, K. Takami, and T. Ohta, "Automatic Detection of Service Interactions
in Telecommunications Service Specifications," IEEE Int'l Conference on

Communications (ICC), New Orleans, pp. 1835-1840, May 1994.

[98]

[99]

[100]

[101]

[102]

[103]

214
Y. Harada, Y. Hirakawa, and T. Takenaka, "A Design Support Method for
Telecommunication Service Interactions," GLOBECOM '91, Phoenix, Ariz., pp.
1661-1666, December 1991.
Y. Harada, Y. Hirakawa, T. Takenaka, and N. Terashima, "A Conflict Detection
Support Method for Telecommunication Service Descriptions," IEICE Trans.
Comm., vol. E75-B, pp. 986-997, October 1992.
M. Nakamura, Y. Kakuda, and T. Kikuno, "Feature interaction detection using
permutation symmetry," in Feature Interactions in Telecommunications and
Software Systems V, K. Kimbler and L. G. Bouma, Eds. Amestrdam: iOS Press,
September 1998, pp. 187-201.
J. G. Thistle, R. P. Malhame, and H.-H. Hoang, "Feature intéracfion modelling,
detection and resolution: A supervisory control approach,” in Feature Interactions
in Telecommunication Networks IV, P. Dini, R. Boutaba, and L. Logrippo, Eds.
Amsterdam: IOS Press, June 1997, pp. 93-107.
K.Y. Chan and G. v. Bochmann, "Methods for Designing SIP Features in SDL
with Fewer Feature Interactions," in Feature Interactions in Telecomunications
and Software Systems VII, D. Amyot and L. Logrippo, Eds. Amestrdam: I0S
Press, 2003, pp. 59-76.
B. Mitchell, R. Thompson, and C. Jervis, "Phase Automaton for Requirement
Scenarios," in Feature Interactions in Telecommunications and Software Systems

VII, D. Amyot and L. Logrippo, Eds. Amestrdam: IOS Press, 2003, pp. 77-84.

[104]

[105]

[106]

[107]

[108]

[109]

215 1
S. Kawauchi and T. Ohta, "Mechanism for 3-way Feature Interactions
Occurrence and a Detection System Based on The Mechanism," in Feature
Interactions in Telecommunications and Software Systems, D. Amyot aqd L.
Logrippo, Eds. Amestrdam: IOS Press, 2003, pp. 313-328.
A. D. Marco and F. Khendek, "eSERL: Feature Interaction Management in
Parlay/OSA using Composition Constraints and Configuration Rules," in Feature
Interactions in Telecomunications and Software Systems VII, D. Amyot and L.
Logrippo, Eds. Amestrdam: IOS Press, 2003, pp. 247-254.
I. Aggoun and P. Combes, "Observers in the SCE and the SEE to Detect and
Resolve Service Interactions," in Feature Interactions in Telecommunication
Networks IV, P. Dini, R. Boutaba, and L. Logrippo, Eds. Amsterdam: IOS Press,
June 1997, pp. 198-212. |
F.J. Lin and Y. J. Lin, "A Building Block Approach to Detecting and Resolving
Feature Interactions," in Feature Interactions in Telecommunications Systems, L.
G. Bouma and H. Velthuijsen, Eds. Amsterdam: 10S Press, May 1994, pp. 186-
19-1.
M. Nakamura, P. Leelaprute, K. Matsumoto, and T. Kikuno, "Detecting Script-to-
Script Interactions in Call Processing Language," in Feature Interactions in
Telecommunications and Software Systems VII, D. Amyot, Ed. Amestrdam: IOS
Press, 2003, pp. 215-230.
M. Nakamura, P. Leelaprute, K.-i. Matsumoto, and T. Kikuno, "On detecting
feature interactions in the programmable service environment of Internet

telephony," Computer Networks, vol. 45, pp. 605-624, 2004.

[110]

[111]

[112]

[113]

[114]

[115]

216
P. Combes and S. Pickin, "Formalisation of a user view of network and
services for feature interaction detection," Proceedings of 2nd International
Workshop on Feature Interactions in Telecommunications Software Systems,
Amsterdam, Netherlands, pp. 120-35, 1994.
M. Plath and M. Ryan, "Plug-and-play features," Proceedings of 5th International
Workshop on Feature Interactions in Telecommunications Software Systems,
Amsterdam, Netherlands, Lund, Sweden, pp. 150-64, 1998.
M. Calder and A. Miller, "Using SPIN for feature interaction analysis - a case
study," Model Checking Software. 8th International SPIN Workshop, 19-20 May
2001, Toronto, Ont., Canada, pp. 143-62, 2001.
B. Stepien and L. Logrippo, "Representing and verifying intentions in telephony
features using abstract data types," in Feature Interactions in Telecommunications
Systems III, K. E. Cheng and T. Ohta, Eds. Amestrdam: IOS Press, October 1995,
pp. 141-155.
C. Capellmann, P. Combes, J. Petterson, B. Renard, and J. L. Ruiz, "Consistent
interaction detection — a comprehensive approach integrated with service
creation," in Feature Interactions in Telecommunication Networks IV, P. Dini, R.
Boutaba, and L. Logrippo, Eds. Amestrdam: IOS Press, June 1997, pp. 183-197.
J. Kamoun and L. Logrippo, "Goal-oriented feature interaction detection in the
intelligent network model," in Feature Interactions in Telecommunications and
Software Systems V, K. Kimbler and L. G. Bouma, Eds. Amestrdam: 10S Press,

September 1998, pp. 172-186.

[116]

[117]

[118]

[119]

[120]

[121]

[122]

217
L. Du Bousquet, F. Ouabdesselam, J.-L. Richier, and N. Zuanon, "Feature
interaction detection using a synchronous approach and testing," Computer
Networks, vol. 32, pp. 419-31, 2000.
L. d. Bousquet, F. Ouabdesselam, J.-L. Richier, and N. Zuanon, "Incremental
feature validation: a synchronous point of view," in Feature Interactions in
Telecommunications and Software Systems V, K. Kimbler and L. G. Boumé, Eds.
Amestrdam: IOS Press, Septmber 1998, pp. 262-275.
D. P. Guelev, M. D. Ryan, and P. Y. Schobbens, "Feature Integration as
Substitution," in Feature Interactions in Telecommunications and Software
Systems, D. Amyot and L. Logrippo, Eds. Amsterdam: IOS Press, 2003, pp. 275-
294,
M. Thomas, "Modelling and analysing user views of telecommunications
services," in Feature Interactions in Telecommunication Networks IV, P. Dini, R.
Boutaba, and L. Logrippo, Eds. Amestrdam: IOS Press, June 1997, pp. 168-182.
W. Bouma, W. Levelt, A. Melisse, K. Middelburg, and L. Verhaard,
"Formalization of Properties for Feature Interaction Detection: Experiece in a
Real-Life Situation," Second Int'l Conference on Intelligence in Broadband
Services and Networks, pp. 393-405, Septmber 1994.
A. Gammelgaard and J. E. Kristensen, "Interaction Detection, A Logical
Approach," in Feature Interactions in Telecommunications Systems, L. G. Bouma
and H. Velthuijsen, Eds. Amestrdam: IOS Press, May 1994, pp. 178-196.
P. Ladkin, "The Risks Digest," ACM SIGSOFT Software Engineering Notes, vol.

15, 199s.

[123]

[124]

[125]

[126]

[127]

[128]

[129]

218
J. Mylopoulos, L. Chung, and B. Nixon, "Representing and Using Non-
Functional Requirements: A process-Oriented Approach," IEEE Transactions on
Software Engineering, Special Issue on Knowledge Representation and
Reasoning in Software Development, vol. 18, pp. 483-497., June 1992.
A. Finkelstein, J. Kramer, B. Nuseibeh, L. Finkelstein, and M. Goedicke,
"Viewpoints: a framework for integrating multiple perspectives in system
development," International Journal of Sofiware Engineering and Knowledge
Engineering, vol. 2, pp. 31-58, 1992. | |
J. Mylopoulos, L. Chung, and B. Nixon, "Representing and using nonfunctional
requirements: a process-oriented approach," IEEE Transactions on Sofiware
Engineering, vol. 18, pp. 483-497, 1992.
1. I. Poorman, Data flow diagrams: Unraveling the mystery: The Project Office,
1988.
R. Grosu, C. Klein, B. Rumpe, and M. Broy, "State Transiti‘on Diagrams," TUM-
19630, 1996.
A. V. Lamsweerde and E. Letier, "Handling obstacles in goal-oriented
requirements engineering," IEEE Trans. Software Engineering, vol. 26, pp. 978—
1005, 2000.
J. Beck, 4 survey of program slicing for software engineering: Reséarch Institute
for Computing and Information Systems, University of Houston--Clear Lake
National Aeronautics and Space Administration National Technical Information

Service, 1993.

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

219
S. Fickas, "A knowledge-based approach to specification acquisition and
construction," CIS-TR-85-13. University of Oregon,, Eugene, OR. 1985.
S. Fickas and J. Anderson, "A proposed perspective shift: Viewing specification
design as a planning problem," Fifth International Workshop on Software
Specification and Design, Los Alamitos, CA, pp. 177-184, 1989.
W. N. Robinson, "Automated negotiated design integration: Formal
representations and algorithms for collaborative design," University of Oregon,
Eugene, OR. 1993.
K. L. Heninger, "Specifying software requirements for complex systems: New
techniques and their application," IEEE Trans. Software Engineering, pp. 2-13,
1980.
E. Cameron, "A Feature Interaction Benchmark for IN and Beyond," E.J.
Cameron et al., A Feature Interaction Benchmark for IN and Beyond, in Feature
Interactions in Telecommunications Systems, IOS press, pp. 1-23, 1994.
P. Gibson, G. Hamilton, and D. Mery, "A Taxonomy for Triggered Interactions
using Fair Object Semantics," in Feature Interactions in Telecommunications and
Software Systems, B. Magill, Ed.: IOS Press, 2000, pp. 193-209.
N. Gorse, "The Feature Interaction Problem: Automated filtering of Incoherences
& Generation of Validatation Test suites at the Design Stage," University of
Ottawa, Ottawa,Ontario,Canada, 2001.
M. Frappier, A. Mili, and J. Desharnais, "Defining and detecting feature

interactions," Algorithmic Languages and Calculi, pp. 212-239, 1997.

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

220
M. Shehata, A. Eberlein, and A. O. Fapojuwo, "Feature Interactions between
Networked Smart Home Appliances," QSSE, 4th ASERC Workshop on
Quantitative and Soft Computing Based Sofiware Engineering, Banff, Alberta,
Canada, pp. 50-54, February 16-17 2004.
M. Shehata and A. Eberlein, "Requirements interaction detection using semi-
formal methods," Proceedings 10th IEEE International Conference and Workshop
on the Engineering of Computer-Based Systems. ECBS 2003, 7-10 April 2003,
Huntsville, AL, USA, pp. 224-232, 2003.
T. F. Bown, "The Feature Interaction Problem in Telecommuﬁication Systems,"
the 7th SETS Conference, pp. 59-62, 19809.
R. J. Hall, "Submission to the Second feature interaction contest," Technical
report, AT&T Labs Research 2000.
D. Samborski, "Submission to the second feature interaction contest," technical
report, Loria labs 2000.
J. Rumbaugh, I. Jacobson, and G. Booch, The Unified Modeling Language
Reference Manual: Addison-Wesley Professional, 2004.
T. Pender, UML Bible: Wiley Inc., 2003.
M. Fowler, UML Distilled: A Brief Guide to the Standard Object Modeling
Language: Addison-Wesley Professional, 2003.
S. R. Schach, Object-oriented and classical software engineering, 5th ed. Boston:
McGraw-Hill, 2001.
D. Amyot, "Use Case Maps as a Feature Description Notation," in FIREworks

Feature Constructs Workshop. Glasgow, Scotland, UK, May 2000, pp. 27-44.

[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]

221
D. Amyot, R. Buhr, T. Gray, and L. Logrippo, "Use case maps for the capture
and validation of distributed system requirements," RE'99: Fourth IEEE
International Symposium on Requirements }E'ngineering, Ireland, pp. 44-53, June
1999.
R.J. A. Buhr and R. S. Casselman, Use Case Maps for Object-Oriented S’ystems:
Prentice Hall, 1995.
M. Heisel and J. Souquiéres., "A heuristic algorithm to detect feature interactions
in requirements.,”" in Language Constructs for Describing Features, M. Ryan,
Ed.: Springer-Verlag London Ltd, 2001, pp. 143-162.
L. Harte and R. Flood, Introduction to Public Switched Telephone Networks
(PSTN), Local Loop, Switching, DSL, ATM, SS7, and AIN: Althos Publishing,
2003.
M. Plath and M. D. Ryan, "Entry for FIW'00 Feature Interaction Contest,"
Technical Report, University of Birmingham 2000.
M. Nakamura, T. Ding, J. Sincennes, X. Lu, and L. Logrippo, "Submission to the
second feature interaction contest," Technical report, University of Ottawa 2000.
H. L. Lutfiyya, J. Moffett, and F. Garcia, Proceedings of 4th IEEE International
Workshop on Policies for Distributed Systems and Networks: IEEE Computer
Society, Italy, 2003. |
J. B. Michael, J. Lobo, and N. Dulay, Proceedings of the 3rd International
Workshop on Policies for Distributed Systems and Networks: IEEE Computer

Society, Los Alamitos, California, USA, 2002.

[156]

[157]

[158]

[159]

[160]

[161]

[162]

222
M. Sloman, J. Lobo, and E. C. Lupu, Proceedings of the 2nd international
workshop on Policies for Distributed Systems and Networks: Springer Verlag
Lecture Notes in Computer Science, 2001.
D. Verma, M. Devarakonda, E. Lupu, and M. Kohli, Proceedings of the 5th IEEE
International Workshop on Policies for Distributed Systems and Networks: IEEE
Computer Society, New York, USA, 2004.

M. Amer, A. Karmouch, T. Gray, and S. Mankovskii, "Feature interaction

~ resolution using fuzzy policies," in Feature Interactions in Telecommunications

and Software Systems VI, M. Calder and E. E. Magill, Eds. Amsterdam: I0S
Press, Inc., 2000, pp. 94-112. .
E. C. Lupu and M. Sloman, "Conflicts in policy-based Vdistributed systems
management," IEEE Transactions on Software Engineering, vol. 25(6), pp. 852-
869, 1999.

N. Damianou, N. Dulay, E. Lupu, and M. Sloman, "Ponder: A language
specifying security and managements policies for distributed systems," Technical
Report, Imperial College, London 2000.

G. Yee and L. Korba, "Feature interactions in policy driven management," in
Feature Interactions in Telecommunications and Sofiware Systems VII, D. Amyot
and L. Logrippo, Eds.: IOS Press, 2003, pp. 231-238.

A.D. Marco and F. Khendek, "eSERL: Feature interaction in Parlay/OSA using
composition constraints and configuration rules," in Feature Interactions in

Telecommunications and Software Systems VII, D. Amyot and L. Logrippo, Eds.

Amsterdam: IOS Press, June 2003, pp. 247-254.

[163]

[164]

[165]

[166]

[167]

[168]

223
S. Reiff-Marganiec and K. J. Turner, "A policy architecture for enhancing and
controlling features," in Feature Interactions in Telecommunications and
Software Systems VII, D. Amyot and L. Logrippo, Eds. Amsterdam: IOS Press,
2003, pp. 239-246.
O. Hersent, J.-P. Petit, and D. Gurle, Beyond VoIP Protocols: Understanding
Voice Technology and Networking Techniques for IP Telephony: John Wiley &
Sons Canada, Ltd, 2005.
M. Edge, B. Taylor, G. Dewsbury, and M. Groves, "The Potential for "Smart
Home' systems in meeting the care needs of older persons and people with
disabilities," Seniors’ Housing Update, vol. 10, pp. 6-7, 2000.
J. M. M. Ferreira, T. Amaral, D. Santos, A. Agiannidis, and M. Edge, "The
Custodian Tool: Simple Design of Home Automation Systems for People with
Special Needs," EIB Scientific Conference, Munich, Germany, 2000.
R. L. Smith, Smart House: The coming revolution in housing: GP Publishing Inc,
1988.
D. Briere and P. Hurley, Smart homes for dummies: 2nd edition, Wiley Publishing

Inc, 2003.

224

APPENDIX A: PUBLICATIONS

. Mohamed Shehata, Armin Eberlein, Abraham Fapojuwo, "Maﬂaging Policy
Interactions in KNX based Smart Homes", Submitted for Publication,
International Journal on Network and Computer Application, Elsevier Pub. Co.

. Mohamed Shehata, Armin Eberlein, Abraﬁam Fapojuwo, "Using Semi-Formal
Methods ‘For Detecting Interactions Among Sinart Homes Policies", in
Preparation for subfnission to the International Journal of Computer Networks,
Elsevier Pub. Co.

. Mohamed Shehata, Armin Eberlein, Abraham Fapojuwo, AbdAllah Mohamed,
"A Taxonomy for Identifying Requirements Interactions in Software Systems", in
Preparation for submission to the International Journal of Requirements
Engineering, Elsevier Pub. Co.

. AbdAllah Mohamed, Gunther Ruhe, Armin Eberlein, Mohamed Shehata, “A
Basis for Managing Attributed Objects Inconsistencies”, in Preparation for
submission to the International Journal of Information and Software Technology,
Elsevier Pub. Co.

. Mohamed Shehata, Armin Eberlein, Abraham Fapojuwo, “ Investigating the
Problem of Feature Interactions in Product Families”, 2™ Annual Engineering
Graduate Students Conference, pp. 71,May 2-3 72005, University of Calgary,
Calgary, Alberta, Canada.

. Mohamed Shehata, Armin Eberlein, Abrgham Fapojuwo, "IRIS: A Semi Formal

Approach for Detecting Requirements Interactions”, ECBS 2004, 11th IEEE

10.

11.

225
International Conference and Workshop on the Engineering of Computer
Based Systems, pp. 273-281, May 24-27 2004, Brno, Czech Republic
Mohamed Shehata, Li Jiang, Armin Eberlein, "Requirements Interaction
Detection Process Guide", CCECE 2004, IEEE Canadian Conference on
Electrical and Computer Engineering, pp. 1753-1756, May 2-5, 2004, Niagara
Falls, Ontario, Canada.
Mohamed Shehata, Armin Eberlein, Abraham Fapojuwo, "The Use of Semi-
Formal Methods for Detecting Requirements Intéractions", SE 2004, The
JIASTED International Conference on Software Engineering, pp.230-235,
February 17-19 2004, Innsbruck, Austria
Mohamed Shehata, Armin Eberlein, Abraham Fapojuwo, "Feature Interactions
between Networked Smart Home Appliancés", QSSE 2004, 4th ASERC
Workshop on Quantitative and Soft Computing Based Software Engineering, pp.
50-54, February 16-17 2004, Banff, Alberta, Canada
Mohamed Shehata, Armin Eberlein, Abraham Fapojuwo, "Detecting
Requirements Interactions: A Three-Level Framework", ASE 2003, Proceedings
of the 18th IEEE Conference on Automated Software Engineering, pp. 352-355,
October 6-10, 2003, Montreal, Canada
Mohamed Shehata, Armin Eberlein, "Requirements Interaction Detection using
Semi-Formal Methods", ECBS 2003, 10th IEEE Symposium and Workshops on
Engineering of Computer Based Systems Huntsville Alabama, pp. 224-232, USA

April 7-11, 2003

226
12. Mohamed Shehata, Armin Eberlein, "Issues in Requirements Reuse and
Feature Interaction Management", ICSSEA ZOOé - 15th International Conference
on Software Systems Engineering and their Applications. Paris, France, Vol. 1,
No. 3-5, pp. 1-7, December 3-5, 2002
13. Mohamed Shehata, Armin Eberlein, "Requirements Interaction Management: A
Multi-Level Framework", SEA 2002 - The 6th IASTED International Conference
on Software Engineering and Applications. MIT, USA, pp. 88-93‘, November 4-6,

2002

227

APPENDIX B: FULL RESULTS FROM CHAPTER 3 ON THE

REQUIREMENTS INTERACTION TAXONOMY

This appendix presents the rest of the proposed interaction taxonomy presented in

Chapter 3. The examples used in each set of interaction scenarios are taken from the same

domain to provide more understanding and consistency within a single domain.

B.1. Two Interacting System Axioms'

1t layer

Two Interacting

System Axior@

¥
2rd Jayer
Rule-Rule 4
Interactions
P N
9 "'r% 3rd |
rd Jayer
o 3q
3 |38
o, as
]

Scenario ID

(1]
1
/
SCR1

Type of Interaction

4t fayer \
TwolnteractingSystemAxioms = Rule-Rulelnteractions > Override

Detection Guideline

IF {(R1.Rule OVERRIDES R2.Rule)} THEN {R1 is interacting with R2 under the t1 interaction type}

Example

e R1(Security) "The library page on ihe website shall be always be under secure logon for members only using
(X=username/password) technique”

e R2(Usability) "All website pages are accessible by no more than 2 clicks from the menu bar

e Interaction: What happen if a user, who is not signed in, wants to go fo the library page? In this case the securily
requirement R1 overrides R2 and redirects him to a sign in page. This means that the user, assuming he is a member,
needs several clicks to go to the library page.

Parameters Effect If X is changed to automatic IP detection and the secure logon is granted to specific IPs then the interaction is
eliminated as the user who tries to go to the library page is validated using his IP address. Of course if the user tries to
access the library from an unknown machine then he has to go through the usermame/password validation.

Scenario ID SCR2

Type of Interaction

TwolnteractingSystemAxioms = Rule-Rulelnteractions > Negativelmpact

Detection Guideline

IF {(R1.Rule NEGATIVELY_IMPACTS R2.Rule)} THEN {R1 is interacting with R2 under the {2 interaction type}

Example

e R1(Assurance) "There shall be an input acceptability checking mechanism X to validate the input data before the system
exhibits any response"

» R2(Performance) "The response time of the system should be as minimal as possible and at all times should be equal to
(Y=0 - 3.0 seconds)”

e Interaction: What happens if the input acceptability mechanism X is set to a very complex mechanism? This will cause
the system response time to increase dramatically which negatively impacts R2.

Parameters Effect

If the input acceptability mechanism X is set to a simple mechanism then the system response time is reduced and the
negative impact is small or can be neglected.

! The examples of interaction scenarios in this category are taken from the web e-commerce system which
is a representative of the web domain

228

B.2. A System Axiom Interacting with a Dynamic Behaviour Requirement *

A System Axio
interacting with
A Dynamic Behavior
requirement

1stlayer

4 - e N
O] o nd
K{ufe- Rule- Rue- 2'd layer
ction Prestate Next state
Interactions [| Interactions || Interactions
pYd AT : 2 b
= = .
=] == [so)x] m rd
g EX I 23 5’3 o_g" 3rd jayer
38| BEY (22T (527 |3e™
¥ RS | BE| R |BE

L

foul fow bow Bom Bom] #ver\

Scenatio 1D

SCR3

Type of Interaction

SystemAxiominteractingWithDynamicBehaviourRequirement > Rule-Actioninteractions - Override

Detection Guideline

IF {(R1.Rule OVERRIDES R2.Action)} THEN {R1 is interacting with R2 under the 13 interaction type}

Example

e R1: "The max temperature of hot water from boiler is 45 degrees in order to keep the boiler in safe operation™

e R2: Increase the temperature of the hot water to (X=55) degrees in outlet (Y=washing machine) when the washing
machine starts operating”

e Interaction: Obviously the Rule of R1 will override the action of R2 and will not allow the increase of the temperature to
55 degrees

Parameters Effect

if X is changed to be a less or equal to 45 degrees then the interaction is eliminated

Scenario ID

SCR4

Type of Interaction

SystemAxiomInteractingWithDynamicBehaviourRequirement > Rule-Actionlnteractions = Negativelmpact

Detection Guideline

IF {(R1.Action NEGATIVELY_IMPACTS R2.Rule)} THEN {R1 is interacting with B2 under the 14 interaction type}

Example

e R1 "Executive floor calls are of highest priority”
e R2 "The it is called by pressing the call button and it should arrive within (X=2min) minutes otherwise an alternative car i
assigned to that floor”

l» Interaction: If there are calls from the executive floor then the arrival of the lift is delayed until executive floor calls are
served. Hence the rule of R1 has negatively affected the action of R2 by delaying the arrival of the lift

Parameters Effect

If X is changed to longer wait period then the interaction can be reduced

Scenario ID

SCR5

Type of Interaction

SystemAxiominteractingWithDynamicBehaviourRequirement -> Rule-PreStatelnteractions > PreStateBlocking

Detection Guideline

IF {(R1.Rule BLOCKS R2.PreState)} THEN {R1 is interacting with R2 under the 15 interaction type }

Example

l» R1(maintenance) “To avoid system problems, the lift is subjected to regular maintenance on monthly bases

e R2(operation) "When lift is on standby at floor (X=K) with doors closed and receives call from floor K, it opens its doors”
e Interaction: what happens when there is a maintenance going on with the lift at floor K and someone calls the lift from
floor K? Obviously it will not open its doors because the power is disconnected during maintenance to prevent
accidents. Hence the rule of R1 has prevented and blocked the lift from being in standby which is prestate of R2

Parameters Effect

If X has changed to be the parking level of the lift, then the user will not have access to call the lift from this level. O

course he can still call lift from other levels but in such case the interaction is not prestate blocking between R1 and R2.

2 The examples of interaction scenarios in this category are taken from the lift system which is a
representative of the control domain

229

Scenario ID

SCR6

Type of Interaction

ISystemAxiominteractingWithDynamicBehaviourRequirement > Rule-NexiStateInteractions = NextStateDelay

Detection Guideline

IF {(R1.Rule DELAYS R2.NextState)} THEN {R1 is interacting with R2 under the 16 interaction type }

Example

e R1 (Operation) "Executive floor calls always has (X=highest priority)*

e R2 (Operation) "When the lift passes by floor K and there is a call from this floor, the lift will stop at floor K”

e Interaction; What happens when the lift is passing by floor K and there is a call from floor K but there is always 5 calls
from executive floors. In this case, R2 next state will not be reached which is to stop at floor K until all executive calls
are served. Hence the rule of R1 has delayed the next state of R2.

Parameters Effect | What happens when there is continues calls from executive floors? This means that the [ift won't go to floor K which
means that there is a severe delay to go next state of R2. But if X is changed to be highest priorities for 5 cails then the
lift must serve regular floors then the severity of the interaction is reduced.

Scenario ID SCR7

Type of Interaction

SystemAxiominteractingWithDynamicBehaviourRequirement > Rule-NextStatelnteractions > NextStateBlocking

Detection Guideline

IF {(R1.Rule BLOCKS R2.NexiState)} THEN {R1 is interacting with R2 under the 7 interaction type }

Example

» R1 "for a lift at floor K, The lift doors eventually must close after a maximum of (x=1 minute)*

» R2 "When something blocks lift doors, the lift interrupts the process of closing the doors and reopens them”

e Interaction: if a user keeps blocking the lift doors with his leg then after a 1 minute the rule of R1 is enforced and
prevents R2 from being able to reach its next state which is “Doors opened”

Parameters Effect

If X is changed to be 1 hour or unlimited time then there is no interaction

230

B.3. A System Axiom Interacting with a Resource’

@ A System Axiom
interacting
with a Resource

1stiayer

A

/ P 3 sy
$9 RS1|0 S11 2nd [ayer
Rule-Availability| | performance | | Rule-Interface
Interactions Interactions Interactions
p =
0 ;Ug Qm ,_-,-zg u-_gg 3rd layer
$Ex| |85z 8. ISER [3E5Es
g3~ ES% |gEe| [1Ex3S |Egg™
=, o D~
=% s 55 | [*9g |]ge
; : : ; ¥ th
BCR1] [scRig [sCR1g lscrad [scrad] 4% layer \

Scenario ID

SCR17

Type of Interaction

SystemAxiominteractingWithResource -> Rule-Availabilitylnteractions > FailureOfResource

Detection Guideline

[IF {(R1.Rule violates Resource.Availabifity) AND (R1.Rule LEADS_TO_FAILURE Resource.Availability)) THEN {R1 is
nteracting with Resource under t17 interaction type }

Example

e R1 “The website shall be able to handle (X=5 hits/sec)”

e Resource.Availability "The application server must be available for processing requests more than 99.9% during
each week’

s Interaction: If the website receives heavy load, say 100 hits/sec. at a single instance then this might cause a failure {9
the application server. This is due to the fact that the website was not designed fo receive such amount of request. |
this oceurred frequently then the rule of R1 has caused failure rate of application server to exceed its constraint statec
in resource availability.

Parameters Effect

If X is increased to a reasonable number then the interaction is eliminated.

Scenario ID

SCR18

Type of Interaction

iSystemAxiomInteractingWithResource -> Rule-Availabilitylnteractions > TakingOverResource

Detection Guideline

IF {(R1.Rule violates Resource.Availability) AND (R1.Rule LEADS_TO_TAKING_OVER Resource.Availability)] THEN
R1 is interacting with Resource under t18 interaction type }

Example

e R1:"The system shall use X database server to store and retrieve data”

e Resource.Availability "The database server must be available for processing requests more than 89.9% during each

week”

e Interaction: Assuming that the database server is an old one that can handle only few requests simultaneously. Every
time an application server sends a few requests to database server, the database server gets busy and can't handlj

new requests. If there is more than one application server accessing this database server then it is often unavailabl

for other application servers. -

Parameters Effect

If the database server X is set to a new and powerful one then it becomes more available to all application servers
and won't appear as being taken over by just one application server

3 The examples of interaction scenarios in this category are taken from the web e-commerce system which
is a representative of the web domain

231

Scenario ID

SCR19

Type of Interaction

ISystemAxiominteractingWithResource > Rule-Performancelnteractions > PerformanceDegradation

Detection Guideline

IF {(R1.Rule violates Resource.Performance) AND (R1.Rule LEADS_TO_PERFORMANCE_DEGRADATION
Resource.Performance)} THEN {R1 is interacting with Resource under £19 interaction type }

Example

e R1:"The system shall use X techniques for encryption of transmitted financial data

e Resource.Performance "The response time of the application server is less than 3 seconds ”

o Interaction: Assume that X is a very complex technique. Every time a user tries to submit financial data, the server
must encrypt the data using X and since X is very complex then its performance is degraded for any other requests
and it can also exceed the 3 seconds limit in the constraint of server performance

Parameters Effect

If X is set to a normal encryption technique then the interaction is eliminated

Scenario ID

SCR20

Type of Interaction

SystemAxiominteractingWithResource = Rule-Interfacelnteractions = UnexpectedinputKeysBehabvior

Detection Guideline

IF {(R1.Rule violates Resource.Interface) AND (R1.Rule LEADS_TO_UNEXPECTED_INPUT_ BEHAVIOUR
Resource.Interface)} THEN {R1 is interacting with Resource under t20 interaction type }

Example

le R1:"User can accept incoming calls on the net phone using (X= pressing number 9 number key, which is letter Y to
stand for YES) technique”

o Resource.interface "Standard input interface is provided for the net phone interface”

e Interaction: If there is an incoming call and the user is not familiar with this technique, the user might press the
regular keys for accepting new calls but it won’t work so he might try different keys which might result for terminating
the incoming call unexpectedly

Parameters Effect

Setting X to only standard technigues eliminate the interaction

Scenario ID

SCR21

Type of Interaction

SystemAxiominteractingWithResource > Rule-Interfacelnteractions - UnexpectedOutputDisptayBehabvior

Detection Guideline

IF {(R1.Rule violates Resource.Interface) AND (R1.Rule LEADS_TO_ UNEXPECTED_OUTPUT_ DISPLAY
Resource.interface)} THEN {R1 is interacting with Resource under {21 interaction type }

Example e R1:"The user is notified by incoming calls on his net phone using (X= switch the focus to the net phone incoming
message interface and keeps the user there until he provides a response) technique”

s Resource.Interface "Standard output interface is provided for the net phone interface”

e Interaction: If the user is playing a game on the screen and there is an incoming call then the focus is switched
automatically to the net phone and the user loses the game he is playing (which in sometimes might be mord
jmportant than the incoming call) which results in unexpected display behaviour.

Parameters Effect If X is set to sounding an alarm with a background visual alarm then there is no interaction as the user will not be

surprised by an unusual display behaviour

232

B.4. A Dynamic Behaviour Requirement Interacting with a Resource’

L

A Dynamic Behavior
Requirement interacting
with a Resource

1stlayer

¥ —
s12 513 s14 ond Javer
A ction-Availability] pe,‘;‘(ﬁtﬁ?ﬁce Action-Interface, y
Interactions Interactions || Interactions
] =

27 | [#2 | 185 | |e5% ||eEE 3 layer

= = 39 e3¢ So¢
258 [g88 |B3¥ [N Eosb
Q0 Q& =1 ojé -~ o, % =
@ = °g sz SGL | TR

T I ,” f i o

Gcred fscred fscred [sored [somed 4% layer \

Scenario ID

SCR22

Type of Interaction

DynamicBehaviourRequirementinteractingWithResource -> Action-Availabilitylnteractions > FailureOfResource

Detection Guideline

IF {(R1.Action violates Resource.Availability) AND (R1.Action LEADS_TO_FAILURE Resource.Availability)} THEN {R1 ig
nteracting with Resource under 122 interaction type }

Example s R1 “When the electricity consumption exceeds X KW/, start shutting down devices A then B then C then D in this
order until consumption reaches Y KWihr”
e Resource.Availability “The boiler shall be available more than 99.9% during each week”
 Interaction: Assume that the boiler is device C in R1. If X is set to a small number then it is often that the system shall
shutdown the boiler to maintain the consumption rate and this will violate the resource availability constraint.
Parameters Effect If X is set to a large number or the boiler is not in the list of devices to be shutdown then there is no interaction
Scenario ID SCR23

Type of Interaction

DynamicBehaviourRequirementinteractingWithResource = Action-Availabilitylnteractions - TakingOverResource

Detection Guideline

IF {(R1.Action violates Resource.Availability) AND (R1.Action LEADS_TO_TAKING_OVER Resource.Availability)} THEN
R1 is interacting with Resource under 123 interaction type }

Example

e R1:"During vacation, the vacation control system shall imitate the sound of occupants between times A to B using
(X=TV) device”

o Resource.Availability "The AV devices are available during daytime for personal use”

e Interaction: R1 will cause the unavailability of TV between A-B and this violates the resource availability constraint on
having the TV avaitable during daytime for personal use such as recording a show while away. In this case the TV ig
unavailable as it cannot do the two things together.

Parameters Effect

o [f X was set to be an integrated/embedded audio circuit in the system then there is no interactions

Scenario ID

SCR24

Type of Interaction

DynamicBehaviourRequirementinteractingWithResource -> Action-Performancelnteractions =
PerformanceDegradation

Detection Guideline

IF {(R1.Action violates Resource.Interface) AND (R1.Action LEADS_TO_DEGRADATION Resource.Performance)}
THEN {R1 is interacting with Resource under 24 interaction type }

Example

e R1 "The user can set the CD player to play stream audio tracks from the internet between times A to B using
(X=dialup) connection”

e Resource.Performance “Audio/Video devices have performs using high definition quality standards”
e Interaction: The dialup connection has many drops in its performance. Hence, in this case the action of R1 shall
affect the performance of the CD player and violates the resource performance constrainis

Parameters Effect

if X is set to high speed connection such as T1 connection then there is no interaction

* The examples of interaction scenarios in this category are taken from smart home system which is a
representative of the networked devices domain

233

Scenario ID

SCR25

Type of Interaction

DynamicBehaviourRequirementinteractingWithResource - Action-Interfacelnteractions ->
UnexpectedinputKeysBehabvior

Detection Guideline

IF {(R1.Action violates Resource.Interface) AND (R1.Action LEADS_TO_ UNEXPECTED_INPUT_ BEHAVIOUR
Resource.Interface)} THEN {R1 is interacting with Resource under t25 inferaction type }

Example e R1 "To dial a voice activated number, user must pick the handset, press key (X= number key, which is an unusual
input key in this case) and say the voice sample of the desired number”

e Resource.Interface "Standard input interface is provided for the smart home phone interface”

e Interaction: Assume a user picks the handset and press this key number, the telephone will not know if this number is
part of a dialled number or it should activate the voice dialling system and hence this input might result in an
unexpected behaviour”

Parameters Effect Assign X to a special key other than number keys
Scenario ID SCR26

Type of Interaction

DynamicBehaviourRequirementinteractingWithResource ~> Action-Interfacelnteractions -
lUnexpectedOutputDisplayBehabvior

Detection Guideline

IF {(R1.Action violates Resource.Interface) AND (R1.Action LEADS_TO_ UNEXPECTED_OUTPUT_ DISPLAY
Resource.Interface)} THEN {R1 is interacting with Resource under t26 interaction type }

Example

e R1 "When the user is talking on the phone, Alert him 5 seconds before the end of every minute using (X= displaying
a warning on the screen of the telephone set) technique”

e Resource.Interface “Standard output interface is provided for the smart home phone interface”

o Interaction: Consider a user who is storing a phone number while talking with someone on the phone. When the
minute is about to finish (55 seconds), the system alerts the user and causes him to lose all his data because of the
unexpected display behaviour which switches the normal screen to display the call time.

Parameters Effect

If X is changed to be an audio alarm then there is no interactions

234

B.5. Two Interacting Resources®

1*Hayer

®Two Interacting
Resources

516 “ST7 nd
Avallablh Performance- Interface- 2" layer
Avallablh Performance Interface
Interactionis Interactions Interactions
: 3 3
[=] >
3 E; g 34 Jayer
© =
£8 EELS B
2 =5 =4
= ea =
‘an s e ‘21
) 1
40 layer
/ cRr2g ScR29 y \
Scenario ID SCR27

Type of Interaction

TwolnteractingResources -> Availability-Availabilitylnteractions = Dependabiity

Detection Guideline

IF {{Resource1.Availability DEPENDS_ON Resource2.Availability)} THEN {Resource1 is mteractmg with Resource2
under 27 interaction type }

Example e Resource1:Availability "The (X=natural gas) boiler shall be available more then 99.9% every year”
e R2:"The natural gas regulator shall be available 100% every year”
s Interaction: if the natural gas regulator fails, i.e., becomes unavailable, for any reason and the nafural gas is being
blocked then the boiler is not working and hence becomes also unavailable
Parameters Effect If X is changed to be Natural gas / electric boiler then this reduces the degree of dependability between the boiler
and the natural gas regulator
Scenario ID SCR28

Type of Interaction

TwolnteractingResources-> Performance-Performancelnteractions > PerformanceDegradation

Detection Guideline

IF {(Resource1.Performance LEADS_TO_DEGRADATION Resource2.Performance)) THEN {Resource1 is
interacting with Resource2 under 128 interaction type}

Example e Resourcet:Performance “The (X=T1) Network Card, used to connect to the internet, provides best performance for

connection speed”

e Resource2:Performance “Audio/ devices performs using high definition quality standards”

e Interaction: The performance of a CD player, which plays stream audio from the internet, is related to the
performance of the T1 card. If the T1 card performance is degraded for any reason (e.g. loose connection, paths
congestion) then the CD performance is also degraded.

Parameters Effect If X is changed to be two network cards (.e., connecting to the internet through two independent ways) then if the
performance of one card is degraded then the other can compensate for that and the CD player won't fee! the
difference

Scenario ID SCR29

Type of Interaction

TwolnteractingResources = Interface-Interfacelnteractions > Incompatibility

Detection Guideline

IF {(Resource.Interface INCOMPATIBLE_WITH Resource2.Interface)} THEN {Resource1 is interacting with
Resource2 under t29 interaction type }

Example e Resourcel.Interface"The TV has an X10 (which is a smart home communication protocol) compatible inferface”
e R2:"The VCR has (X=KONNEX, which is a smart home communication protocol) compatible interface”
e Interaction: Obviously the two resources have incompatible interfaces and they cannot communicate directly with
each other
Parameters Effect If X is changed to X10 then the interaction is eliminated

3 The examples of interaction scenarios in this category are taken from smart home system which is a
representative of the networked devices domain

B.6. A Dynamic Behaviour Requirement Interacting with a System Axiom

235

6

@ A Dynamic
ehavior Requiremen
Interacting with
System Axio

15t layer

¥

S18
Action-Rule
Interactions

rd

2nd Jayer

4

3 layer

apIIBAD
08}
Joedu|
annebapy
1£3

/

!

SCR3 4t layer \

Scenario 1D

SCR30

Type of Interaction

DynamicBehaviourRequirementinteractingWithSystemAxiom -> Action-Rulelnteractions > Override

Detection Guideline

IF {(R1.Action OVERRIDES R2.Rule)} THEN {R1 is interacting with R2 under the 130 interaction type}

Example

e R1” for (x=unlimited times), closing of the lift door can be prevented when the user presses an open-door button”

e R2 "The unserved calls are always served”

e Interaction: What happens when the user keeps pressing the open-door bution? In this case the action of R1 will
override the rule of R2 and prevent the lift from serving unserved calls. A solution might be to force doors to close even
if user is still pressing the open-doors button.

Parameters Effect

if X is changed to be a specific number then eventually, the lift doors are closed and the lift will be able to serve
unserved calls.

Scenario ID

SCR31

Type of Interaction

DynamicBehaviourRequirementinteractingWithSystemAxiom -> Action-Rulelnteractions - Negativelmpact

Detection Guideline

IF {(R1.Action NEGATIVELY_IMPACTS R2.Rule)} THEN {R1 is interacting with R2 under the t31 interaction type}

Example

e R1 "When the liftis overloaded, then (X=the doors shall not close)”

e R2 "The lift system is equipped with portable split air conditioning unit to provide air conditioned environment ™

s Interaction: What happens when the lift is overloaded? The action of R1 has a negative effect on rule of B2 as the open
doors negatively affect the air conditioning of lift.

Parameters Effect

If X is changed to “Display an overload message and the lift shall not move” then this means that the doors are going to
close but the [ift won't move which preserves the air conditioning of the lift while fulfilling the safety property of not
operating with an overload weight.

® The examples of interaction scenarios in this category are taken from the web e-commerce system which
is a representative of the web domain

236

B.7. A Resource Interacting with A System Axiom’

/

/’\
® A Resource
interacting
With a System Axiom

At layer

/ v
$19 S20 S21 20d layer
Avaltability-Rulg | Perfgiance- || jnterface-Rule 4
Interactions Interactions || Interactions

{3 +

g ~ g ~ 3 layer

IR 38

& &

e N

Scenario ID

SCR32

Type of Interaction

ResourcelnteractingWithSystemAxiom = Availability-Rulelnteractions - Override

Detection Guideline

IF {(Resource1.Availability OVERRIDES R1.Rule)} THEN {Resource1 is inferacting with R1 under 132 interaction
type }

Example e Resource1.Availability "The database server is not available during (X=weekends) for maintenance purposes”
e R1 "Users can access their accounts (Y=at any time)”
e Interaction: The unavailability of the resource during the weekends will override the rule of R1.

Parameters Effect It Y is changed to be weekdays and week nights then the interaction is eliminated

Scenario ID SCR33

Type of Interaction

ResourcelnteractingWithSystemAxiom = Performance-Rulelnteractions -> Override

Detection Guideline

IF {(Resource1.Performance OVERRIDES R1.Rule)} THEN {Resourcet is interacting with R1 under t33 interaction
type }

Example s Resource1.Performance “The response time of the database setver can take up to (X=10 seconds)”

e R1 “Any transaction on the website must not exceed 8 seconds”

e Interaction: The performance of the database server which might take up to 10 seconds overrides the rule Ri.
Parameters Effect If X is changed to be less than 8 seconds then the interaction is resolved
Scenario ID SCR34

Type of interaction

ResourcelnteractingWithSystemAxiom = Interface-Rulelnteractions = Incompatibility

Detection Guideline

IF {{Resource1.Interface INCOMPATIBLE_WITH Ri.Rule)} THEN {Resource1 is interacting with Resource2 under
129 interaction type

Example o Resourcet.Interface™The interface of the website shall not include any online transactions pages”
e R2 "The website shall be designed for (X=online shopping retailers™
e Interaction: Obviously the interface is incompatible with the website of an online shopping retailer as such an online
retailer will need financial transactions webpage for customers to pay for their buys.
Parameters Effect It X is changed to be a web site for onling displaying data then there is no interaction

7 The examples of interaction scenarios in this category are taken from the web e-commerce system which
is a representative of the web domain

237

B.8. A Resource Interacting with a Dynamic Behaviour Requirement®

/

® AResource
teracting With a Dynamt
chavlour Requirem

1% [ayer

VA +

§22 §23
Avallability-Actior] | Performance-
Interactions

§24 24 Jayer
Interface-Action

ction
Interactions Interactions

el

1
2

3rd jayer

4t layer \

BPIIBAQ
['12]
BPUIBAQ
963

Scenario ID

SCR35

Type of Interaction

ResourcelnteractingWlthDynamicBehaviourRequirement = Availability-Actionlnteractions > Override

Detection Guideline

IF {(Resource1.Availability OVERRIDES R1.Rule)} THEN {Resource1 is interacting with R1 under t32 interaction
type }

Example e Resource1.Availability "The database server is not available during (X=weekends) for maintenance purposes”
o R1 At time (y= 6 am every Saturday, update the contents of the website”
e Interaction: The unavailability of the resource during the weekends will override the action of R1 because there are
data needed from the database server in order to correctly update the website
Parameters Effect If Y is changed to be any time during weekdays and week nights then the interaction is eliminated
Scenario ID SCR36

Type of Interaction

ResourcelnteractingWlthDynamicBehaviourRequirement = Performance-Actioninteractions - Override

Detection Guideline

IF {(Resource1.Performance OVERRIDES R1.Rule)} THEN {Resource1 is interacting with R1 under 33 interaction
type }

Example e Resource1.Performance “The response time of the database server can take up to (X=10 seconds)’
e R1 “after (Y=5 seconds), display the results of the operation ”
e Interaction: The performance of the database server which might take up to 10 seconds overrides the action of R
and will not allow it to display correct results.
Parameters Effect If Y is changed to be 10 seconds or more then the interaction is resolved
Scenario ID SCR37

Type of Interaction

ResourcelnteractingWithDynamicBehaviourRequirement = Interface-Actioninteractions - Incompatibility

Detection Guideline

IF {(Resourcel.Interface INCOMPATIBLE_WITH R1.Rule)} THEN {Resource1 is interacting with Resource2 under
t29 interaction type }

Example s Resource1.InterfaceThe interface of the website shall include only (X=non interactive contents)”
e B2 "When the user enters a correct user name and password, then he is logged in and a welcome message is
displayed”
e Interaction: Obviously the interface is incompatible with the action as the interface will not support active contents.
Parameters Effect If X is changed to be interactive and non interactive then the inferaction is eliminated

The examples of interaction scenarios in this category are taken from the web e-commerce system which is
a representative of the web domain

- 238
APPENDIX C: FULL RESULTS ON THE COMPARISON IN CHAPTER 3
ON COMPARING THE PROPOSED REQUIREMENTS INTERACTION

TAXONOMY WITH OTHER TAXONOMIES

This appendix contains specific and detailed results on the results of comparing the
proposed interaction taxonomy presented in Chapter 3 with already existing taxonomies
in the literature.

The SCR presented between brackets following individual numbers represents an
interaction scenario in the proposed interaction taxonomy. For example in Table C.1,
SCRS8 next to 1 in the SUSC column indicates that the example number 1 is addressed by
the interaction scenario SCR8 in the proposed interaction taxonomy. Also numbers in
columns represent the example number in the corresponding taxonomy. For example, in
Table C.1, 3 refers example 3 presented in the corresponding taxonomy which is

Cameron et al. taxonomy.

Table C.1: Comparing proposed taxonomy to Cameron et al. taxonomy

239

Nature of interaction (first approach: 5 categories, 22

examples
Cause of interaction
(Second approach: 12 categories, 22 SUSC SUMC MUSC MUMC CUSY
examples)
Naming 8 (SCR8) | 10(SCR23or | 11 (SCRI5)
SCR26) 12 (SCR15)
Data availability 16 (SCR10)
Violations of Admmlstl: ative 5(9) E:E:::ﬁ;
assumptions domain
Call control 1 (SCR8) 14 (SCR8)
3 (SCR14) 15 (SCR8)
4 (SCRI15)
Signalling protocol 13 (SCRI5)
Limitations on CPE signalling 2 ésccl;';g)"" 7(SCR25)
network Funct. of 5 (SCR23) 21 (missed)
support Communications
Resource contention 2 (SCR8 or
SCR23)
: Instantiation 4 (SCRI15) 9 (SCRI15) 17 (SCR16)
Problems in Timing and race 2 (SCR8 or | 7(SCR25) 18 (SCR16)
distributed SCR23)
Feature support 6 (SCR15)
systems PP § (SCRS)
Non-atomic 22 (missed)
operations

MUMC=Multiple User Multiple Component CUSY=Customer System

call control of the second approach

® SUSC= Single User Single Component SUMC= Single User Multiple Component

MUSC= Multiple User Single Component

@ Each cell will correspond to a category in first approach through its column and a category in second approach through its row, i.c,,
the cell that has number | in it, means that example number 1 was used to illustrate category SUSC of first approach and category

Table C.2: Comparing proposed taxonomy to Kolberg ef al. taxonomy

Interaction Category Examples Used
Multiple Action Interaction (MAI) 1 (SCRI12)
Shared Trigger Interaction (STI) 2 (SCR23)
Sequential Action Interaction (SAI) 3 (SCRILI)
Missed Trigger interactions (MTI) 4 (SCRI3)
5 (SCR16)

240

Table C.3: Comparing proposed taxonomy to Reiff-Marganiec et al. taxonomy

Interaction Category Examples Used
Conditional Goals 5.1 (SCR1)
Conditional Event-Condition-Action (ECA) — Shared Trigger 5.2 (SCRI10)
Conditional Event-Condition-Action (ECA) — Sequential Trigger 5.3 (SCRI2)
Single Entity (SE) SE example (SCR12)
Multiple Entity Single Branch (MESB) MESB example (SCR1)
Single Entity Multiple Role (SEMR) SEMR example (SCR1)
Multiple Entity Single Role (MESR) MESR example (SCR1)
Multiple Entity Multiple Role (MEMR) MEMR example (SCR1)
Refinement 5.4 (SCRI) or (SCR2)
Preference . Preference example (SCR11)

® Note that some categories did not include any examples for illustration such as Multiple Entities-Same Domain-Different
Branches (MEDB)

® The examples presented in some categories, such as the SE category, did not have a specific example numbering, so we refer to
it as only example because the example is included in the body text of the category

241
APPENDIX D: FULL RESULTS ON THE DEVELOPED PLUG-INS FOR IRIS
IN CHAPTER 5
This appendix contains details on the developed plug-ins for IRIS from Chapter 5. It is
worth mentioning that this appendix will not describe the plug-in interaction scenario

because all interaction scenarios are described in details ion Chapter 3 and Appendix B.

Hence, this appendix contains details for 8 plug-ins listed in Tables D.1-D.8 respectively.

Table D.1: The plug-in Functionalities Identification

Type: STEP
Body: What | Name Functionalities Identification
Description This Plug-in is used when a single requirement is complex and
describes different functionalities. The goal of this plug-in is to
simplify the parent requirement and to separate the different
encapsulated functionalities into atomic functionalities that can be
easily handled
Construction The execution of this plug-in requires the following activities:
1.For each requirement, identify complex requirements that
performs more than one functionality
2.Break down the complex textual description of the
requirement into atomic functionalities such that each atomic
functionality can perform only one functionality
3.Go back to activity 1 until all requirements have been
addressed
When | Problems this 1. Solving the problem of complex requirements
plug-in 2.Unclear representation of different functionalities
overcomes encapsulated in one requirement
3.Lack of understanding of requirements due ambiguous
complex requirements
Expected 1. Reduced requirements ambiguity
enhancements 2.Improved interaction detection between different
functionalities within one requirement
How Instructions 1. This plug-in is applied prior to IRIS step 1
Sample of This plug-in has been applied in a case study to identify
application interactions between the requirements of smart homes. Refer to
Chapter 8 for an example application
Location Sinf:e this is a STEP plug-in that is needed to be performed prior to the application of IRIS
basic core steps, then this step is hooked to the hook H1

242

Table D.2: The plug-in Parameters Assignment

Type:

STEP

Body:

What

Name

Parameters Assignment

Description

This plug-in is used to find any parameterized parts in the given
set of requirements. Then these parameterized parts are replaced
by parameters (e.g., X, Y ...etc).

Construction

The execution of this plug-in requires the following activities:

1.For all system axioms and dynamic behaviour requirements,
select a requirement for consideration, list it separately, and
read it carefully.

2.For the requirement under consideration, identify if it has a
parameterized part in its body.

3.Identify the parameterized part that needs to be replaced with a
parameter

4.Replace the parameterized part of the requirement with a
unique parameter (e.g., X or Y)

5.Go back to activity 3 until all requirements have been
addressed.

When

Problems this
plug-in
overcomes

1. Unclear representation of parameterized requirements
2. Unclear representation of reused requirements
3.Lack of understanding of requirements

Expected
enhancements

1.Reduced requirements ambiguity

2.Reduced difficulty filling in the requirements tables in step 2
of the basic core of IRIS

3.Improved interaction detection due to interactions between the
parameterized parts of the requirements

How

Instructions

1. This plug-in is applied prior to step 1 of IRIS basic core

2.This plug-in is applied after the plug-in Functionalities
Identification (if used)

3. This plug-in is applied to all requirements

Sample of
application

This plug-in has been applied in a case study to identify
interactions between the requirements of smart homes. Refer to
Chapter 8 for an example application

Location

Since this is a STEP plug-in that is needed to be performed prior to the application of IRIS
basic core steps, then this step is hooked to the hook H1

243

Table D.3: The plug-in Parameters

Type:

ATTR

Body:

What

Name

Parameters

Description

This plug-in corresponds to adding the attribute “Parameters” to
the set of attributes used for representing system axioms or
dynamic behaviour requirements ‘

Construction

The execution of this plug-in requires the following activities:

6.Add a new attribute called Parameters to the set of attributes
used for representing system axioms or dynamic behaviour
requirements ‘

7.Add a new column called Parameters in the system axioms
and dynamic behaviour requirements attributes identification
tables created in the second step of IRIS to correspond to the
attribute Parameters that was created in activity 1

8.For each requirement in any of the tables created in the
second step of IRIS, list any parameters in the main body of
the requirements in the new column created in activity 2

9.The parameters listed in the new Parameters column as
described in activity 3 will be in the form of the parameter
and its data type)

10. Go back to activity 3 until all requirements have been
addressed.

‘When

Problems this
plug-in
overcomes

4. Solving the problem of parameterized requirements

5.Unclear representation of parameters in system axioms and
dynamic behaviour requirements attributes identification
tables

6. Unclear representation of the data types that parameters can
have in the requirements attributes data type

7.Lack of understanding of requirements due to using
unexplained parameters in the system axioms and dynamic
behaviour attributes identification tables

Expected
enhancements

5.Reduced requirements ambiguity

6. Correctly dealing with parameters and data types they can
have

7.Improved interaction detection due to interactions between
the parameterized parts of the requirements

How

Instructions

2. This plug-in is applied during IRIS step 2

3. This plug-in must be applied in conjunction of the plug-in
Parameters Assignment

4. This plug-in is applied to all parameterized requirements

Sample of
application

This plug-in has been applied in a case study to identify
interactions between the requirements of smart homes. Refer to
Chapter 8 for an example application

Location

Since this is an ATTR plug-in that is needed to add the attribute Parameters to either system
axioms or dynamic behaviour, then this plug-in is hooked to the hooks H2 or H4

244

Table D.4: The plug-in Parameters Range

Type:

ATTR

Body:

What

Name

Parameters Range

Description

This plug-in corresponds to adding the attribute “Parameters
Range” to the set of attributes used for representing system
axioms or dynamic behaviour requirements

Construction

The execution of this plug-in requires the following activities:

1.Add a new attribute called Parameters Range to the set of
attributes used for representing system axioms or dynamic
behaviour requirements

2.Add a new column called Parameters Range in the system
axioms or dynamic behaviour attributes identification tables
created in the second step of IRIS to correspond to the
attribute Parameters Range that was created in activity 1

3.For each requirement in any of the system axiom and
dynamic behaviour tables created in the second step of IRIS,
identify the range of values that each parameter, listed in the
parameters column, can has

4.The new Parameters Range column will contain all
parameters and the range of values they can have

5.Go back to activity 3 until all requirements have been
addressed.

When

Problems this
plug-in
overcomes

1. Solving the problem of parameterized requirements

2.Unclear representation of what range of values that
parameters can have in system axioms and dynamic
behaviour requirements attributes identification tables

3.Lack of understanding of requirements due to using
unexplained parameters in the system axioms and dynamic
behaviour attributes identification tables

Expected
enhancements

1. Reduced requirements ambiguity

2. Correctly dealing with parameters and the range of values
they can have

3.Improved interaction detection due to interactions between
conflicting values that the parameters can have

How

Instructions

1. This plug-in is applied during IRIS step 2

2.This plug-in must be applied in conjunction of the plug-in
Parameters Assignment

3. This plug-in is applied to all parameterized requirements

Sample of
application

This plug-in has been applied in a case study to identify
interactions between the requirements of smart homes. Refer to
Chapter 8 for an example application

Location

Since this is an ATTR plug-in that is needed to add the attribute Parameters Range to either
system axioms or dynamic behaviour, then this plug-in is hooked to the hooks H2 or H4

245

Table D.5: The plug-in System Axioms Strategies -

Type: STEP
Body: What | Name System Axioms Strategies
Description This plug-in is a step plug-in to identify the system axioms
design and implementation strategies. This step generates a new
table called “System Axioms Strategies Identification Table” to
describe the available design and implementation strategies for
the system axioms
Construction The execution of this plug-in requires the following activities:
1.For each system axiom, read carefully and understand it
2.Based on the available knowledge from experts and
knowledge bases, identify the different design and
implementation strategies for the system axiom under
consideration
3. Construct a table that contains the information collected in
activity 2
When | Problems this 1.Solving the problem of identifying interactions between
plug-in system axioms due to using conflicting design and
overcomes implementation strategies
Expected 1.Improved interaction detection due to interactions between
enhancements conflicting design and implementation strategies
How Instructions 1. This plug-in is applied after IRIS step 2
2.This plug-in is applied to only system axioms
Sample of This plug-in has not been applied in any one of the case studies
application in this thesis. ‘
Location Since this is a STEP plug-in that is needed to perform a certain step on the system axioms,

then this plug-in is hooked to the hooks H2 or H4.

246

Table D.6: The plug-in Availability

Type:

ATTR

Body:

What

Name

Availability

Description

This plug-in corresponds to adding the attribute “Availability” to
the set of attributes used for representing resources
requirements. The use of this plug-in will also result in a new
column in the table created for the resources requirements which
will contain the values regarding the availability for each
resource requirement '

Construction

The execution of this plug-in requires the following activities:
1. Add the attribute Availability to the set of attributes required
to represent resources
2.Add a column in the resources attributes identification table
called Availability
3. In the new availability column, list availability constraints for
each resource requirements

‘When

Problems this
plug-in
overcomes

1.Representing availability of resources and detecting

interactions that might arise from them

Expected
enhancements

1. Correctly dealing with constraints regarding the availability
of resources requirements

2.Improved interaction detection due to interactions resulting
from constraints on the availability of resources

How

Instructions

1. This plug-in is applied during IRIS step 2

2. This plug-in is applied to only resources requirements

3.This plug-in is applied only when there are constraints
regarding the availability of resources

Sample of
application

This plug-in has not been applied in any one of the case studies
in this thesis.

Location

Since this is an ATTR plug-in that is needed to add the attribute Availability to résources,
then this plug-in is hooked to the hooks H6

247

Table D.7: The plug-in Performance

Type:

ATTR

Body:

What

Name

Performance

Description

This plug-in corresponds to adding the attribute “Performance”
to the set of attributes used for representing resources
requirements. The use of this plug-in will also result in a new
column in the table created for the resources requirements which
will contain the values regarding the performance of each
resource requirement

Construction

The execution of this plug-in requires the following activities:
1. Add the attribute Performance to the set of attributes required
to represent resources
2.Add a column in the resources attributes identification table
called Performance
3.In the new availability column, list performance constraints
for each resource requirements

When

Problems this
plug-in
overcomes

1.Representing performance of resources and detecting
interactions that might arise from them

Expected
enhancements

1.Correctly dealing with constraints regarding the resources
requirements performance

2. Improved interaction detection due to interactions resulting
from constraints on resources performance

How

Instructions

1. This plug-in is applied during IRIS step 2

2. This plug-in is applied to only resources requirements

3.This plug-in is applied only when there are constraints
regarding the performance of resources

Sample of
application

This plug-in has not been applied in any one of the case studies
in this thesis.

Location

Since this is an ATTR plug-in that is needed to add the attribute Performance to resources,
then this plug-in is hooked to the hooks H6

Table D.8: The plug-in Interface

248

Type:

ATTR

Body:

What

Name

Interface

Description

This plug-in corresponds to adding the attribute “Interface” to
the set of attributes used for representing resources
requirements. The use of this plug-in will also result in a new
column in the table created for the resources requirements which
will contain information regarding the interfaces of each
resource

Construction

The execution of this plug-in requires the following activities:
1. Add the attribute Interface to the set of attributes required to
represent resources
2.Add a column in the resources attributes identification table
called Interface
3.In the new Interface column, list Interface constraints for
each resource when applicable

‘When

Problems this
plug-in
overcomes

1.Representing Interfaces of resources and detecting

interactions that might arise from them

Expected
enhancements

1.Correctly dealing with constraints regarding the resources
Interfaces .

2.Improved interaction detection due to interactions resulting
from constraints on resources Interfaces

How

Instructions

1. This plug-in is applied during IRIS step 2

2. This plug-in is applied to only resources requirements

3.This plug-in is applied only when there are constraints
regarding the interfaces of resources

Sample of
application

This plug-in has not been applied in any one of the case studies
in this thesis.

Location

Since this is an ATTR plug-in that is needed to add the attribute Interface to resources, then
this plug-in is hooked to the hooks H6

249
APPENDIX E: FULL RESULTS FROM CHAPTER 8 ON THE DETECTED
INTERACTIONS IN SMART HOMES
This appendix presents all the detected interactions from épplying IRIS in the smart
homes case study presented in Chapter 8. The aim is to provide clarification on how each
interaction was detected and an example scenario of interaction for illustration purposes.
Table E.1 uses the following abbreviations:
e ID: A unique interaction ID for each interaction
e DPolicies: Identify the two simple policies that interact
e Analysis: Lists what analysis procedure was used to detect the interaction
e Interaction: Lists an example scenario of a possible interaction, and suggests a
resolution. The scenario listed might not be the only possible interaction scenario
and there might be other situations in which the two policies interact. Sifnilarly,
the solution is only a suggestion and the manufacturer and occupants might prefer
other solutions.
The procedure described in section 8.5.7 explains in details how interactions are detected.
This procedure was also used to detect the interactions listed in this appendix. Equal

priorities of all simple policies were assumed during the detection step.

250

Table E.1: Detected interactions using IRIS and suggested solutions

ID | Policied Analysis Interaction
Type: The action of P1.1 overrides the action of P1.2.
H P1.1, |Linked events{Scenario: A thief opens the window and once he is in, he quickly deactivates the alarm using the alarm switch thug
P1.2 E1,E2 making the alarm appear as a system glitch.
Solution: Freeze the security alarm control panel as soon as alarm s triggered until a PIN is provided.
Type: The action of P1.1 overrides the action of P1.3.
2 P1.1, |Linked events [Scenario; A thief opens the door and once he is in, he quickly deactivates the alarm_using the alarm switch thus
P13 E1,E3 making the alarm appear as a system glitch.
Solution: Freeze the security alarm control panel when alarm triggers until a PIN is provided.
Type: The action of P1.1 overrides the action of P1.4.
3 P1.1, |Linked events Scenario: A thief is in the house and once he sees the PIR, he quickly deactivates the alarm using the alarm switcH
Pi4 E1,E4 [thus making the alarm appear as a system glitch.
olution: Freeze the security alarm control panel when alarm triggers until a PIN is provided.
ype: The action of P1.1 overrides the action of P1.5.
14 P1.1, |Linked eventsiScenario: A thief is in the house, once he feels the alarm is triggered by the pressure pads, he quickly deactivates the
P15 E1,E5 larm using the alarm switch thus making the alarm appear as a system glitch.
Solution: Freeze the security alarm control panel when alarm triggers untif a PIN is provided.
Type: The action of P3.2 overrides the action P1.1.
P14, |Linked events Scenario: P1.1 activates the security alam to secure the house, while P3.2 can still override 'P1.1 and the door car}
15 P3. 2’ E1 E9 be opened. For example, if a thief is inside the house and wants to get out, he can just press the open door switch tq
’ ’ get out. Another example, if an occupant opens the doors using P3.2 then it will falsely trigger the alarm.
Solution: If alarm is activated using P1.1, a PIN is required before executing P3.2.
Type: The action of P10.1 negatively impacts the action of P1.1.
6 P1.1, |Linked events[Scenario: Occupant schedules windows to open in a certain place at a certain time and while this action is executing
P10.1 E1,E7 Joccupant without knowing that windows are opening, activates alarm and hence falsely triggers the alarm.
Solution: Ask the occupant to secure open doors and windows before executing P1.1.
Type: The action of P12.1 negatively impacts the action of P1.1.
P1.4. |Linked events Scenario: Occupant A comes home and deactivates alarm. Occupant B at work can't remember if he activated alamy
17 P1é 1’ E1 el not, so he calls and activates alarm using remote access module. Occupant A opens a window and alarm triggers.
’ ’ Solution: Information about the last deactivation of the security alarm is provided over the phone to the person wh
Iwants to use the remote access module fo set the alarm.)
ype: The action of P3.2 overrides the action of P1.2.
P12 |Linked events cenario: An occupant unlocks the main door using P3.2 while the alarm system is active. If this disables the alam
18 P3' 2’ e [avoid a false trigger, and the main door is opened, then a thief could open a window in the basement at the same
) ’ ime and the alarm will not be triggered. Thus P1.2 action is overridden by P3.2 action.
Solution: When P3.2 opens the door, then only the door is excluded from triggering the alarm.
Type: The action P10.1 negatively impacts the action of P1.2.
o P1.2, |Linked events[Scenario: If the occupant sets a time when the windows open automatically while the security alarm is active then the
P10.1 E2,E7 faction of P10.1 will falsely trigger the alamm.
[Solution: The occupant is notified to cancel scheduled wmdows opening times before alarm is allowed to be active.
Type: The action of P12.1 overrides the action of P2.1.
1o P1.2, |Linked events[Scenario: A thief breaks into the house through a window. One second later, an occupant uses the remote accessi
P12.1 E2,E18 module to cancel the alarm as he is on his way home. The alarm trigger looks like a system glitch and thief escapes.
Solution: If the alarm is triggered then the remote access module cannot disable the alarm system.
Type: The action of P3.2 negatlvely impacts the action of P1.3.
Hi P13, |Linked events [Scenario: Occupants open the main door using the interior main door switch while the alarm is active. This falsely
P3.2 E3,E9 {riggers an alarm.
Solution: The system shall ask for a PIN before opening the door if alarm is acfive.
Type: The action of P3.3 negatively impacts the action of P1.3.
12 P1.3, |Linked events [Scenario: Steam and smoke from cooking causes the G/H/S detector to trigger while the alarm is actlve The systen]
P3.3 E3,E10 ppens the main door according to P3.3. Thus the intruder afarm triggers falsely. -
Solution: Infruder alarm is disabled when the G/H/S detector friggers.
IType: The action of P12.1 overrides the action of P1.3.
P13, |Linked events Scenario: A thief breaks into the house through the door and the alarm is triggered. One second later, an occupan
113 P1é i E3Eig |Ses the remote access module to deactivate the alarm as he is on his way home. Then the thref can get away as the

larm trigger looks like a system glitch.
Eolullon If alarm is triggered then the remote access module cannot disable the security alarm.

251

Table E.1- Continued: Detected interactions using IRIS and suggested solutions

Type: The action of P3.2 overrides the action of P1.4.
Scenario: An occupant unlocks the main door using P3.2 while the alarm system is acinve To avoid false triggering of

114 F;L‘; ng’ 2’: nts Elarm the system disables the alarm then opens main door. If during this time a thief breaks in from the upper floo!
’ ’ nd his movements are detected by a PIR, then alarm will not be triggered because it is temporarily disabled.
Solution: When P3.2 opens the main door, then only the main door is excluded from triggering the alarm.
Type: The action of P8.2 negatively impacts the action of P1.4.
P14, | Same trigger Scenario: An occupant sets the same part of the house (e.g. hallway) for both lights (in P8.2) and security (P1.4) tq
115 P8'2, event E4 check for a positive PIR signal. The occupant gets up at night and the PIR sensor detects his movements thus the
’ ystem activates lights but also activates the alarm which in this case is triggered falsely by the occupant.
Eolution: Don not allow occupants to set the same area for lights increase and security check.
ype: The action of P12.1 overrides the action of P1.4.
P14 |Linked events cenario: A thief breaks into the house and triggers the alarm by a positive PIR signal. But an occupant uses the
116 P1é 1’ E4 E18 emote access module to deactivate the alarm as he is on his way home. Then the thief can get away as the alarm
' ’ rigger looks like a system glitch.
Solution If alarm is friggered then the remote access module cannot disable the security alarm.
Type: The action of P3.2 overrides the action of P1.5.
P15 |Linked events Scenario: An occupant unlocks the main door using P3.2 while the alarm system is active. To avoid false triggering o
117 P3-2’ E5. E9 plarm, the system disables alarm then opens main door. If during this time a thief breaks in from upper floor and hig
’ ! movements are detected by pressure pads, then alarm will not be triggered because it is temporarily disabled.
i Solution: When P3.2 opens the main door, then only the main door is excluded from triggering the alarm.
Type: The action of P8.2 negatively impacts the action of P1.4.
P15 |Linked events Scenario: An occupant sets the same part of the house (e.g. hallway) for both lights and security to check for PIR and
118 P8.2’ E4 E5 pressure pads signals. The occupant gets up at night and activates lights by PIR but also walks on the pressure padg
’ ! n the hallway thus triggers alarm by himself falsely.
Solution: Do not allow occupant to set the same area for lights increase and pressure pads security check.
Type: The action of P12.1 overrides the action of P1.5
P15 |Linked events Scenario: A thief breaks into the house and mggers the alarm by the pressure pads. But an occupant uses ihg
119 P1é 1' E5 E18 remote access module to deactivate the alarm as he is on his way home. Then the thief can get away as the alarm
’ ’ frigger looks like a system glitch.
Solution If alarm is friggered then the remote access module cannot disable the security alarm.
Type: The action of P2.1 overrides the action of P2.2.
P21 |Linked events Scenario: If an occupant presses the deactivate switch while P2.2 is executing, then P2.1 will cancel the action o
120 P2.2’ E6. E7 P2.2 before completion. Note that both functionalities are of equal priorities. This might be important if a child is the
" ’ bone who deactivated the vacation control.
Solution: P2.1 is of higher priority and a PIN is required before the actual deactivation of the vacation control.
Type: The action of P2.1 overrides the action of P2.3.
P21 |Linked events Scenario: If an occupant presses the deactivate switch while P2.3 is executing, then P2.1 will cancel the action o
121 Pé 3 BB E7 P2.3 before completion. Note that both functionalities are of equal priorities. This might be important if a child is the
’ ! one who deactivated the vacation control.
Solution: P2.1 is of higher priority and a PIN is required before the actual deactivation of the vacation control.
Type: P 10.1 negatively impacts the action of P2.1.
P21 Linked events Scenario: P10.1 is a security hole that negatively impacts the intended purpose of P2.1 which is to keep the housel
122 P 0 i 6 E7 afe during extended periods of absence. For example, an occupant activates vacafion control (P2.1) as a protectior]
’ ’ Ef the house while away but P10.1 can still open windows and thus negafively impact the intended purpose of P2.1
olution: Ask the occupant to cancel scheduled window opening before activating vacation control.
ype: The rule of P4.1 overrides the action of P2.2
P22 P2.2 interactsScenario: The vacation control is on and P2.2 is executing. The occupant comes home and forgets to tum the
123 P 4 1’ ith systemvacation contro! off. The accupant then tries to use the remote control to tum the TV off. If the TV is tumed off, then
’ xiomP4.1 fthe rule P4.1 overrode the action of P2.2. If not then P4.1 is violated by P2.2,
olution: The occupant must turn the vacation contro! off first before being able to use the remote control.
ype: The action of P4.2 overrides the action of P2.2.
124 P22, [Same trigger [Scenario: An occupant sets the action of P2.2 to turn on the TV at time X for 60 minutes while the action of P4.2 wa
P42 pventE7 et fo turn off the TV at the same time X. A simitar scenario can also oceur if the defined times overlap.
Solution: Manual settings by occupants for TV, such as P4.2, are cancelled when the vacation control is active.
Type: The action of P2.2 overrides the rule of P5.2,
- P22 P2.2 interacts |Scenario: An occupant sets the TV to Y volume. The next day he lowers the max audio level in P5.2 below Y. Ther|
P5.2

xiom P5.2 Molume which is Y, it violates P5.2.
Solution: The vacation control starts the TV with a volume below the allowed max audio level.

Fith systerrhe activates the vacation control (thus activating P2.2) and leaves, When P2.2 starts the TV with the last setting of

252

Table E.1- Continued: Detected interactions using IRIS and suggested solutions

126

P22,
P9.1

iType: The action of P9.1 negatively impacis the action of P2.2.
Scenario: 9.1 will be a security hole that negatively impacts the intended purpose of P2.2. For example, if the
Same trigger predefined areas of curtain and blinds are the same as the location of TV and the predefined time is the same fol
event E7 P2.2 and P9.1, then this will enable by-passers see that no one is watching TV.

Solution: Disable the opening of curtains and blinds when the vacation contro! is opening the TV. However when the
TV is ot on then curtains and blinds can be opened/closed to give impression that occupants are home.

127

P22,
P9.2

Type: The action of P9.2 negatively impacts the action of P2.2.

| inked events Scena.rio: P9.2 will be a security hole that negatively impacts t}}e intended purpose of P2.2. For example, if the

7 E15 predefined area of curtains and blinds are the same as the location of TV and the predefined time is the same fol
’ P2.2 and P9.1, then this will let anyone looking from windows know that no one home watching TV

Solution: Disable the opening of curtains and blinds when the vacation control is opening the TV.

128

P22,
P10.1

IType: The action of P10.1 negatively impacts the action of P2.2.

IScenario: The action of P10.1 will be a security hole that counteracts the intended purpose of vacation control P2.2
Which is to keep the house safe during extended periods of absence. For example, an occupant activates vacation
control (P2.2) and windows control (P10.1) then leaves.

Solution: Disable the opening of windows when the vacation control is activated.

[Same trigger
event E7

139

P22,
P12.1

Type: The action of P12.1 overrides the action of P2.2

_inked events [Scenario: Occupant A activates vacation control (and thus P2.2) and leaves. Occupant B calls and use remotg
E7,E18 faccess module (P12.1) to tum off the TV or even cutoff the power to it. Hence overriding the action of P2.2

Solution: Remote access module cannot control TV when vacation control is active

130

P23,
Pé.1

Type: The action of P2.3 negatively impacts the action of P6.1.

.inked events {Scenario: An occupant chooses low Temperature for P6.1 and also chooses to turn on all lights with high watts. The
£7,E12 heat radiated from the light bulbs swill affect the decrease of temperature and requires more power for the HVAC.
Solution: With low temperature setfings, use medium light intensity or low power lamps.

131

P23,
Pé.2

Type: The action of P2.3 negatively impacts the action of P6.2.

Same trigger {Scenario: An occupant chooses low Temperature for P6.2 and also chooses 10 turn on all lights with high watts. The
event E7 heat radiated will affect the decrease of temperature and requires more power for the HVAC.

Solution: With low temperature settings, use medium light intensity or low power lamps.

132

P23,
P8.1

Type: The action of P8.1 overrides the action of P2.3.

inked events [Scenario: Vacation control is on and occupant comes home. P2.3 has finished (after 60 min) and starts shutting off
E7,E13 Jights while occupant uses light dimmer to increase the light intensity and the fights might not respond to this request.
Solution: Occupant must turn the vacation contro! off once sthe enters the house before getting control over lights.

133

p2.3,
P8.2

Type: The action of P2.3 overrides the action of P8.2.

Scenario: The occupant comes home and forgets to deactivate vacation contro! (P2.3). At night P2.3 triggers and
4 E7 witches on the lights for 59 min. Then occupant gets up to go to bathroom hence triggering P8.2 which will increase
’ ght to the max over 2 minutes. But P2.3, after first minute, shuts down lights because the 60 minutes have elapsed.

Eolutlon Qccupant must turn off the vacation control once s/he gets home before other policies are active again.

fLinked events

134

P23,
P83

ype: The action of P8.3 overrides the action of P2.3.

| inked events {Scenario: An occupant has both P2.3 and P8.3 active. P2.3 triggers and switches the lights on. After 15 minutes P8.2
£7,E14 witches off lights because no one is home. Thus P8.3 switches off lights after 15 min. (not 60 min as in P2.3).
olution: Disable other light control policies when vacation control is activated.

135

pP2.3,
P8.4

ype: The action of P8.4 overrides the action of P2.3.
cenario: P2.3 is triggered and switches on the lights for 60 min. At the end of the 60 minutes, the system starlq
hutting off the fights. At the same instant, the night begins and P8.4 starts to open lights while they are being shu
ff. Therefore the lights are not shutoff and P3.2 action is not completed

olution: Disable other light control policies when vacation control is activated.

LLinked events
E7,E15

136

P23,
Pa.1

ype: The action of P9.1 negatively impacts the action of P2.3.
cenario: P9.1 will be a security hole that negatively impacts the intended purpose of P2.3. For example, if the
redefined area is the same for curtains and lights and the predefined time is also the same for P2.3 and P9.1, ther
nyone looking from windows know that no one home opening/closing the lights.

olution: Close curtains/blinds during times when vacation control is active and lights are about to be turned onfoff.

Same trigger
event E7

137

pP2.3,
Po.2

ype: The action of P9.2 negatively impacts the action of P2.3.

cenario: P9.2 will be a security hole that negatively impacts the intended purpose of P2.3. For example, If thg
Linked events fredefined area is the same for curtains and lights and the predefined time is also the same for P2.3 and P9.2, Ther]
£7,E15 nyone looking from windows know that no one home apening/closing the lights.

Solution: Close curains and blinds during times when vacation control is active and the lights are about to be tumeq
on/off. However, curtains and blinds can be opened during other times to give impression that occupants are home.

138

P21,
P12.1

Type: The action of P12.1 overrides the action of P2.1

Scenario: Occupant A deactivates vacation control when she comes home. Occupant B is away and canno
Linked events remember if he activated the vacation control or not, so he calls and uses remote access module (P12.1) to turn on
£6, E18 vacation control. Occupant A at home looses control over lights and TV.

Solution: State last activation/deactivation information of security alarm over the phone to the person who wanis td
use the remote access module to set the alarm.

253

Table E.1- Continued: Detected interactions using IRIS and suggesfed solutions

ype: The action of P10.1 negatively impacts the action of P2.3.
cenario; P 10.1 will be a security hole that counteracts the intended purpose of vacation control P2.3 which is id

139 PP%? 031’ :\2?1? !tzn7gger eep the house safe while extended periods of absence. For example, an occupant activates vacation control (P2.3
’ nd windows control (P10.1) then leaves.
olution: Disable the opening of windows when the vacation control is activated.
ype: The action of P12.1 overrides the action of P2.3.
140 P2.3, Linked evenis [Scenario: Occupant A activates vacation control (and thus P2.3) and leaves. Occupant B calls and uses the remotg
Pi2.1 [E7,E18 ccess modufe (P12.1) to tum off all lights in the home, hence overriding the action of P2.3.
olution: Remote access module cannot control lights when vacation conirol is active.
ype: The action of P3.3 overrides the action of P3.1.
144 P3.1, Linked events [Scenario: The only accupant at home shuts the main door expecting it to lock automatically according to P3.1 and
P3.3 [E8,E10 gaves. One minute later, G/H/S triggers and opens door according to P3.3, thus leaving house vulnerable to anyone.
iSolution: Only open the main door when there is someone inside (movements can be detected using PIR).
Type: The action of P12.1 is used to override the action of P3.1.
142 P3.1, |Linked events|Scenario: Occupant A is leaving and shuts the doors behind her expecting it to lock automatically. While shutting
P12.1 E8,E18 pccupant B calls and opens the main door lock. Thus house is vulnerable.
Solution: Critical parts of the house like the main door cannot be controlled by remote access module.
Type: The action of P3.2 negatively impacts the action of P6.1.
143 P3.2, |Linked events[Scenario: When occupants use P3.2 to open the main door while P6.1 is triggered trying to raise the temperature o
P6.1 E9,E12 fthe house. The open door will affect the increase of temperature if left open for a long time.
olution: Close the door after some time units to maintain the temperature of the home.
ype: The action of P3.2 negatively impacts the action of P6.2.
144 P3.2, {Linked events|Scenario: When occupants use P3.2 to open the main door while P6.2 is triggered trying to raise the temperature o
P6.2 E7,E9 [the house. The open door will affect the increase of temperature if left apen for a long time.
Solution: Close the door after some time units to maintain the temperature of the home.
Type: The action of P12.1 overrides the action of P3.2
145 P3.2, |Linked events/Scenario: Occupant A presses unlock door interior switch to unlock door. Occupant B calls and uses remote accesq
P12 E9,E18 fmodule to lock door, as he suspects it was left open. Occupant A tries to open the door but it does not respond.
Solution: The interior switch has higher priority and still opens the house’s main door lock.
Type: The action P3.3 negatively impacts the action of P6.1.
146 P3.3, |Linked events [Scenario: P6.1 tries 1o raise the house's temperature. G/H/S is triggered by mistake (e.g. battery fault or short circuit
P6.1 E10,E12 fand opens the door according to P3.3. If left for a long time, it will affect the ability of P6.1 to increase temperature.
Solution: Close door after some time units, but only if the G/H/S alarm has stopped.
Type: The action P3.3 negatively impacts the action of P6.2.
147 P3.3, |Linked events{Scenario: P6.2 tries to raise the house's temperature. GH/S is triggered by mistake (e.g. battery fault or short circuit
P6.2 E7,E12 jand opens the door according to P3.3. If left for long time, it will affect the ability of P6.2 to increase temperature.
Eolulion: Close door after some time units, but only if the G/H/S alarm has stopped.
ype: The action of P12.1 overrides the action of P3.3.)
P33 |Linked events cenario: G/H/S triggers because of a fire and opens the main door and hence occupant A tries to get out. Occupan
148 P 2 1 E10. E18 calls and uses the remote access module to close the main door (as he suspects it might have accidentally been
’ ’ eft open). Occupant A is then stuck inside.
Solution: Remote access module is disabled in case of emergencies, such as fire.
P4.2 interacts Type: T_he action of P4.2 overrides the rule of P4.1 ' .])
149 P4.1, wfth system Scenario: Occupant A uses the remote conlrol fo switch on tr}e TV while at the same {ime P4.2 is schfeduled by
P42 axiom P4.1 oecupant B to turn off the TV. The TV shuts according to the action of P4.2 and hence P4.1 rule has been violated.
" [Solution: Assign higher priority for the system axiom P4.1.
Type: P4.1 rule overrides the action of P5.1
P5.1 interacts [Scenario: Some AV devices (like TVs) take several seconds before they are actually on. If during this time, an
50 P41, | with system fccupant uses the remote control to raise volume very high (using P4.1), then the device will have different volumej
P51 | axiom P4.1 Eelting when it is actually on than the preset sound level defined in P5.1. For example, a parent presets TV volume ig
tart at volume X but a child increases volume (using P4.1) to the maximum before the actual start of the TV device.
Solution: Assign higher priority for the action of P5.1.
rwo Intera ctingType: The rule of P4.1 overrides the rule of P5.2.
51 P4.1, ‘sy stem axion Scenario: An occupant tries to use the remote control of an A/V device fo go beyond the maximum preset audio leve
P5.2 of the house. Note that this might be a multi-user environment like parents and children.

P4.1,P5.2

Solution: Assign higher priority for the rule of P5.2.

254

Table E.1- Continued: Detected interactions using IRIS and suggested solutions

P12.1 interactell /P& The action of P12.1 overides the rule of P4.1, J
52 P44, with System IScenario: Occupant A uses the remote control to tumn on the TV (using P4.1 rule). Occupant B calls and uses th
Pi2.1 axiom P44 yemote access module (P12.1) to turn off all A/V devices (as he suspects he forgot to switch them off when he left).
" [Solution: State last activation information over phone before turning off any A/V device.
Type: The action of P4.2 overrides the rule of P5.2.
P4 P4.2 interacts [Scenario: Occupant A (e.g. parent) uses P5.2 to set a relatively low maximum audio level for the house. Every family
153 P5. 2‘ ith systemmember uses P4.2 to turn on an A/V device at overlapping time settings. The combined volume of the several audig
“ hxiomP5.2 [devices will exceed the max volume allowed for the home. -
Solution: Assign higher priority of P5.2 and do not allow combined volumes of A/V devices to exceed the max. limit.
Type: The action of P12.1 overrides the action of P4.2.
54 P4.2, Linked events [Scenario: Occupant A sets the VCR to turn on and record a show. Occupant B calls from work to completely shu
P121 [E7,E18 Kown all A/V devices as he suspects that he left one of them on. This prevents P4.2 action from ever executing.
Solution: State to user over phone if there are any A/V devices affected by power cut off or scheduled to work later.
5.1 interacts Type: T_he action of P5.1 overrides the rule of P5._2.
55 P5.1, Wifh system Scenario: Occupant A (e.g. parent) sets the maximum audio leve! of the house to X. Occupant B (e.g. child) presetg
P5.2 Axiom P5.2 Eudio of TV and CD to levels that when combined (i.e. added to each other) will exceed max audio level of house X.
’ olution: Assign higher priority to P5.2 and do not allow combined volumes of A/V devices to exceed the max. limit,
ype: The action of P12.1 overrides the action of P5.1.
cenario: Occupant A (e.g. parent) receives a phone call from a neighbor that TV is too loud. The parent calls and
56 P5.1, Linked events Juses remote access module to lower volume of all AV devices. At the same time, occupant B (e.g. child) tums on
P12.1 |E11,E18 D recorder expecting a certain audio level, as specified in P5.1, but the parent has lowered volume using P12.1,.
olution; State over the phone if there are A/V devices affected by lowering the volume. In all cases, a prioril]
ssignment is needed in case parent still proceed with lowering the volume.
ype: The action of P12.1 overrides the rule of P5.2.
P5.2 P12.1 interactsiScenario: Occupant A uses P5.2 to set a low maximum audio level Y for the house. Occupant B calls and uses thé
157 pi 2 1’ with system femote access module to activate several AV devices that have audio levels which when combined (i.e. added td
) axiom P5.2 feach other) will be greater than Y.
olution: Assign higher priority for P5.2 and do not allow combined volumes of A/V devices to exceed the max limit.
ype: The action of P16.1 overrides the rule of P5.2.
P52 P16.1 interactsiScenario: The already existing audio level of the house is almost at maximum. Occupant A activates various loud
158 p1é i With system fappliances like the food processor and blender. Although appliances are not AV devices they increase the noisg
’ axiom P5.2 Jevel of the house and violates the intended purpose of P5.2 which is to keep the house below a certain noise level.
olution: Reduce the volume of an AV device to compensate for the addifional noise of appliances.
ype: Action of P6.2 overrides the action of P6.1.
P64 Winked events cenario: Occupant A uses P6.1 to preset X as the temperature of the house for the whole day. Occupant B is no
159 Pé 2 E7 E12 ware of the preset value of X and sets another temperature Y during day using P6.2. If X is different from Y then
) ! ater one might override the prior temperature.
olution: Do not allow different temperature settings in overlapping time intervals.
ype: The action of P10.1 negatively impacts the action of P6.1.
P64, Linked events cenario: P10.1 opens the windows. If the outside temperature is low then the opened windows will negatively impac
160 P16 i £7 E12 6.1 and prevent the HVAC unit from keeping the room temperature at the predefined temperature seffing.
’ ! olution: The system checks for the outside temperature and if the temperature affect the room temperature if the
indows are open then the occupant is prompted to choose between either one of the policies.
ype: The action of P12.1 overrides the action of P6.1.
P61, Linked events cenario; The temperature inside the house gets low and P6.1 triggers. An occupant calls and uses the remote
161 P1é i E12 E18 ccess module to shutdown the HVAC unit before completing its work. A similar scenario can occur when the
' ! occupant calls and uses the remote access module to open the windows.
Solution: User is informed over phone if temperature is affected by the remote access module action
Type: The action of P10.1 negatively impacts the action of P8.2.
P62, Same trigger Scenario: P10.1 opens the windows. If the outside temperature is low then the opened windows will negatively impac
162 P16 1’ Event E7 P6.2 and prevent the HVAC unit from getting the room temperature to the predefined temperature setting.
) Solution: The system checks for the outside temperature and if the temperature affect the room temperature if the
Mwindows are open then the occupant is prompted to choose between either one of the policies.
Type: The action of P12.1 overrides the action of P6.2.
Scenario: P6.2 triggers to increase/decrease the temperature to the predefined settings. The occupant calls and uses
63 P6.2, lLinked events [the remote access module to shutdown the HVAC unit before the predefined temperature has been reached. Or thg
P12.1 [E7,E18 ccupant calls and uses the remote access module o open the windows.

olution: The occupant is informed over the phone if the temperature is affected by the action of the remote acces
odule and is asked to confirm the action. 1

255

Table E.1- Continued: Detected interactions using IRIS and suggested solutions

Type: The action of P8.1 overrides the action of P8.2.
164 P8.1, Linked events {Scenario: An occupant wakes up at night and P8.2 triggers to increase the light to a maximum over 2 minutes. The
P82 [E4,E13 occupant uses light dimmer to decrease the lights intensity (P8.1). Thus both are not able to execute at same time.
Solution: Assign higher priority to manual light dimmer and terminate the action of P8.2 if light dimmer is used.
Type: The action of P8.1 overrides the action of P8.4.
165 P8.1, Linked evenis {Scenario: An occupant uses the light dimmer to decrease the light's intensity (P8.1) but at the same time the nigh
P84 |E13,E15 tarts and P8.4 tries to turn on and increase the intensity of lights to the specified maximum.
Eolution: Assign higher priority to manual light dimmer and terminate the action of P8.4 if light dimmer is used.
ype: The action of P12.1 overrides the action of P8.1.
66 P8.1, Linked cenario: Occupant A gets home and uses the light dimmer to increase the light intensity (P8.1). Occupant B callg
P21 [E13,E18 nd uses the remote access module to switch off all lights as he suspects he left them on.
olution: Assign higher priority to manual light dimmer and terminate the action of P12.1 if light dimmer is used. -
ype: The action of P12.1 is used to cancel the action of P8.2.
167 P8.2, Linked events {Scenario: Occupant A gets up at night and thus triggering P8.2 to increase light mtensnty Occupant B calls and useq
P12.1 [E4,E18 he remote access module to switch off all fights as he suspects he left them on not knowing that occupant A is home
Solution: Inform the user over the phone that someone is at home and ask for confirmation before executing actions.
Type: The action of P8.3 overrides the action of P12.1.
P83 Linked events Scenario: An occupant uses P12.1 to switch on the lights in the garage just before his arrival. For some reason he ig
168 P1é i 14 Ei8 15 minutes late (8.3 has now switched off the lights) and when he gets into the garage the lights are off.
' ’ Solution: The occupant is informed over the phone if he wants to double the time before P8.3 switches off the lights
IThen the occupant can decide to accept or not.
Type: The action of P12.1 overrides the action of P8.4.
P84, Linked events Scenario: Occupant A activates P8.4 when she gets home and takes a shower. Night begins and P8.4 switches on
169 P1é 1’ 15 E18 rhe lights including the bathroom light. Occupant B calls and uses the remote access module (P12.1) to switch off al
’ ’ ights not knowing that occupant A is home.
Solution: Inform user over the phone that someone is at home and ask for confirmation before executing the actions.
Fype: The action of P9.1 overrides the action of P9.2.
170 P9.1, Linked events [Scenario: Occupant A uses P9.1 to set the curtains/blinds to opentat 6 PM (same time night starts). Occupant B setd
P9.2 (E7,E15 curtains/linds to close when night begins using P9.2.
ISolution: Assign higher priority to either one of them.
Type: The action of P12.1 overrides the action of P9.1.
71 Po.1, Linked events [Scenario: Occupant A sets the curtains to open at time X using P9.1. When time X comes, the curtains start opening
Pi21 [E7,E18 Occupant B calls and uses the remote access module to close curtains thus cancelling action of P9.1.
Solution: Inform user over phone of affected policies actions (P9.1) and ask for confirmation before execution.
Type: The action of P12.1 overrides the action of P9.2
Scenario: Occupant A sets the curtains o open in the early morning using P9.2 and when the day begins the curtamj
172 P9.2, Linked events jopen. Occupant B, who spent the night at work, calls and uses the remote access module to close curtains (as h
P12.1 E15,E18 uspects he might have left them open) thus cancelling action of P9.2.
olutlon Inform the user over phone of affected policies actions (P9.2) and that there is someone at home who had
el a new policy that uses P9.2. Then user is asked for confirmation before proceeding o execute any commands.
ype: The action of P12.1 overrides the action of P10.1.
P101. Linked events cenario: Occupant A sets the windows to open at ime X using P10.1. At time X, the windows starts opening
173 P1é 1’ E7 E18 ccupant B calls and uses the remote access module to close alt windows thus cancelling action of P10.1.
S olution: Inform the user over the phone of affected policies actions (P10.1} and that there is someone at home who
et a new policy that uses P10.1. Then user is asked for confirmation before proceeding to execute any commands.
ype: The action of P12.1 overrides the action of P11.1.
P11.1. Linked events cenario: Occupant A takes a shower and leaves without tightly closing the water tap. The water starts filling the tul
i74 P12. 1’ éﬁ Ei8 ill it reaches 75%. P11.1 triggers and starts closing the water tap. Occupant B calls and uses the remote accesg
' ! odule to open the water tap in shower for 10 minutes to fill the tub before his arrival and thus floodlng bathroom.
olution: Assign higher priority to P11.1.
b12.1 interactsl JP&: The action of P12.1 overrides the rule of P13.1.
75 Pi2.1, ith syste cenario: When one occupant calls and uses the remote access module (P12.1) for a long time thls violates the
P13.1 Lviompi3q presence of a telephone line enforced by P13.1 as they both use the same telephone line.
) olution: Do not allow extended use of the remote access module beyond a certain time limit.
ype: Next state non-determinism between P12.1 and P13.2
P121, [ame tiigger cenario: The system will have a next state non-determinism if the ocoupant assigns the number of rings to activatg
176 1p132 bventE18 he remote access module and the answer machine to be the same. The system does not know which next state i
= r hould transfer to: the answer machine or the remote access module.
olution: Assign higher priority to either one of them.

256

Table E.1- Continued: Detected interactions using IRIS and suggested solutions

J Type: The action of P12.1 overrides the rule of P14.1.
177 P12.1, | Linked eventy Scenario: A parent uses P14.1 to prevent any activation of the stove while sthe is out. A child uses a cell phone to
Pi4.1 E7,E18 | callthe home phone number and uses the remote access module to activate the stove.
Solution: Assign higher priotity to P14.1.
Type: The action of P12.1 overrides the action of P14.2.
78 P12.1, | Linked eventd Scenario: The G/H/S triggers and shuts down the stove to prevent any fire (P14.1). Occupant A .calls and uses the
P14.2 E10,E18 | remote access module (P12.1) to turn on the oven to be heated until he gets home.
Solution: Assign higher priority to P14.2.
Type: The action of P12.1 overrides the action of P15.1.
P121. | Linked eventd Scenario: Occupant A is cooking and the humidity sensor triggers and tums on the kitchen fan (P15.1). Occupant B
179 P15' 1’ E18 E19 calls, not knowing that occupant A is home, and uses the remote access module to shutdown all kitchen appliances
’ ’ including the kitchen fan as he suspects he might have accidentally left them on.
Solution: Inform user over phone of affected policies actions (P15.1) and that there is someone at home.
Type: The action of P12.1 overrides the action of P16.1.
P121 Scenario: Occupant A at home uses the remote control to run the food processor (P16.1). Occupant B, not
180 P12.1, interacts | knowing that occupant A is home, calls and uses the remote access module to switch oif all kitchen appliances as
P16.1 | With system] he suspects he might has left something switched on.
axiom P16.1] Solution: Inform the occupant over the phone of affected policies actions (P16.1) and that there is someone at
home. Then the occupant is asked for confirmation before executing any commands.
P14.1 Type: T_he rule of P16.1 overrides the a‘ction o[P14.1
P14.1 inter a.cl s Scenario: P16.1 enforces that any appliances including the stove can be controlled by the remote control. What
181 P1é 1’ With system happens if a parent uses P14.1 to switch off the stove while being away angj a child finds the remote control and
’ axiom P16.1] Use it o tum on the stove? If the stove turns on then P14.1 was cancelled; if not, then P16.1 was violated.
*"{ Solution: Assign higher priority to P14.1.
P14.2 Type: The rule of P16.1 overrides the action of P14.2.
P14.2 inter écts Scenario: P16.1 enforces that any appliances including the stove can be controlled py the remote control. What
182 P16 1’ With system happens if the G/H/S triggers (maybe faisely) P14.2 to switch off the stove and a child finds the remote cont_rol and
' axiom P16.1 insists on using it to turn on stove. If the stove turns on then P14.2 was overridden. If not, then P16.1 was violated.
| Solution: Assign higher priority to P14.2.
Type: The action of P15.1 overrides the rule of P16.2. ‘
P15.1 Scenario: The humidity sensor is triggered and P15.1 turns on kitchen fan while, At the same time, occupant uses
683 P15.1, interacts | remote control to switch off kitchen fan. The fan will switch off for a second but then turns on again because the
P16.1 | With system| humidity sensor is still triggered. P14.2 cancelled remote control action although occupant wants to switch off the
axiom P16.1} fan.
Solution: Assign human control a higher priority.

257

APPENDIX F: THE IRIS-TS PROTOTYPE DXL CODE

This Appendix presents the DXL code developed for IRIS-TS. The complete DXL code

of the tool is more than 70 pages using the format below. Therefore, only the code for

executing the first step is presented below to give a feeling of how the DXL code that

was written for the IRIS-TS looks like.

W T T T

/

Detecting Requirements Interactions using Semi-Formal
methods IRIS

Copyright © 2004 Mohamed Shehata and Tim Yue.
All rights reserved.
University of Calgary -~ Canada

Version 3.0
Date: July 20th, 2004

/
WU T R T

/
This Script will display a welcome Message and determine
whether to proceed or not

DB graphBox = create ("Welcome to IRIS",
styleFixed|styleFloating|styleCentered)

void repaint(DBE graph) {
realBackground(graph, realColor_NewGrey4)
realColor(graph, realColor_Yellow)
font(graph, 1,1)
draw(graph, 10,50, "This Program Will Detect
Requirement Interactions Using IRIS")

}

/] repaint
DBE graph = canvas(graphBox, 650, 100, repaint)

// Building the Callbacks

void ackHalt(DB graphBox) {

if (confirm("Are you sure to really close?")) {
release graphBox
halt
}

return

}

void proceed(DB graphBox) {
release graphBox

// Adding Buttons

apply(graphBox, "Proceed”, proceed)
close(graphBox, true, ackHalt)

block graphBox

/

This Script will APPLY THE FIRST STEP OF IRIS WHCIH
IS CLASSIFYING THE REQUIREMENTS INTO SYSTEM
AXIOMS AND DYNAMIC BEHAVIOUR

I3
1

Folder myF = current

Module myM=current

prssrsrk CONSTANTS /

string sRequirementType = "Classification”

string sRequirementTypeDef = "RequirementType"

string sRequirementAttrType = "RequirementTypeAttr"
string sRequirementAttrEnum{] = { "Dynamic Behaviour",
"System Axiom", "Resource", "N/A" }

/ Code /
int iRequirementTypeWidth =200

string sInitFileName = "/" name(myF) "/" name(myM)
string sFileName

/%% Create a dialog box to ask for requirement database **/
DB dbGetFileName = create "Input File Name"

label(dbGetFileName, " Input the file name that contains the
set of requirements to be checked for interactions: \n If you
wish to stop the program and not to proceed press the close
button ")

// DBE dbeFileName = field (dbGetFileName, "File Name: ",
"/Smart Homes/Requirements", 128)

DBE dbeFileName = fileName (dbGetFileName,
slnitFileName);

/** Creates the callback **/

void getFileName(DB dbGetFileName) {
sFileName = get dbeFileName
release dbGetFileName

}

void closegetFileNameDB (DB dbGetFileName) {
release dbGetFileName
halt

/** Assign buttons to dialog box for requirement database **/
apply (dbGetFileName, "Use", getFileName)

close (dbGetFileName, true, closegetFileNameDB)

block dbGetFileName

Module mCurrent = edit (sFileName, true)

Column cIndex

string sColumnTitle

intn=-1

int loopIndex =0

Column cReqTypeHandle

/** See if sRequirementAttrType needs to be created **/
AttrType at = find (inCurrent, sRequirementAttiType)
if (at == null) {
string sErrtMessage ="
AttiType at = create (sRequirementAttuType,
sRequirementAttrEnum, sErrMessage)
if (Inull sErtMessage) {
print "Attribute type creation failed!\n"
halt

}

/%% Create attribute "RequirementType" *#/
create type sRequirementAttiType attribute
sRequirementTypeDef

/*% Loop through all the column to find whether the
Classification colunn has been created**/
for cIndex in (current Module) do

{
sColumnTitle = title(cIndex)
if (matches(sColumnTitle, sRequirementType))
n=looplndex
break
loopIndex-++
}
/** Create Classification column if has not been created **/
if(n==-1)
{

n = looplndex

cReqTypeHandle = insert (column n)

title (cReqTypeHandle, sRequirementType)

width (cReqTypeHandle,
iRequirementTypeWidth)

attribute (cReqTypeHandle,
sRequirementTypeDef)

save (current Module)
¥ else {

cReqTypeHandle = column n

refresh (current Module)

/** Creates a dialog box to ask for requirement database **/
DB dbGetSkipToReqName = create "Requirement to skip to"
label(dbGetSkipToReqName, " Enter the name of the
requirement you wish to skip to and press SKIP. If you wish
to start from the begining of the document with NO skipping
press close")

DBE dbeSkipToRegName = field (dbGetSkipToReqName,
"Requirement: ", "Requirement”, 128)

string sSkipToReqName =""

bool bFoundSkipToReqName = false

258

/***********Cleates the c;{l]back ***********/

void getSkipToReqName(DB dbGetSkipToReqName) {
sSkipToReqName = get dbeSkipToReqName
release dbGetSkipToRegqName

}

void closeSkipToReqName (DB dbGetSkipToReqName) {
bFoundSkipToReqName = true
release dbGetSkipToReqName

3

/** Assign buttons to dialog box for req. database. **/

apply (dbGetSkipToReqNaine, "Skip", getSkipToReqName)
close (dbGetSkipToReqName, true, closeSkipToReqName)
block dbGetSkipToReqName

string sReqName

int iRC

Buffer bufTemp = create

Object o

string sClassifyReasons [} = {"Dynamic Behaviour”, "System
Axiom", "Resource", "N/A", "Finish"} -
Module mnCurrent = cdit (sFileName, true)

for o in (current Module) do

{
sReqName = 0."Object Heading"

bufTemp = sReqNane
if (\bFoundSkipToReqNaimne)

if (contains (bufTemp,
sSkipToReqName, 0) = 0)
{

continue
1 else

bFoundSkipToReqName =
true

}

/** For each requirement, prompt the user to classify
requirement type **/

DB dbPromptForClassification = create ("Requirements
Classification")
int choice = query (dbPromptForClassification,
"Requirement: \n \n " sReqName " \n \n is Classified as: ",
sClassifyReasons)

if (choice == 4)

break;
} else if (choice == 0)
{
o.sRequirementTypeDef = "Dynamic
Behaviour"
} else if (choice == 1)
{

o.sRequirementTypeDef = "System Axiom"
} else if (choice == 2)
{
o.sRequirementTypeDef = "Resource”
} else if (choice == 3)
{
o.sRequirementTypeDef = "N/A"

}

if (IbFoundSkipToReqName)
warmningBox "String not found!"

/** Defintions for defining the columns **/
n=-1]
loopIndex =0

/** Loop through all the columns to find whether
classificationColumn is created **/
for cIndex in (current Module) do

{
sColumnTitle = title (cIndex)
if (sColumnTitle == "Classification")
{
n = loopIndex
break;
loopIndex-++
}

/¥% Create the ClassificationColumn if one has not been
created. **/

if(n==-1)

{

n = looplndex

Column classificationColumn = insert(column n)

title (classificationColumn, "Classification")

width (classificationColumn, 200)
attribute (classificationColumn, "RequirementType")
save (current Module)

refresh (current Module)

/% Confirm if user want to proceed to IRIS step 2 or stop */ ‘

DB goStepTwoBox = create ("Proceed to Step 2 of IRIS",
styleFixed|styleFloating|styleCentered)

259

void repaint]1(DBE goStepTwo) {
realBackground(goStepTwo, realColor_NewGrey4)
realColor{goStepTwo, realColor_Yellow)
font(goStepTwo, 1,1)
draw(goStepTwo, 10,30, "Do you wish to proceed to step
2 of IRIS:")
draw(goStepTwo, 10,60, "Requireiments Attributes
Idenitifcation")

}

// repaint
DBE goStepTwo = canvas(goStepTwoBox, 450, 80,
repaintl) '

// Building the Callbacks

void ackHalt1(DB goStepTwoBox) {

if (confirm("Are you sure to really Exit?")) {
release goStepTwoBox
halt

}

return

}

void proceed 1 (DB goStepTwoBox) {
release goStepTwoBox

}

// Adding Buttons

apply(goStepTwoBox, "Proceed", proceed!)
close(goStepTwoBox, true, ackHaltl)

block goStepTwoBox

Y s

/

End of Step 1 of IRIS

/

i
TR T iy

