
Managing Policy Interactions in KNX-Based Smart Homes

Mohamed Shehata1, Armin Eberlein2, Abraham O. Fapojuwo3

1 Dept. of Electrical & Computer Engineering, Shoubra Faculty of Engineering, Benha University, 108 Shoubra Street, Cairo, Egypt

2 Dept. of Computer Engineering, American University of Sharjah, PO Box 26666, Sharjah, UAE
3 Dept. of Electrical & Computer Engineering, University of Calgary, 2500 University Drive NW, Calgary, AB, Canada

{msshehat; eberlein; fapojuwo}@ucalgary.ca

Abstract

Smart homes have enjoyed increasing popularity in
recent years. In order for them to further expand their
market share, users need to be able to fully control
devices. Policies are one way for users to achieve such
flexible control of devices. However, user policies
often tend to interact in unwanted ways leading to
unexpected behavior of devices. This paper describes
the design of a run-time policy interaction
management module (PIMM) that serves as manager
for detecting and resolving interactions between user
policies in KNX-based smart homes. This module
extends the traditional KNX networking system with
the ability to manage policy interactions. The module
operates in the run-time S-mode of the KNX network
and works as part of the Engineering Tool Software
(ETS) used to configure and control the operation of
the KNX network in smart homes. The proposed
module serves as the first of its kind that can be
implemented inside the KNX networking system to
detect and resolve unwanted policies interactions.

1. Introduction

A policy is user-defined information that can be
used to modify the behavior of a system [1]. In recent
years, interest in policies has increased as they provide
greater flexibility and customizability of systems. For
example, a person might set a policy regarding
incoming phone calls such that calls from his/her boss
are forwarded to the cell phone, private calls from the
family to the spouse’s number, and the remaining calls
to another predefined phone number. A good overview
of the current research of policies in distributed
systems can be found in [2-4].

A new application area of policies is the control of
smart homes devices. However, due to the expected
large number of policies within a smart home, their
diversity and potential complexity, there is a high
chance that policies will negatively interact.

So far, little work has been done to address the
problem of interactions between policies in general
and within a smart home environment specifically. For
example, the work in [5] describes the use of policies
in the telecommunications domain. It suggested the use
of a feature interaction manager that uses policies to
control the composition of telecommunications
services and features to prevent their interaction. The
work in [6] proposed a policy architecture for
enhancing telephony features and even suggested the
use of policies as the features of the future. In [7],
Kolberg et al. addressed interactions between
networked smart homes appliances. Metzger discusses
in [8, 9] the problem of feature interactions in
embedded control systems including control systems in
buildings where the use of a systematic approach for
the detection of interactions has been proposed.

However, most of the work done so far has not
comprehensively addressed the problem of policy
interactions especially in smart homes. For example,
the approaches described in [5] and [6] have been
limited towards the use of policies in the
telecommunications domain. The work in [7] was
based on a limited interaction taxonomy that addressed
only four types of interactions. Finally, [8, 9]
addressed the problem of interactions at the feature
level using a limited set of features in buildings.

This paper presents a run-time policy interaction
management module for detecting and resolving
interactions among user policies in KNX-based smart
homes. This module extends the traditional KNX
networking system [10, 11] to include the management
of policy interactions. This module operates during
run-time of the S-mode of the KNX network and
operates as part of the Engineering Tool Software
(ETS) [12]. The new extended KNX system with
policy interaction support serves as the first smart
homes networking system capable of managing policy
interactions in an interactive manner during run-time.

31st Annual International Computer Software and Applications Conference(COMPSAC 2007)
0-7695-2870-8/07 $25.00 © 2007

Fig. 1. Screenshot of IRIS-TS identifying interaction
between policy1 and policy2 [15]

This paper is structured as follows: Section 2 explains
the use of policies to control smart homes devices. In
section 3 presents the proposed policy interaction
manager module. Section 4 presents the conclusions.

2. Using Policies to Control Smart Homes
2.1 Overview

Consumers play a significant role in the success or
failure of a new product. In the case of smart homes,
users are demanding full control over all smart home
devices. This means that users can customize behavior
of devices according to their needs. This is particularly
becomes essential for elderly or disabled people that
require customized control over household devices
with the help of the so-called Assistive Technology
[13] that has been developed to help such people to
lead a more independent life.

Recently, users demanded even greater flexibility to
specify complex system behavior that would
accommodate their specific needs. Policies are one
way of solving this dilemma between flexibility in
specification and complexity of behavior. The current
state of the art in smart homes allows a user to control
devices individually (e.g. turn the lights on or off) but
it is difficult to specify an overall behavior of the
system. For example, let’s consider a situation in
which a user gets up at night to go to the bathroom. A
user can set the following policy to describe a complex
behavior that satisfy his/her needs: “If a person in
room A gets out of bed between 11pm and 6am then
the lights in room A and the hallway must switch on,
initially at 50% of illumination then ramping up to
100% over 1 minute and the bathroom lights and fan
must also switch on. After leaving the bathroom, the
bathroom lights automatically switch off. After the
person gets back into bed, the hallway and bedroom
lights are dimmed from 100% to 50% over 1 minute
and then switch off”. This type of specification of
system behavior is referred to as a user policy. The
attractiveness of policies stems from the fact that a user
does not need to deal with individual devices (e.g.,
lights, fans, sensors…etc). A policy manager
determines what needs to be done in order to achieve
the desired behavior of devices. Also, policies allow
different users to customize their preferences by setting
their own policies providing greater flexibility.

The challenge comes when people with different
preferences live in the same home. If each person
defines their own individual policies, chances that
policies interact in an unwanted manner are very high.
Policy interactions can be defined as the situation

when there is a negative relationship between two
policies. A negative relationship can take several
forms. For example, consider a policy regarding the
Audio/Video control unit that was set by a user, e.g., a
parent, which shuts down all audio and video devices
between 1 am and 6 am daily. Now consider another
Audio/Video-related policy that was set by another
user, e.g., a son, which turns on the TV and the VCR
(in recording mode) between 12:30 am and 2:30 am in
order to record a specific TV show. Obviously, there is
an interaction between the two policies.

To further demonstrate this negative relationship,
the next three subsections discuss the above example
from three different views. Subsection 2.2 shows how
the above interaction can be detected by human
experts. Subsection 2.3 discusses the occurrence and
detection of the above interaction using a semi-formal
interaction detection method called IRIS [14]. Finally,
subsection 2.4 discusse the use of software simulation.

2.2 Detecting Policy Interactions using Experts
Experts are people who use their knowledge and
expertise of the domain to detect interactions that
might occur in the system. Considering the above
example, an expert would be able to point out that
these two policies interact based on his knowledge
about the policies: At 12:30 am the Audio/Video
control unit sends messages to the TV to switch on and
the VCR to start recording as defined in the son’s
policy. The TV and VCR will work until the system
clock is 1:00 am at which time the Audio/Video
control unit will send shutdown messages to all audio
and video devices in the house including the TV and
the VCR according to the parent’s policy. This means
that the TV and VCR will shutdown even though the
recording should have continued until 2:30am
according to the son’s policy. This means that the
parent’s policy overrides the son’s policy before its
completion and therefore the son’s policy was not
executed correctly.

31st Annual International Computer Software and Applications Conference(COMPSAC 2007)
0-7695-2870-8/07 $25.00 © 2007

.

 (a) Specification of Policy 1 (b) Specification of Policy 2

 (c) Living room states taken at 00:45 (d) System trace of living room from midnight until sunrise

Fig. 3. Simulation results of the smart home living room with policy1 and policy2

.
Fig. 2. Living room in a smart home

2.3 Detecting policy interactions using IRIS
IRIS, Identifying Requirements Interactions using
Semi-formal methods, is an approach that uses semi-
formal methods such as tables and graphs to detect
interactions between requirements [14]. This approach
has been used to successfully detect interactions
between smart homes appliances. IRIS uses different
tables and graphs to detect possible interactions
offline. In [15], Shehata et al. discuss how IRIS was
applied to detect interactions in smart homes. Figure 1
shows the use of IRIS-TS (IRIS-Tool Support) on the
above smart homes policies example to detect
interactions. IRIS was able to point out that trigger
event E2 is linked to trigger event E1, i.e., the
occurrence of E2 is followed after some time by the
occurrence of E1 (in this case the two events are called
linked events). When applying IRIS, the interaction
between parent’s policy and son’s policy has been
detected successfully [15].

2.4 Detecting interactions using simulation
The simulation used in this research is a virtual

execution of the behavior of smart homes using a smart
home virtual environment created with Microsoft
Visio. The above example was carried out in a smart
home living room with the configuration shown in
Figure 2. The system clock is an ActiveX control that
increments the time. The devices are networked and
behave like real physical devices. Policies 1 and 2
were defined as shown in Figures 3a and 3b. Policy 1
assigns a "True" value to a system variable called
TurnOffAllAVAppliances between 1 am and 6 am
daily. This variable affects all A/V devices. In order
for any A/V device to work, this variable needs to have
the value "False". Figure 3d is a system trace that
shows the sequence of events: At 12:30am policy 2
sends a true value to the VCR and TV in the living
room, i.e. both are activated. However, at 1:00 am,
policy 1 shuts down the VCR and TV before the
recording is complete. Even though policy 2 was still
active until 2:30 am, the TV and VCR are shutdown.
There are numerous interaction situations in smart
homes that need to be detected and managed. For
instance, in the example mentioned above, when the
son tries to set policy 2, the system should be able to
detect that there is an interaction with policy 1 and ask
the son to have the parents enter a special
Administration PIN that would make an exception for
the living room VCR and TV to work in the restricted
time period from 1 am until 6 am. If this PIN is not
entered, then the new policy is deleted.

31st Annual International Computer Software and Applications Conference(COMPSAC 2007)
0-7695-2870-8/07 $25.00 © 2007

Fig. 4. KNX network model

3. Policy Interaction Manager Module
In this section we extend the traditional KNX

networking system to address the problem of policy
interactions. We propose the use of a run-time Policy
Interaction Manager Module (PIMM) that operates in
the run-time S-mode of the KNX network and works
as part of the Engineering Tool Software (ETS) used to
control the configuration and operation of the KNX
network in smart homes.

In the following, we use a top-down approach to
demonstrate how the proposed interaction manager
module is implemented within the KNX network
system. Figure 4 shows a model of the KNX system
describing its internal structure including the three
modes of configuration and management. The
proposed policy interaction manager module is
implemented in the S-mode as part of the ETS suite.
The S-mode was chosen because:
• The configuration and management of devices

working in the S-Mode are shifted from manual
configuration and management to a PC-based tool
set called Engineering Tool Software ETS.

• S-Mode supports free programming.
• S-Mode ETS uses a database for storing information

about all devices (e.g., home appliances, switches,
sensors, etc.) in the proprietary format VD3.

• The S-Mode, unlike E-mode and A-mode, can have
3rd party plug-ins.

As stated earlier, the ETS is used to design and
configure intelligent homes and buildings that are
based on the KNX system. ETS modules rely on a
product database with detailed information about each
product. This description allows ETS to show the
product, its available application programs and their

associated parameters, and the corresponding
possibilities for Group Address binding in a graphical
way to the user.

The basic architecture of the ETS consists of the
following components:
• ETS User Interface: This user interface is used to

configure the devices of the smart home.
• Plug-in Components: They allow third party plug-ins

to be added to the ETS software suite.
• Hawk: This is a database-based download manager

(e.g. S19 file format) that can be used to download
software for new KNX compatible devices from the
different vendors and suppliers.

• Falcon: This is a DCOM (Distributed Component
Object Model) based 32-bit access library that
allows Windows applications to access the KNX
network. Falcon offers several APIs to support all
different aspects of bus access and device
management.

• Eagle: This is a component similar to Falcon but
used to access the standard ETS database (ETS DB).
The ETS DB contains information about different
KNX devices such as their description, their
application programs, and their functionalities.

To extend the ETS software suite to be able to
manage policy interactions, the following components
have to be added to the ETS software suite:
• Policy-enabled ETS user interface: This is an

enhanced interface that allows the user to manage
devices in the smart home using policies rather than
the standard ETS user interface.

• Policy Interaction Manager Module (PIMM): This is
the core component and is responsible for
decomposing user policies into atomic policies. An
atomic policy is a policy that consists of only one
functionality of one device. Usually a user policy is
complex and consists of more than one atomic
policy. For example, a user policy can be “at 8:00
am switch off living room lights and open the
curtains”. This policy can be decomposed into two
atomic policies which are “switch off living room
lights” and “open curtains”. These two atomic
policies are triggered by the event: time = 8:00am.
After that the PIMM checks that no atomic policy
interacts with any other policy set by other users. If
an interaction is detected, it has to be resolved based
on the priorities associated with the atomic policies
involved in the interaction.

• Pre-defined Smart Homes Interaction Data Base
(PSHI DB): This is a database in which interactions

31st Annual International Computer Software and Applications Conference(COMPSAC 2007)
0-7695-2870-8/07 $25.00 © 2007

.

Fig. 5. Integrating the interaction manager in the ETS suite

that are known to occur between smart homes
devices are stored. The PSHI DB is essential for the
operation of the PIMM because the PIMM consults
with this database to determine whether or not there
exists an interaction between two atomic policies.
The PSHI DB is accessible through the EAGLE
database access component to provide consistency of
the ETS software suite.
Figure 5 shows a model for the ETS software suite

extended to manage policy interactions. The new
components that were added are marked with an
asterisk each. As seen from Figure 5, the user has a
choice to work with the standard ETS interface or to
work with the enhanced policy-enabled ETS user
interface. In the latter case, the user is able to set
complex policies regarding the behavior of the smart
home. In either case, all policies have to go through the
PIMM to check if there is a possible interaction
between the new policy and an existing policy. For this
reason the position of the two components Hawk and
plug-ins were rearranged to be part of the PIMM to
support interaction management.

To filter any unwanted interactions, the policy
interaction manager works as a middle layer between
the user interface through which the user sets his
preferences and the execution of these preferences.
Below the PIMM are the Falcon and Eagle
components. The PIMM communicates with the ETS
DB and the PSHI DB via the Eagle component when
performing the interaction detection operation for new
policies. Similarly, the PIMM communicates with the
KNX network, via the Falcon component, to execute

policies if no interactions were detected or after
detected interactions were resolved. This means that all
policies executed over the KNX-network devices are
guaranteed to be interaction free.

The task of the PIMM is to detect and resolve
unwanted interactions between new policies and
already existing policies set by other users. The
following outlines the operation of the interaction
manager module when a user sets a new policy:
• STEP 1: “Input user policy and decompose it into

atomic policies Ai where i=1…n (n = number of
atomic policies)”.

• STEP 2: “Set i=1”. This step is to initialize a counter
i that increases from 1 to n to perform a loop over all
the atomic policies A1 to An (atomic policies of the
new user policy A).

• STEP 3: “Check if any of the new atomic policies Ai
has the same or a linked trigger event with an
already existing atomic policy B”.

• STEP 4: “If step 3 does not find any same or linked
trigger events with other policies, go to step 11, else
go to step 5”. That is, if no identical or linked trigger
events are found, no interactions will occur and we
can accept the new atomic policy (step 11)

• STEP 5: “Compare the two atomic policies Ai and B
for interactions based on the PSHI DB”. This step
compares the two atomic policies for interactions
using the predefined scenarios in the PSHI DB.

• STEP 6: “If the result of step 5 is null then go to step
11 else continue with step 7”. This step decides if
there are no interactions between the two atomic
policies. If this is the case, the new atomic policy
can be accepted as an active policy (step 11). If an
interaction is detected, continue with step 7.

• STEP 7: “If atomic policy Ai has a higher priority
than atomic policy B, go to step 10, else continue
with step 8”. This step compares the priorities of the
two atomic policies.

• STEP 8: “Output a message to the user: atomic
policy Ai interacts with atomic policy B. Enter an
override PIN or cancel atomic policy Ai”.

• STEP 9: “If an override PIN is not entered, then
delete atomic policy Ai and go to step 12. Else
continue with step 10.

• STEP 10: “Delete atomic policy B”. This step is
carried out if a PIN is entered to delete policy B.

• STEP 11: “Accept atomic policy Ai as an active
policy”. This step means that atomic policy Ai has
been accepted into the system and is ready to
execute whenever it is triggered.

31st Annual International Computer Software and Applications Conference(COMPSAC 2007)
0-7695-2870-8/07 $25.00 © 2007

• STEP 12: “Increment i. If i is less than or equal to n,
then go to step 3. Else go to step 1”.

In step 5, the PIMM analyzes the two atomic polices
for interactions according to all interaction scenarios
stored in the PSHI DB. For example, two atomic
policies interact if they control the same device, have
the same trigger event, have the same prestate, but
have contradicting next states. The preceding
definition of interaction is called non-determinism
scenario of interaction [19]. Using this interaction
definition, an interaction scenario can be defined as
shown in Table1. Currently there are 30 different
interaction scenarios stored in the PSHI DB to be used
by the PIMM in smart homes [19].

Table1: Non-determinism interaction scenario
Scenario ID SCR1
Interaction
Scenario
Body

(P1.Device)=(P2.Device) AND
(P1.TriggerEvent=P2.TriggerEvent) AND
(P1.PreState=P2.PreState) AND
(P1.NextState ≠ P2.NextState)}

5. Conclusion
This paper presented the problem of policy

interactions that occurs in smart homes. This problem
has been discussed from different viewpoints including
experts, semi-formal methods, and software simulation
which have highlighted the effects of interactions.

A policy interaction manager module (PIMM) was
proposed to extend the traditional KNX networking
system. This policy interaction manager module was
introduced as part of the Engineering Tool Software
suite (ETS) to work as a run-time interaction manager
to detect and resolve any unwanted interactions
between policies. The module detects interactions
between policies based on 30 interaction scenarios that
define when two policies interact. These interaction
scenarios are stored in the pre-defined smart home
interactions database (PSHI DB).

REFERENCES
[1] E. C. Lupu and M. Sloman, "Conflicts in policy-based

distributed systems management," IEEE Transactions on
Software Engineering, vol. 25(6), pp. 852-869, 1999.

[2] J. B. Michael, J. Lobo, and N. Dulay, Proceedings of the
3rd International Workshop on Policies for Distributed
Systems and Networks: IEEE Computer Society, Los
Alamitos, California, USA, June 2002.

[3] H. L. Lutfiyya, J. Moffett, and F. Garcia, Proceedings of
4th IEEE International Workshop on Policies for
Distributed Systems and Networks: IEEE Computer
Society, Italy, 2003.

[4] D. Verma, M. Devarakonda, and a. M. K. E. Lupu,
Proceedings of the 5th IEEE International Workshop on
Policies for Distributed Systems and Networks: IEEE
Computer Society, New York, USA, 2004.

[5] A. D. Marco and F. Khendek, "eSERL: Feature
interaction in Parlay/OSA using composition constraints
and configuration rules," in Feature Interactions in
Telecom. and Software Systems VII, D. Amyot and L.
Logrippo, Eds. Amsterdam: IOS Press, June 2003.

[6] S. Reiff-Marganiec and K. J. Turner, "A policy
architecture for enhancing and controlling features," in
Feature Interactions in Telecommunications and
Software Systems VII, D. Amyot and L. Logrippo, Eds.
Amsterdam: IOS Press, 2003, pp. 239-246.

[7] M. Kolberg, E. H. Magill, and M. Wilson, "Compatibility
Issues between Services Supporting Networked
Appliances," IEEE Communications Magazine, vol. 41,
pp. 136 - 147, 2003.

[8] A. Metzger and C. Webel, "Feature Interaction Detection
in Building Control Systems by Means of a Formal
Product Model," 2003.

[9] A. Metzger, "Feature interactions in embedded control
systems," Computer Networks, vol. 45, pp. 625-44, 2004.

[10]S. D. Bruyne, "Finding your way around the KNX
Specifications", presented at KNX Technology Tutorial
Workshop, Deggendorf, Germany, October 6th, 2004.

[11]KNX Technology, http://www.konnex-knx.com/, Last
viewed on January 10th, 2005

[12]Engineering Tool Software - ETS,
http://www.eiba.com/en/ets3/, Last viewed on January
10th, 2005

[13]G. Dewsbury, B. Taylor, and M. Edge, "DESIGNING
DEPENDABLE ASSISTIVE TECHNOLOGY
SYSTEMS FOR VULNERABLE PEOPLE," Health
Informatics Journal, ISSN 1460-4582, vol. 8, Number 2,
pp. 104-110, June 2002.

[14]M. Shehata, A. Eberlein, and A. Fapojuwo, "IRIS: a
semi-formal approach for detecting requirements
interactions," presented at Proceedings. 11th IEEE
International ECBS, 24-27 May 2004, Brno, Czech
Republic, 2004.

[15]M. Shehata, A. Eberlein, and A. O. Fapojuwo, "Feature
Interactions between Networked Smart Home
Appliances," presented at QSSE, 4th ASERC Workshop
on Quantitative and Soft Computing Based Software
Engineering, Banff, Alberta, Canada, Feb. 16-17 2004.

[16]BatiBUS technology, http://www.batibus.com/, Last
viewed on January 10th, 2005

[17]EIB Technology, http://www.eiba.com/, Last viewed on
January 10th, 2005

[18]EHS Technology, http://www.ehsa.com/, Last viewed on
January 10th, 2005

[19]M. Shehata, A. Eberlein, and A. O. Fapojuwo, "Using
Semi-Formal Methods for Detecting Interactions among
Smart Homes Policies," Submitted for Journal of Systems
and Software, August, 2004.

31st Annual International Computer Software and Applications Conference(COMPSAC 2007)
0-7695-2870-8/07 $25.00 © 2007

