

IRIS-TS: DETECTING INTERACTIONS BETWEEN

REQUIREMENTS IN DOORS

Mohamed Shehata1,3
Armin Eberlein2

Abraham Fapojuwo1

1 Dept. of Electrical & Computer Engineering, University of Calgary, 2500 University Drive NW, Calgary, AB, Canada
2 Dept. of Computer Engineering, American University of Sharjah, PO Box 26666, Sharjah, UAE

3 Dept. of Information Science, Kuwait University, P.O. Box 5969, Safat, ZIP Code 13060, Kuwait
{Msshehat; Eberlein; Fapojuwo}@ucalgary.ca

Abstract. This paper investigates the problem of requirement interactions which occurs due to negative
relationships between requirements when developing software systems. This paper presents IRIS-TS
(Requirements Interactions using Semi-formal methods - Tool Support) which identifies and detects
requirement interactions using semi-formal methods in any software domain. IRIS-TS is implemented as an
independent add-on module that can be added to DOORS (which is one of the most famous and commonly
used requirements management tools). This paper presents also a case study in which the proposed IRIS-TS
approach was successfully used as an add-on module in DOORS to detect interactions between smart
homes requirements which represent a new application domain for interaction detection. The presented
case study is the first comprehensive effort to fully detect interactions in the smart homes domain.

Keywords: Requirement Interactions, Requirements Managment, DOORS

(Received January 27, 2006 / Accepted July 06, 2006)

1. Introduction
Studies have claimed that in order to succeed in
developing high-quality software systems, it is
necessary to have correct and unambiguous
requirements [1]. This makes requirements engineering
(RE) a vital part of software development [2-5] and
critical to the success of the entire project. A key issue
in obtaining a set of clear requirements is how to
manage negative relationships between requirements [6]
[7]. Robinson et al. in [8] defines requirements
interactions management as “the set of activities
directed towards the discovery, management, and
disposition of critical relationships among a set of
requirements”. Requirements often interact when
developing new systems because of the heterogeneity
and diversity of stakeholders [8] or because of reusing
already existing requirements from previous similar
projects where people make the assumption that the
reused requirements will increase safety because they
have been exercised extensively [9]. In either case,

developing a software project should be done with an
ongoing effort to discover and resolve interactions that
arise between requirements. A review of the current
practice of interaction detection showed that there are
two extremes: one extreme uses informal detection
approaches using domain experts who rely on their
experience with no systematic approach to follow. The
other extreme uses formal approaches, such as the
Specification and Description Language SDL [10].
However, domain experts are expensive, hard to find
and prone to errors [11]. Many formal interaction
detection approaches, which can be found in [12-18],
provide fairly accurate detection of interactions. But not
every company has the time and resources necessary to
carry out a formal verification of their systems under
development. For example, many domains like
commercial PC software do not use formal models to
validate their software but rather have an expert who
identifies critical interactions. This is because the
consequences of interactions are relatively minor.

This paper proposes the use of semi-formal techniques
for detecting requirements interactions by using IRIS-
TS (Identifying Requirements Interactions using Semi-
formal methods - Tool Support). The semi-formality of
IRIS-TS is achieved through the use of tables, graphs,
interaction detection scenarios, and subjective detection
to detect interactions. This requires visual system
representation and does not require extensive
mathematical modeling of the system under
investigation as opposed to formal methods and at the
same time IRIS-TS would provide a well structured and
systematic approach for interaction detection as opposed
to human experts who have no systematic way for
detecting interactions and relay only on their expertise.
To enrich IRIS-TS powerfulness, IRIS-TS is
implemented as an independent add-on module that can
be added to DOORS [19], which is a very commonly
used requirements management tool, to facilitate
requirements interaction detection in real life projects.
As a proof of theory, the proposed IRIS-TS was
successfully used as an add-on module to DOORS and
was applied to detect interactions between smart homes
requirements which is a new application domain for
interaction detection. The obtained results show that
IRIS-TS was able to detect 83 interactions among 35
requirements using 525 pair-wise comparisons as
opposed to 630 a human expert would have to do using
only experience.
The remainder of this paper is structured as follows:
Section 2 provides details on the theory used in IRIS-TS
for detecting interactions. Section 3 provides the
implementation of IRIS-TS and how a prototype of
IRIS-TS was developed in DOORS using the DXL
programming language. Section 4 details a case study
that was conducted using IRIS-TS for detecting
interactions between smart homes requirements and
provides a summary of the obtained results. Finally
Section 5 draws the paper conclusions.

2. Theory Behind IRIS-TS
2.1 Internal Structure of IRIS-TS
IRIS-TS is the outcome of research into the application
of light-weight semi-formal approaches to detect
interactions in any domain in a cost effective manner.
IRIS-TS is a systematic six step procedure that produces
tables and graphs in the first five steps and then detects
interactions in the last step using the tables and graphs
created in the previous steps. The six steps of IRIS-TS

Figure 1: Class Model of IRIS-TS

are ordered in such a manner that this translation of
requirements into graphical and tabular representations
is gradually achieved. The objective of these
representations is to facilitate the application of the
interaction detection guidelines. The six step procedure
of IRIS-TS can be represented using the model shown
in Figure 1. The following describes IRIS-TS six steps:
• Step 1: Requirements classification: The

Requirements are classified into one of the following
two categories: System Axiom Requirements and
Dynamic Behavior Requirements. A requirement is
considered to be a system axiom requirement if it
describes a property that has to be preserved at all
times. For example a system axiom might state “The
system shall maintain the temperature of the water
from the hot water tap at 45 0C”. On the other hand, a
requirement is considered as a dynamic behavior
requirement if it specifies the reaction of the system
when a certain event occurs. For example, a dynamic
behavior requirement states “The system shall open
the bedroom curtains at 7:00 am every morning”.

• Step 2: Requirements attributes identification: This
step is aimed at identifying different attributes within
the system requirements. To represent these attributes,
two tables are generated:
o The first table is used to represent system axiom

requirements using attributes Rules, Conditions
o The second table is used to represent system

dynamic behavior requirements using the four
attributes Pre-state, Trigger event, Action, and
Next state

Figure 2: A general interaction detection taxonomy

This step is done by identifying the different attributes
of the requirements from the textual description of the
requirements and recording them in the system axiom
and dynamic behavior tables.

• Step 3: Trigger events extraction: This step identifies
and extracts all the different trigger events from the
dynamic system behavior requirements. An event is
called a trigger event of a requirement, if when it
occurs will trigger the requirement to execute the
action specified in its textual description. This step is
applied only to dynamic behavior requirements.

• Step 4: Linked events identification: During this step,
a table is developed that contains all linked trigger
events. A trigger event is called a linked trigger event
if it can lead to the occurrence of other trigger events.
For example, the event E1 “Windows opened” is
linked to the event E2 “Temperature changed”.

• Step 5: Graphical trigger representation: In this step
an event-based graphical representation is used to
represent each event with requirements it triggers.
This graphical representation will later facilitate
interaction detection between requirements.

• Step 6: Interactions detection: During this step, the
developer detects interactions between requirements
using the IRIS-TS interaction detection guidelines
(see section 2.2). This step applies to all requirements.

2.2 General Interaction Taxonomy
The actual detection of interaction takes place during
the last step of IRIS-TS. A human developer uses the
tables and graphs generated during the earlier steps to
detect interactions using specific detection guidelines.
These guidelines are designed for use by non-experts
thus reducing the interaction detection cost. These
guidelines are domain independent, which means that

they can be applied in any domain including the smart
homes domain selected as case study in this paper.
In order to develop interaction detection guidelines, a
general interaction taxonomy had first to be established.
Therefore, an extensive review of currently existing
definitions of interactions was carried out. Based on this
review, a three layer taxonomy was developed as shown
in Figure 2. The first layer of the taxonomy contains the
main types of interactions. In the second layer of the
taxonomy these main types are decomposed into
subcategories. The third layer of the taxonomy
associates each subcategory of layer 2 with one or more
scenarios that describe an interaction situation. Each of
these scenarios generated a guideline on when two
requirements interact.
Four guidelines from the taxonomy were used in the
smart home case study. The following contains a
description of these guidelines:

1. Interaction between two system axioms
requirements: Guideline 1 states that “Two system
axiom requirements interact when the rule attribute
of one system axiom requirement contradicts the
rule attribute of a second system axiom
requirement”. For example, assume the following
scenario: A system axiom requirement states "Web
pages that are used to submit confidential
information will always require secure logon and
secure communication with the web server”
Another system axiom requirement states “The
transition time from any page to the transactions
page should be minimal and should at all times be
less than 10 seconds”. If the security of the logon to
the transaction page is done using a username/
password, then there is an interaction.

2. Interaction between a system axiom requirement
and a dynamic behavior requirement: Guideline 2
states that “a system axiom requirement interacts
with a dynamic behavior requirement when the
action attribute of the dynamic behavior
requirement contradict the rule attribute of the
system axiom requirement”. For example: A
dynamic behavior requirement states "When the lift
is overloaded, doors will not close”. Also consider
the following system axiom requirement "The lift
shall always serve unserved calls".

3. Interaction between two dynamic requirements
3.1. Guideline 3 states that “two dynamic behavior

requirements interact if:

1. The Previous State attributes of both
requirements are the same, AND

2. The Trigger Event attributes of both
requirements are the same, AND

3. The Action attributes of both requirements
contradict each other”

To illustrate this interaction assume the following
scenario: one dynamic requirement activates a
remote access module if there is an incoming call
with no answer for 6 rings while the second
dynamic requirement activates an answer machine
if there is an incoming call with no answer for 6
rings. Obviously the system will not be able to do
both actions simultaneously leading to interaction.

3.2. Guideline 4 states that “two dynamic
requirements will interact when they are triggered
by linked events and the action attribute of one
requirement will cancel or contradict the action
attribute of the other requirement”. For example,
assume the following scenario: one requirement lets
a CD player play music for three hours starting 7:00
pm and the other requirement shuts down all
audio/video devices after 9:00 pm. Obviously the
second requirement will cancel the action of the
first requirement before its completion.

3. Implementation of IRIS-TS
IRIS-TS is implemented as independent code files that
can be inserted as an add-on to DOORS [19] to
facilitate the detection of requirements interactions.
DOORS is one of the most commonly used
requirements management tools for documenting and
managing requirements for software systems.

Figure 3: IRIS-TS as an add-on module to DOORS

However, DOORS does not have any sort of interaction
detection support built in it. IRIS-TS is implemented to
be installed as an add-on to extend DOORS to support
requirements interaction detection.
DOORS consists of modules that contain data and
interfaces. A module is the way that DOORS uses to
store data. A module is like a sheet on which data is
written and stored. For example, in a specific software
system that uses DOORS, there will be a module that
contains all the system requirements and a module that
contains all the tests for validating the final product.
Each module consists of Objects and Attributes which
corresponds to rows and columns, respectively. Objects
and attributes are used to represent the information
stored within a module. For example, the requirements
module will contain an object (row) O1 that represents a
requirement R1. The object O1 has attributes that
describe requirement R1 such as ID, Object text, and
Created by. These attributes are part of the default set of
attributes that comes with DOORS.
The concept of attributes used in IRIS-TS is achieved
using the DOORS concept of attributes, only this time
new customized attributes are created in DOORS
through the IRIS-TS code. For example, IRIS-TS when
executed will create new attributes that are applicable
for all modules of DOORS such as “PreState”,
“Action”, and “NextState”. The concept of modules has
been used by IRIS-TS to represent the tables and graphs
that are generated through the different steps of IRIS-
TS. For example, IRIS-TS will create a module called
“Trigger Events Extraction Table” to correspond to the
table created in the trigger events extraction step. The
diagram in Figure 3 shows how IRIS-TS is implemented
as an add-on module to be added to DOORS.
The IRIS-TS tool was programmed using DOORS
programming language DXL (DOORS eXtension
Language). The programming language DXL is a
scripting language specially developed for DOORS.
DXL can be used provide many features, such as file
format importers and exporters, impact and traceability
analysis and inter-module linking tools. DXL can also
be used to develop larger add-on packages such as IRIS-
TS. The DXL language is based on an underlying
programming language whose fundamental data types,
functions and syntax are largely based on C and C++.
The way DXL is used is to either enter individual scripts
in a specific window in DOORS and run these scripts to
see how they work, or the other alternative would be to

develop an add-on package that can be added to
DOORS and with some specific scripts the DXL script
can appear as a menu on the top bar of DOORS. The
latter way was used in implementing IRIS-TS to be as a
menu option in DOORS as shown in Figure 4.

Figure 4: IRIS-TS as drop-down menu in DOORS

4. Detecting Smart Home Interaction using IRIS-TS
This section presents the application of IRIS-TS to
detect interactions between smart homes requirements.
For each step of IRIS-TS, two screen shots are
presented. The first screenshot shows how IRIS-TS
performs the step being executed. The second
screenshot shows the result that IRIS-TS has generated.
The requirements of the smart homes are stored as
objects. Each requirement will have an ID attribute to
identify it and an object text attribute that contains the
textual description of the requirement.

4.1 Smart Homes Requirements
IRIS-TS was applied to detect interactions between 35
requirements that are described as follows:

Intruder Alarm Requirements
P1.1: Activated/deactivated by a switch from inside the
house called alarm switch.
P1.2: Alarm is triggered when the feature is active and a
magnetic reed sensor indicates that a window is being
opened
P1.3 Alarm is triggered when the feature is active and
the main door lock sensor indicates that the main door
lock is being opened
P1.4 Alarm is triggered when feature is active and a PIR
sensor indicates movement in X1 (where X1 is a
location)
P1.5 Alarm is triggered when the feature is active and
pressure pads indicate the presence of a person in X2
(X2 is a location)
Vacation Control Requirements
P2.1 Activated/deactivated by a switch from inside the
house called vacation switch.

P2.2 Turns on TV for 60 min. at X3 (where X3 is time)
P2.3 Turns on lights for 60 minutes at X4 in X5, (where
X4 is a time and X5 is a location)

Main Door Control Requirements
P3.1 Locks the main door lock of the house when the
main door is shut.
P3.2 Occupants can unlock and open the main door
from inside by interior switch
P3.3 Unlocks and opens the main door when the
Gas/Heat/Smoke sensor is triggered.

Audio/Visual Control Requirements
P4.1 Occupants can control all A/V devices through
remote controls
P4.2 Turns on/off X6 A/V device at X7, (where X6 is
an A/V device and X7 is a time)

In home Audio Levels Control Requirements
P5.1 Presets the audio level of audio device X8 to X9
when turned on, (where X8 is an A/V device and X9 is
an audio level)
P5.2 Occupants can set X10 as a maximum audio level
throughout the house, (where X10 is an audio level)

Heating, Ventilation and Air Conditioning Control
Requirements
P6.1 Increases/decreases the ambient temperature inside
the house to X11 when the readings from the
thermostats are different from this preset temperature,
(where X11 is a temperature)
P6.2 Increases/decreases the temperature of the house to
X12 at X13, (where X12 is a temp. and X13 is a time)

Water Temperature Control Requirements
P7.1 Maintains the temperature of the hot water from
the hot water tap in the kitchen at 45 degree centigrade.
P7.2 Maintains the temperature of the hot water from
the hot water tap of the bathroom at 40 degrees.

Lights Control Requirements
P8.1 Increases/decreases the light intensity to
correspond to the increase/decrease of a light dimmer.
P8.2 Increases the light intensity during night in X14 to
the maximum within 2 minutes when a positive PIR
signal is received from X14, (where X14 is a location)
P8.3 Automatically shuts down the lights during night
in X15 when a PIR signal is negative for 15 minutes
from X15, (where X15 is a location)
P8.4 Automatically turns on the lights according to a
daylight sensor when the night begins.

IRIS-TS

Curtains and Blinds Control Requirements
P9.1 Automatically opens/closes the curtains and blinds
in X16 at X17, (where X16 is location and X17 is time)
P9.2 Automatically opens/closes the curtains/blinds in
X18 according to daylight sensor, (X18 is a location)

Windows Control Requirements
P10.1 Opens/closes the windows in X19 at X20, (where
X19 is a location and X20 is a time)

Water Overflow Control Requirements
P11.1 Closes the water tap when the water reaches or
exceeds 75% of the total volume of the sink or the tub
either in the kitchen or in the bathroom

Remote Access Requirements
P12.1 Activates a remote access module when an
incoming telephone call has not been answered within
X21 rings, (where X21 is number of phone rings)

Telephone communication Requirements
P13.1 Enforces the presence of a telephone line with
either standard POTS or VOIP
P13.2 Activates an answer machine to record messages
when receiving a call with no answer for X22 rings,
(where X22 is number of phone rings)

Stove Control Requirements
P14.1 Shut down and prevent any activation of the stove
during X23 and X24, (where X22 and X23 are time)

Fan Control Requirements
P15.1 Automatically turns on the kitchen fan when the
humidity sensor is triggered
P15.2 Automatically switches off the kitchen fan when
humidity signal is lost for 20 min. while the fan is on.

Control of Various Appliances Requirements
P16.1 Occupants can control various appliances like the
food processor, water boiler…etc. using remote controls

4.2 Results applying IRIS-TS to Smart Homes

Requirements

4.2.1 Results of Step 1: Requirements Classification
The first step of IRIS-TS is requirements classification
into system axioms or dynamic behaviour requirements.
This step is carried out as shown in Figure 5. IRIS-TS
will display a message for each requirement and ask the
analyst to classify it as a system axiom or a dynamic
behaviour requirement.

Once finished displaying all requirements to be
classified to the analyst, IRIS-TS will create a new
module to correspond to the requirements classification
table created in IRIS-TS step 1. The created module
contains all the requirements along with their
classification stored in an attribute called classification.
The result of this table is shown in Figure 6.

Figure 5: Performing Requirements classification (Step 1)

Figure 6: Results of requirements classification (step 1)

4.2.2 Results of Step 2: Requirements Attributes
Identification

The second step of IRIS-TS is attributes identification
for all system requirements (both axioms and dynamic).
In the smart homes case study, IRIS-TS will start
displaying messages to the analyst asking to identify the

Figure 7: Performing system axioms attributes
identification (step 2)

attributes of the system axioms first (Rule and
Condition) and then to identify the attributes of the
dynamic behaviour requirements (Prestate, Trigger
Event, Action, and Next State). Note that the attributes
ID and Description are obtained automatically from the
original requirement module.
For the sake of aiding the analyst to be consistent in
using the same terminologies for defining the attributes,
a drop-down buffer is available with each attribute to
list all previously entered attributes.
Once IRIS-TS finishes all requirements attributes
identification, it will create two new modules with
attributes corresponding the requirements attributes to
save all the data collected from the analyst.

Figure 8: Performing dynamic behaviour attributes
identification (step 2)

Figures 7 and 8 shows screenshots for messages to the
analyst to enter values for the system axiom and
dynamic behaviour requirements attributes respectively.
Figures 9 and 10 shows screenshots for the created
modules for the system axiom attributes identification
and dynamic behaviour attributes identification.

Figure 9: Results of system axioms attributes identification
(step 2 in IRIS-TS)

 Figure 10: Results of dynamic behaviour attributes
identification (step 2)

4.2.3 Results of Step 3: Trigger Events Extraction
The Trigger events extraction step is automatically done
with no input from the analyst. IRIS-TS will examine
the dynamic behaviour attributes identification (Figure
10) and automatically extracts all unique trigger events
and links them to the requirements they trigger. After
that, IRIS-TS will create a new module to correspond
for the trigger events extraction table. The created
module will contain all unique trigger events and the
requirements that each trigger event triggers (Figure11).

Figure 11: Results of trigger events extraction
(step 3 of IRIS-TS)

4.2.4 Results of Step 4: Linked Events

Identification
The linked events extraction step is performed by
having IRIS-TS examining the trigger events module
that was created in step 3 (Figure 11). Then, IRIS-TS
displays messages to the analyst asking him to
determine if the event under investigation is linked to
other events. The analyst can choose from a drop down
menu that contains all other available events and the
analyst can choose as many as s/he wants. Once IRIS-
TS finishes receiving input from the analyst, it will
create a module that corresponds to the linked events
table. Figure 12 shows the execution of the linked
events identification while Figure 13 shows the created
linked events module by IRIS-TS.

Figure 12: Performing linked events identification

 Figure 13: Results of linked events identification (Step 4)

4.2.5 Results of Step 5: Graphical Trigger
Representation

The 5th step in IRIS-TS is done automatically without
any input from the developer. This step generates
trigger events charts and saves them in a module called
trigger events charts module. Figure 14 shows a sample
of the generated trigger event charts for event E4. It is
worth saying that in Figure 14 the button Toggle Length
will display the complete text in the diagram or, when
repressed, will display a clipped portion of the text to
provide uniform non-overlapping display.

Figure 14: Graphical Trigger Representation

4.2.6 Results of Step 6: Interaction Detection
In this step, the developer detects interactions between
requirements using the developed tables and graphs
generated in the previous 5 steps of IRIS-TS with the
help of the guidelines introduced in section 2.2. The
detection done here has a subjective part which is the
final judgment from the analyst on two requirements if
they interact or not. A summary of the obtained results
is presented in Table 1. The requirement column
contains the requirement under investigation while the

interacting requirements column lists the requirements
that interact with the requirement under investigation.
Note that when an interaction between two requirements
is detected (e.g. P1.1 and P1.2), then this interaction is
listed in the row of the first requirement (P1.1) only and
will not be repeated as part of the interactions of the
second requirement (P1.2).

Table 1: Summary of interaction detection results

Req. Interacting Requirements
P1.1 P1.2, P1.3, P1.4, P1.5, P3.2, P8.2, P10.1, P12.1
P1.2 P3.2, P10.1, P12.1
P1.3 P3.2, P3.3, P12.1
P1.4 P3.2, P8.2, P12.1
P1.5 P3.2, P8.2, P12.1
P2.1 P2.2, P2.3, P10.1, P12.1
P2.2 P4.1, P4.2, P5.2, P9.1, P9.2, P10.1, P12.1
P2.3 P6.1, P6.2, P8.1, P8.2, P8.3, P8.4, P9.1, P9.2, P10.1,

P12.1
P3.1 P3.3, P12.1
P3.2 P6.1, P6.2, P12.1
P3.3 P6.1, P6.2, P12.1
P4.1 P4.2, P5.1, P5.2, P12.1
P4.2 P5.2, P12.1
P5.1 P5.2, P12.1
P5.2 P12.1, P16.1
P6.1 P6.2, P10.1, P12.1
P6.2 P10.1, P12.1
P7.1 Nothing
P7.2 Nothing
P8.1 P8.2, P8.4, P12.1
P8.2 P12.1
P8.3 P12.1
P8.4 P9.1, P9.2, P12.1
P9.1 P9.2, P12.1
P9.2 P12.1
P10.1 P12.1
P11.1 P12.1
P12.1 P13.1, P13.2, P14.1, P14.2, P15.1, P15.2, P16.1
P13.1 Nothing
P13.2 Nothing
P14.1 P16.1
P14.2 P16.1
P15.1 P16.1
P15.2 P16.1

4.2.7 Discussion of the Obtained Results
This section evaluates and discusses the obtained results
using the three measures of Suitability, Accuracy, and
Reduction. Suitability measures how suitable the
approach was for detecting interactions between the 35
requirements. This procedure is most beneficial for
systems that have many requirements describing the
dynamic behavior versus a few requirements describing
system axioms as in such a case there is a significant
reduction of comparisons (see below). Since the smart
home case study had only 6 system axioms versus 29

dynamic behavior requirements, the procedure was very
suitable for this particular case study.
Accuracy shows how precise the process of detecting
interactions was and if any feature interactions were
missed. Unfortunately, there are no fully documented
results in the literature with which we could have
compared our results. However, Kolberg et al. in [20]
lists an overview of the interactions that arise between
services supporting networked appliances in a smart
home environment. This overview included some
interaction examples. All interaction examples
mentioned in [20] were detected using IRIS-TS.
Reduction is a measure that indicates how much the
necessary number of pair-wise comparisons could be
reduced due to the application of IRIS-TS. The number
of comparisons that were done using IRIS-TS compared
to the number of comparisons that an expert would have
to do was 525 comparisons as opposed to 630. Thus we
have achieved a 16.7% reduction in the number of pair-
wise comparisons. Although this reduction cannot be
directly translated into the same percentage reduction in
time and effort due to the fact that the application of
IRIS-TS will cause an overhead in time and effort, but
we claim that IRIS-TS, as a structured approach, is
likely to increase the number of detected interactions.
Hopefully, the increase in the number of detected
interactions will compensate for the additional time and
effort overhead of applying IRIS-TS.

5. Conclusions
This paper proposed the use of IRIS-TS which is a
semi-formal approach as a cost-effective way for
detecting requirement interactions in any domain. IRIS-
TS is implemented as an independent add-on module
that can be added to DOORS (which is one of the most
famous and commonly used requirements management
tools) to facilitate requirements interaction detection in
real life projects. A case study was carried out for
detecting interactions among requirements for a smart
home and was presented in this paper. This case study
showed the effectiveness of using the proposed semi-
formal IRIS-TS approach for detecting interactions
among requirements. IRIS-TS achieved a fairly accurate
detection of interactions with a reduction of 16.7% in
time and effort.

References

[1] J. O. Palmer and N. A. Fields, "An Integrated

Environment for Requirements Engineering,"
IEEE Software, vol. 9, pp. 80-85, 1992.

[2] I. Bray, An introduction to requirements
engineering. Harlow: Addison-Wesley, 2002.

[3] J. A. Goguen and M. Jirotka, Requirements
engineering : social and technical issues.
London: Academic Press, 1994.

[4] E. Hull, K. Jackson, and J. Dick, Requirements
engineering. London: Springer, 2002.

[5] I. Sommerville and P. Sawyer, Requirements
engineering : a good practice guide.
Chichester, Eng. ; New York: Wiley, 1999.

[6] L. Jiang, A. Eberlein, and B. H. Far, "A
Methodology for RE Process Development,"
presented at 11th IEEE International
Conference and Workshop on the Engineering
of Computer-Based Systems (ECBS), Czech
Republic, 24-27 May 2004.

[7] M. Shehata, A. Eberlein, and J. Hoover,
"Requirements Reuse and Feature Interaction
Management," presented at 15th International
Conference on Software & Systems
Engineering and their Applications
(ICSSEA’02), Paris, France, December 3-5,
2002.

[8] W. N. Robinson, S. D. Pawlowski, and V.
Volkov, "Requirements interaction
management," ACM Computing Surveys
(CSUR), vol. 35, pp. 132-190, June 2003.

[9] N. G. Leveson, Safeware, System Safety, and
Computers: Addison-Wesley Pub. Co. Inc.,
1995.

[10] J. Ellsberger, A. Sarma, and D. Hogrefe, SDL :
formal object-oriented language for
communicating systems, 2. ed. London:
Prentice Hall, 1997.

[11] B. Boehm and H. In, "Identifying quality-
requirement conflicts," presented at
Proceedings of the Second International
Conference on Requirements Engineering, Los
Alamitos, CA, USA, 1996.

[12] N. Griffeth and Y.-J. Lin, Feature Interactions
in Telecommunications Systems. St.
Petersburg, Florida, USA: IOS Press Inc.,
1992.

[13] L. G. Bouma, H. Velthuijsen, and IEEE
Communications Society, Feature interactions
in telecommunications systems. Amsterdam:
IOS Press, 1994.

[14] K. E. Cheng and T. Ohta, Feature Interactions
in Telecomunications III. Kyoto, Japan: IOS
Press Inc., 1995.

[15] K. Kimbler and L. G. Bouma, Feature
Interactions in Telecommunications and
Software Systems V. Lund, Sweden: IOS Press,
1998.

[16] M. Calder and E. Magill, Feature Interactions
in Telecommunications and Software Systems
VI. Glasgow, Scotland: IOS Press Inc., 2000.

[17] D. Amyot, Feature Interactions in
Telecommunications and Software Systems VII.
Ottawa, Canada: IOS Press Inc, 2003.

[18] P. Dini, R. Boutaba, and L. Logrippo, Feature
Interactions in Telecommunications Networks.
Montreal, Canada: IOS Press Inc,, 1997.

[19] "Telelogic DOORS",
http://www.telelogic.com/

[20] M. Kolberg, E. H. Magill, and M. Wilson,
"Compatibility Issues between Services
Supporting Networked Appliances," IEEE
Communications Magazine, vol. 41, pp. 136 -
147, 2003.

