
Science of Computer Programming 67 (2007) 125–161
www.elsevier.com/locate/scico

Using semi-formal methods for detecting interactions among smart
homes policies

Mohamed Shehataa,c,∗, Armin Eberleinb, Abraham Fapojuwoa

a Department of Electrical and Computer Engineering, University of Calgary, 2500 University Drive NW, Calgary, AB, Canada
b Department of Computer Engineering, American University of Sharjah, PO Box 26666, Sharjah, United Arab Emirates

c Department of Electrical and Computer Engineering, Shoubra Faculty of Engineering, Benha University, 108 Shoubra Street, Cairo, Egypt

Received 2 October 2005; received in revised form 29 June 2006; accepted 27 November 2006
Available online 15 March 2007

Abstract

Feature Interaction is a problem mostly considered in the telecommunications domain. Many solutions for detecting interactions
between telephony features have been reported. In this paper, we investigate the feature interaction problem beyond the traditional
telecommunications domain and look at interactions between policies in other domains. We propose the use of semi-formal methods
for detecting interactions between policies in the smart homes domain. The novelty of this research is threefold: firstly, a six step
semi-formal approach, called IRIS (Identifying Requirements Interactions using Semi-formal methods), for detecting interactions
is presented. A major component within IRIS, which is an interaction taxonomy, is also presented. Secondly, we extend the scope
of the problem of feature interactions beyond telecommunication features and investigate interactions between policies in the smart
homes domain. Thirdly, in order to show how IRIS is used to detect interactions between policies, a case study of the smart homes
domain is conducted. A complete description of the results obtained is also provided. Our approach was successfully applied to
the smart homes domain and was able to discover 83 interactions among 35 user policies using only 525 pairwise comparisons
as opposed to 630 a human expert would have to do. These results support the paper’s main claim of being able to use the semi-
formal approach IRIS to detect interactions between policies. Furthermore, these results are to date the most complete publication
of interactions between policies in the smart homes domain.
c© 2007 Elsevier B.V. All rights reserved.

Keywords: Feature interaction; Policies; Semi-formal methods; Smart homes

1. Introduction

A common approach to system development is to build an initial system with a relatively small and basic core and
then introduce additional features later on as needed. This type of development is often referred to as feature-based
development. However, the addition of features is often very challenging due to the feature interaction problem [1,
2]. This problem has received a lot of attention from the telecommunications industry where many formal approaches
have been developed [3–5]. Unfortunately, the development of formal models is very costly, and the suitability of

∗ Corresponding author at: Department of Electrical and Computer Engineering, University of Calgary, 2500 University Drive NW, Calgary, AB,
Canada. Tel.: +1 403 2108196; fax: +1 403 2826855.

E-mail addresses: Msshehat@ucalgary.ca (M. Shehata), Eberlein@ucalgary.ca (A. Eberlein), Fapojuwo@ucalgary.ca (A. Fapojuwo).

0167-6423/$ - see front matter c© 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.scico.2006.11.002

http://www.elsevier.com/locate/scico
mailto:Msshehat@ucalgary.ca
mailto:Eberlein@ucalgary.ca
mailto:Fapojuwo@ucalgary.ca
http://dx.doi.org/10.1016/j.scico.2006.11.002

126 M. Shehata et al. / Science of Computer Programming 67 (2007) 125–161

formal methods for other domains, different from telecommunications, has been questioned [6,7]. A good summary
of the current research status of feature interaction in telecommunications and software systems can be found in the
proceedings of the feature interaction workshops [8–14].

Although feature-based systems are very attractive, many users find that they do not allow enough system
customization. Furthermore, features are developed by system developers, not by users, and hence users have to
use a feature as is and have very little control over its behavior.

In recent years, interest in policies has increased as a means to provide greater flexibility and customizability of
systems. For example, a person might set a policy regarding incoming phone calls such that important calls from
his/her boss are forwarded to the cell phone, private calls from the family to the spouse’s number, and the remaining
calls to another predefined number. A good summary of the current research status of the application of policies in
distributed systems can be found in the proceedings of policy workshops [15–18].

However, due to the expected large number of policies within a system, their diversity, and the complexity that the
human user will add, there is a high chance that policies will interact with each other, in a similar way as features
do. Such interactions have been termed policy interactions. There is thus a need for approaches that help detect and
resolve such interactions.

This paper proposes the use of a semi-formal approach, IRIS, to detect policy interactions in different domains.
It also describes an interaction taxonomy that provides guidelines on when two policies are interacting. The paper
then shows the application of IRIS to detect policy interactions in the smart homes domain. This domain was chosen
because it extensively uses policies to express user preferences. A complete description of the obtained results is
provided.

The obtained results from the smart homes case study show that the use of IRIS as a semi-formal approach was
successful in detecting interactions between policies in smart homes. Further, these results serve as the first fully
documented results of interactions between user policies in the smart homes domain.

This paper is structured as follows: Section 2 presents the concepts of features and policies and their relationship.
Section 3 begins with a step-by-step description of the proposed IRIS approach and then followed by a presentation
of the proposed domain-independent interaction taxonomy. Section 4 describes the use of IRIS to detect interactions
between smart homes policies. Section 5 presents a prototype of a tool that supports the application of IRIS. Section 6
presents description of some related work to this paper. Finally Section 7 concludes the paper.

2. Features and policies

During the Feature Interaction Workshop (FIW VII) held in 2003 and the 8th International Conference on Feature
Interactions (ICFI’05) held in 2005, it became obvious that there is a growing interest in policies and their interactions.
However, the differences between policies and features as well as their interrelationship were still very unclear. In this
section, a novel view on the relationship between features and policies is presented.

2.1. Understanding features and policies

A feature is defined as a coherent and identifiable bundle of system functionality that helps characterize the system
from the user perspective [25]. Features are built by system developers as user-requested expansions of a base system.
Features have been attractive as they allow the developers of long-lived systems to enrich system performance by
adding features over time on top of the base system. An example of a feature in the telecommunications domain is
Call Forward on Busy Line (CFBL). CFBL is a feature that, when active, will forward an incoming phone call to a
busy subscriber to a predefined phone number.

A Policy is defined as information that is used to modify the behavior of the system [20]. Policies are created by
different stakeholders (e.g., normal user, administrator, manager) to reflect personal, organizational or system goals.
The attractiveness of policies stems from the fact that people can express their own preferences by setting their own
policies to customize the system with greater flexibility. An example of a policy set by a user is: “If someone gets out
of bed between 10 pm and 7 am then the lights in the bedroom and the hall switch on at initially 50% of illumination
ramping up to 100% over 1 min and the bathroom fan is switched on. After leaving the bathroom, the bathroom light
and the bathroom fan automatically switch off. After the person gets back into bed the bedroom light is dimmed from
100% to 50% over 1 min and then switched off”.

M. Shehata et al. / Science of Computer Programming 67 (2007) 125–161 127

However, there is a major and key difference between features and policies. The user has very limited control, if
any, over the behavior of a feature. He can activate or deactivate the feature or supply a certain value for a parameter
part of the feature. But s/he cannot customize the feature to work in a certain way to meet his/her needs. For example,
consider the feature Teen Line (TL) from the telecommunications domain which restricts outgoing calls from the
phone during a predefined time period unless a PIN is provided. The only control that a user has over this feature is
to activate/deactivate it, specify the active time frame, and change the PIN. But the user cannot customize this feature
to allow outgoing calls in case of emergencies, such as fire, or to allow any occupant to call 911. However, such
customization is possible with policies. For instance, the user can set the policy: “The system shall override the Teen
Line PIN restriction when the fire alarm is triggered”.

2.2. Relationship between features and policies

As defined earlier, a feature is a bundle of system functionality. This means that each feature provides different
functionalities to the system. For example the windows control feature is a feature that allows the control of windows
within a smart home and contains the following functionalities:

• Ow1: The windows can be opened/closed at any time by the occupants using a remote control.
• Ow2: The system shall open/close the windows between time X1 and time X2.
• Ow3: The system shall open/close the windows when day/night begins

where Owi : the operation i associated with feature w (windows).
Now, a policy is information that is used to allow the modification of system behavior. Policies achieve this

modification and customization of system behavior through the invocation of one or more functionalities within one
or more features. For example, consider the following policy set by an occupant in a smart home: “Open the windows
between 5:00 pm and 6:30 pm”. This policy will invoke only one functionality, Ow2, in the windows control feature
and will execute the action of opening the windows when the clock of the system indicates 5:00 pm and closes them
again at 6:30 pm.

The relationship between features and policies can be described from an object oriented perspective: A policy is a
specific Run that the user wants the system to execute to exhibit a specific behavior using values that accommodate
his/her special needs. Now, the system is composed of a set of features. Each feature can be thought of as an Object.
Also, each feature will have different functionalities in it (e.g., the windows control feature). These functionalities can
be considered as Methods.

A user can then set a run with specific values that invokes one or more methods from the same or different objects
replacing the parameters in these methods with the values provided by the user in the run. A similar concept describes
the relationship between features and policies. The user can set a policy (a run) with specific values to replace variables
in the functionalities. This policy will invoke one or more functionalities (methods) from the same or different features
(objects) replacing the variables within these functionalities with the values provided by the user in the policy to
achieve its task. Fig. 1 shows a diagrammatic scheme to illustrate this point.

2.3. Features and policies in a smart home architecture

After defining features, policies, and their relationship, we now want to describe how features and policies look like
in a smart home architecture. Fig. 2 presents an overall architecture showing policies, features and physical elements
of smart homes. Physical elements are responsible for carrying out the physical actions of the different functionalities
when triggered (e.g. actuators, appliances, air conditioning, heating, light bulbs. . . etc.).

The policy layer contains all the policies of the smart home including policies set by the occupants (user policy)
or policies that are set by the system administrator and developer (system policy). The feature layer includes all
the features within the smart home. Finally, the physical elements layer contains all the physical elements that are
connected to the smart home network. Usually, all physical elements are connected to a central network where the
master control software coordinates all the operations of the physical elements.

When a user has a certain preference for the behavior of one or more physical elements he defines a user policy in
the policy layer describing his preference. This user policy then invokes the features controlling the behavior of the
affected physical elements. The invoked features pass on the user preferences described in the user policy to the master

128 M. Shehata et al. / Science of Computer Programming 67 (2007) 125–161

Fig. 1. Object oriented description of the relationship between features and policies.

Fig. 2. Features, policies, and physical elements within smart homes.

control in the physical elements layer. Finally, the master control activates the required physical elements according
to the user-defined behavior.

3. IRIS: Identifying Requirements Interactions using Semi-formal methods

This section describes the advantages of using IRIS as a semi-formal approach for detecting interactions. It then
describes the internal structure of IRIS. Finally, it focuses on general interaction detection taxonomy which is an
important component of IRIS.

M. Shehata et al. / Science of Computer Programming 67 (2007) 125–161 129

Fig. 3. Internal structure of IRIS.

3.1. Internal structure of IRIS

IRIS is the outcome of research into the application of lightweight semi-formal approaches to detect interactions
in any domain in a cost effective manner. To validate IRIS, three case studies have been conducted. In the first case
study, IRIS was applied to detect interactions in the lift control system. The results of this study are reported in [26].
In the second case study, IRIS was applied to the telecommunications domain (see [27] for the results of this case
study.). One objective of this paper is to present the ability of IRIS to detect interactions between a set of policies in
the new domain of smart homes. Another feature of IRIS is its flexibility in being applied at three levels of abstraction:
requirements, features, and policies. In the lift control system, IRIS was used to detect interactions between a set of
requirements. In the telecommunications domain, IRIS was used to detect interactions between a set of features. This
paper shows the application of IRIS to policies.

IRIS is a systematic six step procedure that produces tables and graphs in the first five steps and then detects
interactions in the last step using the tables and graphs created in the previous steps. The six step procedure of IRIS
can be represented using the model shown in Fig. 3.

The “Interaction Detection” contains guidelines to detect policy interactions. The “Document” represents a textual
document containing the system description and a textual definition of the different policies. The textual policies need
to be translated into a tabular representation as well as an event-based graphical representation so that the guidelines
for detecting interactions can be applied. The six steps of IRIS are ordered in such a manner that this translation of
policies into graphical and tabular representations is gradually achieved. The objective of these representations is to
facilitate the application of the interaction detection guidelines.

The following describes the six steps of IRIS:

• Step 1: Policies classification: The policies are classified into one of the following two categories: System Axiom
policies and Dynamic Behavior policies. A policy is considered to be a system axiom policy if it describes a
property that has to be preserved at all times. For example a system axiom might state “The system shall maintain
the temperature of the water from the hot water tap at 45 ◦C”. On the other hand, a policy is considered as
a dynamic behavior policy if this policy specifies the reaction of the system when a certain event occurs. For
example, a dynamic behavior might be “The system shall start the alarm clock and open the bedroom curtains at
7:00 am every morning”. This step is shown in Fig. 3 as the classification of the Document into system axioms and
dynamic behavior.

130 M. Shehata et al. / Science of Computer Programming 67 (2007) 125–161

• Step 2: Policies attributes identification: This step is aimed at identifying different attributes within the system
policies. To represent these attributes in a comprehensive manner, two tables are generated:

◦ The first table is used to represent system axiom policies using the attributes Rules and Conditions (more
attributes can be added when needed)

◦ The second table is used to represent system dynamic behavior policies using the four attributes Pre-state,
Trigger event, Action, and Next state (more attributes can be added if needed).

This step is done by identifying the different attributes of the system policies and recording them in the “system
axiom” and “dynamic behavior” shown in Fig. 3.

• Step 3: Trigger events extraction: This step identifies and extracts all the different trigger events from the dynamic
system behavior policies. The step is shown as the process Generate Trigger Events() in the “dynamic behavior” in
Fig. 3 and applies only to the dynamic behavior policies.

• Step 4: Linked events identification: During this step a table is developed that contains all linked trigger events. A
trigger event is called a linked trigger event if it can lead to other trigger events (see Section 4.4.4). This step is
shown as the process Generate Linked Events() in the “dynamic behavior” in Fig. 3 and applies only to the dynamic
behavior policies.

• Step 5: Graphical representation: In this step an event-based graphical representation is used to link each event
with the policies it triggers. This graphical representation will later facilitate the detection of interactions between
the policies. The step is represented by the “Graphical Trigger Representation” in Fig. 3 and applies only to the
dynamic behavior policies.

• Step 6: Interactions detection: During this step, the developer detects interactions between policies using the IRIS
interaction detection guidelines (see Section 3.3). This step is shown in Fig. 3 by the “interaction detection” and
applies to all policies, including system axiom policies and dynamic behavior policies, as it is required to detect
interactions between any two policies regardless of their classification.

3.2. Interaction taxonomy

The actual detection of interaction takes place during the last step of IRIS. A human developer uses the tables
and graphs generated during the earlier steps to detect interactions using specific detection guidelines. Although these
tables and graphs make the policies clearer and more understandable, detailed guidelines on when two policies interact
are necessary. These guidelines are designed for use by non-experts thus reducing the interaction detection cost. These
guidelines are domain independent, which means that they can be applied in any domain including the smart homes
domain selected as case study in this paper. They are applicable for detecting interactions between requirements,
features, or policies. As this paper focuses on interaction detection between policies therefore the term policies will
be used during the presentation of the taxonomy.

In order to develop interaction detection guidelines, a general interaction taxonomy had first to be established.
Therefore, an extensive review of currently existing definitions of interactions was carried out. Based on this review,
a three layer taxonomy was developed as shown in Fig. 4. The first layer of the taxonomy contains the main types of
interactions. In the second layer of the taxonomy these main types are decomposed into subcategories. The third layer
of the taxonomy associates each subcategory of layer 2 with one or more types which in turn map in the fourth layer
of the taxonomy to an interaction scenario that describe an interaction situation. Each of these scenarios generated a
guideline on when two policies will interact.

The first layer contains nine main types of interactions from which three are considered as main types of interactions
and we use and describe in this paper:

1. Interactions between two system axiom policies.
2. Interactions between a dynamic behavior policy and a system axiom policy.
3. Interactions between two dynamic behavior policies.

From these three main types of interactions, more subcategories are derived in the second layer. Finally in the third
layer, detailed scenarios for each of these subcategories are presented.

Four guidelines from the taxonomy were used in the smart home case study. The following contains a description
of the guidelines used in the smart homes case study:

M. Shehata et al. / Science of Computer Programming 67 (2007) 125–161 131

Fig. 4. General interaction taxonomy.

1. Interaction between two system axioms policies: Guideline 1 states that “Two system axiom policies interact when
the rule attribute (see Table 1 in Section 4.4.2 for an example) of one system axiom policy contradicts the rule
attribute of a second system axiom policy”. For example, assume the following scenario: A system axiom policy
states “Web pages that are used to submit confidential information will always require secure logon and secure
communication with the web server” Another system axiom policy states “The transition time from any page to the
transactions page should be minimal and should at all times be <10 s”. If the security of the logon to the transaction
page is done using a username/password, then these two system axiom policies are interacting.

2. Interaction between a dynamic behavior policy and a system axiom policy: Guideline 2 states that “a system axiom
policy interacts with a dynamic behavior policy when the action attribute of the dynamic behavior policy (see
Table 2 in Section 4.4.2 for an example) contradict the rule attribute of the system axiom policy (see Table 1 in
Section 4.4.2 for an example)”. For example: A dynamic behavior policy states “When the lift is overloaded, doors
will not close”. Also consider the following system axiom policy “The lift shall always serve unserved calls”.
Obviously the first dynamic policy interacts with the system axiom policy leading to an interaction.

3. Interaction between two dynamic behavior policies
3.1 Guideline 3 states that “two dynamic behavior policies interact if:

1. The Previous State attributes (see Table 2 in Section 4.4.2) of both policies are the same, AND
2. The Trigger Event attributes (see Table 2 in Section 4.4.2) of both policies are the same, AND
3. The Action attributes (see Table 2 in Section 4.4.2) of both policies contradict each other”.
To illustrate this interaction assume the following scenario: one dynamic policy requires the system to activate
a remote access module if there is an incoming call with no answer for 6 rings while the second dynamic
policy requires the system to activate an answer machine if there is an incoming call with no answer for 6
rings. Obviously the system will not be able to do both actions at the same time leading to an interaction.

3.2 Guideline 4 states that “two dynamic policies will interact when they are triggered by linked events (see Table 4)
and the action attribute of one policy will cancel or contradict the action attribute of the other policy (see
Table 2)”. For example, assume the following scenario: one policy lets a CD player play music for three hours
starting 7:00 pm and the other policy shuts down all audio/video devices after 9:00 pm. These two policies
might have been set by two different people who live in the same house (e.g., a parent and child or a husband
and wife). Obviously the second policy will cancel the action of the first policy before its completion.

In all three guidelines the word “contradict” is of significance. It can mean one of the following:

1. Negative impact: This means that the two attributes are still preserved, but one attribute will negatively affect the
second one reducing its performance and efficiency.

2. Override: This means that the one attribute will override and cancel the other attribute.

132 M. Shehata et al. / Science of Computer Programming 67 (2007) 125–161

The smart homes case study presented in this paper shows the application of IRIS and its guidelines for detecting
interactions between policies.

3.3. Advantages of detecting interactions using the proposed semi-formal approach IRIS

Semi-formal approaches are well recognized in different research communities. For example, the requirements
engineering community extensively uses the Unified Modeling Language (UML) [28] to model the requirements of
a system. Different UML notations (e.g., static structure diagrams, use case diagrams, sequence diagrams, activity
diagrams) are used to represent the set of requirements at hand. Another example is the User Requirements Notation
(URN) which uses graphical representations to represent system requirements [29]. The system modeling community
uses Structured Analysis and Structured Design (SASD) as a modeling approach that heavily relies on representing
and modeling the system with different graphical notations [30,31].

The proposed IRIS approach is not just another graphical modeling approach but it rather models the system using
different graphs and tables with the ultimate aim of detecting interactions between a set of policies:

1. Tables allow a comprehensive representation and visualization of the policies of the system in a structured format.
2. The creation of these tables requires a good understanding of the policies forcing the developer to clearly think

about policies which will likely improve them.
3. Using a graphical representation (see Section 4.4.5) makes detection of interactions easier. For instance, policies

that are triggered by the same event are grouped together in the graphical representation. Therefore detecting
interactions can be easily done by examining the different actions and states of the policies.

4. Instead of having to perform pairwise comparisons between all policies in textual form, the developer can focus on
interactions between system axiom policies, between a system axiom and a dynamic behavior policy, or between
dynamic behavior policies that are triggered by the same or by linked events. This can result in a drastic reduction
in the number of comparisons. One might argue that these savings will result in likely missed interactions. This is,
to some extent, true; however, the created interaction detection guidelines will help the user to detect most of the
critical interactions. Moreover, it must be noted that there is a tradeoff between cost and efficiency of interaction
detection. Examples of domain where IRIS is recommended might be commercial PC software, smart homes or
other non-critical systems. However, formal methods are recommended for life critical systems.

4. Case study: Detecting policy interactions in smart homes

4.1. Smart homes

Smart homes are residences that use networking technology to integrate various home automation systems. This
integration allows systems (e.g., house appliances) to communicate with each other, either directly or through a master
control, thus building a comprehensive environment that the user can control [32–34]. In order for different devices to
correctly communicate and understand commands, a communication protocol is needed as a common language for all
these different devices. Various communication protocols are available in the market, such as LonWorks [35], Konnex
[36], X10 [37].

Smart homes are controlled by users setting different policies according to their preferences. However, the
complexity of these policies can vary greatly. Therefore, we introduce the concepts of simple policy and compound
policy. A simple policy is a policy that causes a direct invocation of only one functionality in only one feature.
A compound policy is a policy that causes an invocation of more than one functionality within the same or different
features. In other words, a compound policy can be seen as the concatenation of two or more simple policies. Consider
a policy that states “Close the water tap when the water level reaches 75% of the sink in the kitchen”. This policy
is considered a simple policy because it directly invokes only one functionality (P11.1) in the water overflow control
features (see Section 4.3). On the other hand, the policy “Close the water tap when the water level reaches 75% of
the sink in the kitchen and call the main occupant of the house on his cell phone to inform him”, is considered a
compound policy because it invokes two functionalities, namely: functionality “Close the water tap when the water
level reaches 75% of the sink in the kitchen”; and functionality “call the main occupant of the house on his cell phone”
in the communication feature.

M. Shehata et al. / Science of Computer Programming 67 (2007) 125–161 133

According to the above discussion, detecting policy interactions can be achieved by detecting simple policy
interactions. This even can provide more precise results as it will detect interactions within a compound policy by
detecting interactions between two simple policies in the body of this compound policy.

Since by definition a simple policy invokes only one functionality in one feature, detecting interactions between
functionalities is equivalent to detecting interactions between simple policies. Therefore, the remainder of this paper
uses the terms functionality and simple policy interchangeably.

4.2. Assumptions used in the smart homes case study

In the case study described in this paper, the following assumptions were made:

1. The case study detects interaction between functionalities because the interaction detection between functionalities
is equivalent to interaction detection between user policies (see Section 4.1).

2. Throughout the case study the term simple policy is used for the term functionality (see Section 4.1).
3. The vacation control feature is assumed to turn on/off TV and lights at predefined time settings. This limitation

imposed to use the TV and lights was done for simplicity. However, in other settings other devices can be used in
the vacation control.

4. Only the answer machine feature from the set of traditional telecommunications features was separately used and
listed in the case study because answer machine can be installed without having to install a more comprehensive
set of features.

5. The features used in the case study were defined by the authors based on different resources (see Section 4.3).
6. All devices and sensors are connected to a central network controlled by a master control software.
7. States are described using state variables. Within a certain state only variables of interest to the policy under

investigation are listed. This simplification is possible since other state variables have no effect on the outcome of
the interaction detection process.

4.3. Smart homes simple policies identification

Before IRIS can be applied to the smart homes case study, the simple policies of a smart home have to be defined.
To do this, the smart homes features first have to be identified and then the different functionalities contained in
each feature have to be extracted from the features textual definition. These functionalities can be treated as simple
user-defined policies to which IRIS can be applied in order to detect interactions (see assumption 1).

Smart homes can contain many different features, some of which are not very common due to their high cost and
technical difficulties. Furthermore, many features are designed to help people with specific disabilities and therefore
are not installed in all smart homes. This case study will investigate only the common features that are likely to be
used in smart homes. Fig. 5 shows an overview of these features.

In order to identify the different functionalities contained in each feature, the textual description of each feature is
decomposed into one or more functionalities or so-called simple policies (see assumption 2). Each simple policy is
given a unique ID that starts with a P then the number of the feature and finally the number of the simple policy (e.g.
P3.2 stands for simple policy number 2 in feature 3).
Feature 1: Intruder Alarm Feature
• Feature Textual Definition

This feature sends an alarm signal to the security warden when triggered. The occupants can activate/deactivate the
intruder alarm from inside the house using the alarm switch. The intruder alarm feature, when active, can be triggered
by a magnetic reeds sensor indicating that a window has been opened, by the main door lock sensor indicating that
the main door lock has been opened, by a Passive Infra-Red (PIR) sensor indicating movement in some areas, or by
pressure pads indicating that a person stepped on a predefined area.
• Functionalities (simple policies) in the Intruder Alarm Feature

P1.1 Activated/deactivated by a switch from inside the house called alarm switch.
P1.2 Alarm is triggered when the feature is active and a magnetic reed sensor indicates that a window is being opened
P1.3 Alarm is triggered when the feature is active and the main door lock sensor indicates that the main door lock is

being opened.

134 M. Shehata et al. / Science of Computer Programming 67 (2007) 125–161

Fig. 5. Overview of smart homes features.

P1.4 Alarm is triggered when the feature is active and a PIR sensor indicates movement in X1, where X1: Location,
X1 = {Living room, Bedrooms, Hallway, Kitchen}.

P1.5 Alarm is triggered when the feature is active and pressure pads indicate the presence of a person in X2, where
X2: location, X2 = {Living room, Bedrooms, Hallway}.

Feature 2: Vacation Control Feature
• Feature Textual Definition

A feature that can be used when the occupants are on vacation for an extended period of time. This feature
uses predefined time settings to automatically turn on TV and lights for 60 min in predefined areas. The feature
is activated/deactivated by a switch from the interior of the house.
• Functionalities (simple policies) in the Vacation Control Feature

P2.1 Activated/deactivated by a switch from inside the house called vacation switch.
P2.2 Turns on TV for 60 min at X3, where X3: Time, X3 = 00:00–23:59.
P2.3 Turns on lights for 60 min at X4 in X5, where X4: Time, X4 = 00:00–23:59 and

X5: Location, X5 = {Living room, Bedrooms}.

Feature 3: Main Door Control Feature
• Feature Textual Definition

A feature that locks the main door lock of the house using an electronic lock when the main door is shut. The
occupants can use an interior switch to unlock the main door from the inside. For safety purposes the electronic lock
automatically unlocks when the Gas/Heat/Smoke sensor is triggered.
• Functionalities (simple policies) in the Main Door Feature

P3.1 Locks the main door lock of the house when the main door is shut.
P3.2 Occupants can unlock the main door from inside by interior switch.
P3.3 Unlocks the main door when the Gas/Heat/Smoke sensor is triggered.

Feature 4: Audio/Visual Control Feature
• Feature Textual Definition

A feature that allows the occupants to control A/V devices through remote controls or to ask the system to turn
certain A/V devices on/off at predefined time settings.
• Functionalities (simple policies) in the Audio/Visual Control Feature

P4.1 Occupants can control all A/V devices through remote controls.
P4.2 Turns on/off X6 A/V device at X7, where X6: A/V device, X6 = {TV, CD, DVD} and X7: Time, X7 = 00:00–

23:59.

M. Shehata et al. / Science of Computer Programming 67 (2007) 125–161 135

Feature 5: Audio Level Control Feature
• Feature Textual Definition

A feature that allows the occupants to preset the audio level of different A/V devices to certain levels when they are
turned on during the day or night. It also allows the occupants to set a maximum audio level throughout the house that
cannot be exceeded. This maximum audio level is chosen by the occupant to avoid loud noise or disturbance during
the day/night.
• Functionalities (simple policies) in the Audio Level Control Feature

P5.1 Presets the audio level of audio device X8 to X9 when turned on, where X8: A/V device, X8 = {TV, CD, DVD}

and X9: Audio level, X9 = {1..63}.
P5.2 Occupants can set X10 as a maximum audio level throughout the house, where X10: Audio level, X10 = {1..63}.

Feature 6: Heating, Ventilation and Air Conditioning Control Feature
• Feature Textual Definition

The Heating, Ventilation and Air Conditioning (HVAC) control feature controls the temperature of the house.
This feature increases/decreases the temperature inside the house to a user preset temperature when the thermostats’
readings are different from this preset temperature. This feature also allows the occupants to define a program to
increase/decrease the temperature of the house at predefined time intervals.
• Functionalities (simple policies) in the Heating, Ventilation and Air Conditioning Control Feature

P6.1 Increases/decreases the ambient temperature inside the house to X11 when the readings from the thermostats are
different from this preset temperature, where X11: Temperature, X11 = {15..35}.

P6.2 Increases/decreases the temperature of the house to X12 at X13, where X12: Temperature, X12 = {15..35} and
X13: Time, X13 = 00:00–23:59.

Feature 7: Water Temperature Control Feature
• Feature Textual Definition

This feature controls the temperature of the hot water in the house. It maintains the temperature of the hot water
from the hot water tap in the kitchen at 45 ◦C and that of the hot water of the hot water tap of the bathroom at a
temperature of 40 ◦C.
• Functionalities (simple policies) in the Water Temperature Control Feature

P7.1 Maintains the temperature of the hot water from the hot water tap in the kitchen at 45 ◦C.
P7.2 Maintains the temperature of the hot water from the hot water tap of the bathroom at 40 ◦C.

Feature 8: Lights Control Feature
• Feature Textual Definition

This feature controls the intensity of light inside the house. The feature increases/decreases light intensity to
correspond to the increase/decrease of a light dimmer. During the night, this feature increases the light intensity
in a certain part of the house to the maximum within 2 min when a positive PIR signal is received from that part.
When the PIR signal is negative for 15 min, the lights are automatically switched off. Finally, this feature can be set
to automatically turn on the lights according to a daylight sensor when the night begins.
• Functionalities (simple policies) in the Lights Control Feature

P8.1 Increases/decreases light intensity to correspond to the increase/decrease of a light dimmer.
P8.2 Increases the light intensity during night in X14 to the maximum within 2 min when a positive PIR signal is

received from X14, where X14: Location, X14 = {Living room, Bedrooms, bathroom}.
P8.3 Automatically shuts down the lights during night in X15 when a PIR signal is negative for 15 min from X15,

where X15: Location, X15 = {Living room, Bedrooms, bathroom, hallway}.
P8.4 Automatically turns on the lights according to a daylight sensor when the night begins.

Feature 9: Curtains and Blinds Control Feature
• Feature Textual Definition

This feature can be used to automatically open/close the curtains and blinds in a certain area at predetermined time
settings. It can also be set to automatically open/close the curtains and blinds in a certain area according to a daylight
sensor.

136 M. Shehata et al. / Science of Computer Programming 67 (2007) 125–161

• Functionalities (simple policies) in the Curtains and Blinds Control Feature
P9.1 Automatically opens/closes the curtains and blinds in X16 at X17, where X16: Location, X16 = {Living room,

Bedroom} and X17: Time, X17 = 00:00–23:59.
P9.2 Automatically opens/closes the curtains/blinds in X18 according to daylight sensor, where X18: Location, X18

= {Living room, Bedroom}.

Feature 10: Windows Control Feature
• Feature Textual definition

This feature opens/closes the windows in predefined areas based on predefined time settings.
• Functionalities (simple policies) in the Windows Control Feature
P10.1 Opens/closes the windows in X19 at X20, where X19: Location, X19 = {Living room, Bedroom} and X20:

Time, X20 = 00:00–23:59.

Feature 11: Water Overflow Control Feature
• Feature Textual Definition

This safety feature shuts down the water tap when the water reaches or exceeds 75% of the total volume of the sink
or the tub in the kitchen or in the bathroom.
• Functionalities (simple policies) in the Water Overflow Control Feature
P11.1 Closes the water tap when the water reaches or exceeds 75% of the total volume of the sink or the tub either in

the kitchen or in the bathroom.

Feature 12: Remote Access Feature
• Feature Textual Definition

This feature allows the occupants to remotely activate any feature within the smart home from a remote location via
the telephone. The occupants call the home phone number, and when there is no answer after a user-defined number
of rings a remote access module is activated asking for a PIN to allow the remote control of home features.
• Functionalities (simple policies) in the Remote Access Feature
P12.1 Activates a remote access module when an incoming telephone call has not been answered within X21 rings,

where X21: number of phone rings, X21 = {2..8}.

Feature 13: Telephone Feature
• Feature Textual Definition

This feature enforces the presence of a Plan Old Telephone Service (POTS) or Voice over Internet Protocol (VoIP)
telephone line. It can also have an answer machine installed which records messages when receiving a phone call with
no answer for a certain number of rings.
• Functionalities (simple policies) in the Telephone Feature
P13.1 Enforces the presence of a telephone line with either standard POTS or VOIP.
P13.2 Activates an answer machine to record messages when receiving a call with no answer for X21 rings, where

X21: number of phone rings, X21 = {2..8}.

Feature 14: Stove Control Feature
• Feature Textual Definition

This safety feature can be used to shut down and prevent any activation of the stove during predefined time periods.
This feature is also used to shut down the stove when the Gas/Heat/Smoke sensor is triggered.
• Functionalities (simple policies) in the Stove Control Feature
P14.1 Shut down and prevent any activation of the stove during X22 and X23, where X22 and X23: Time, X22 and

X23 = 00:00–23:59.

Feature 15: Fan Control Feature
• Feature Textual Definition

This feature automatically turns on the kitchen fan when the humidity sensor is triggered. When the sensor signal
is lost for 20 min while the fan is on, this feature automatically switches off the fan.
• Functionalities (simple policies) in the Fan Control Feature
P15.1 Automatically turns on the kitchen fan when the humidity sensor is triggered.

M. Shehata et al. / Science of Computer Programming 67 (2007) 125–161 137

P15.2 Automatically switches off the kitchen fan when the humidity signal is lost for 20 min while the fan is on.

Feature 16: Control of Various Appliances Feature
• Feature Textual Definition

This feature allows the occupants of the house to control various appliances like the food processor, water
boiler. . . etc. using remote controls.
• Functionalities (simple policies) in the Control of Various Appliances Feature

P16.1 Occupants can control various appliances like the food processor, water boiler, etc. using remote controls.

4.4. Applying IRIS to detect interactions in smart homes

This section presents the results of applying IRIS to the smart home case study. Each subsection first names and
shows the execution of the IRIS step and then presents results obtained from applying the step.

4.4.1. Results of step 1: Simple policies classification
The first step is used to organize the simple policies into system axiom simple policies and dynamic behavior

simple policies. A simple policy is considered a dynamic behavior simple policy if it represents an action that is
executed when an event triggers a transition of the system from one state to another state. On the other hand, a simple
policy is considered a system axiom simple policy if it represents a rule or a property that has to be preserved at all
times independent of the occurrence of any trigger events.

The results of the application of the first step are as follows:
System axiom simple policies: P4.1, P5.2, P7.1, P7.2, P13.1, P16.1
Dynamic behavior simple policies: P1.1, P1.2, P1.3, P1.4, P1.5, P2.1, P2.2, P2.3, P3.1, P3.2, P3.3, P4.2, P5.1, P6.1,

P6.2, P8.1, P8.2, P8.3, P8.4, P9.1, P9.2, P10.1, P11.1, P12.1, P13.2, P14.1, P14.2, P15.1, P15.2.

4.4.2. Results of step 2: Simple policies attributes identification
This step identifies different attributes within the smart homes policies. To represent these attributes in a

comprehensive view, two tables are generated (see Tables 1 and 2). Table 1 contains system axiom simple policies and

Table 1
System axioms simple policies table

ID Description Rule Condition Variables Variables value range

P4.1 Occupants can control all A/V
devices through remote controls

Control all A/V devices
through remote controls

True – –

P5.2 P5.2 Occupants can set X10 as a
maximum audio level through
house

Set X10 as a maximum
audio level throughout the
house

True X10:Audio
level

{1..63}

P7.1 Maintains the temperature of the
hot water from the hot water tap in
the kitchen to 45 ◦C

Maintains the temperature
of the hot water of the hot
water tap in the kitchen to
45 ◦C

True – –

P7.2 Maintains the temperature of the
hot water from the hot water tap of
the bathroom to 40 ◦C.

Maintains the temperature
of the hot water of the hot
water tap of the bathroom
to 40 ◦C.

True – –

P13.1 Enforces the presence of a
telephone line with either standard
POTS or VOIP

A telephone line is always
present.

True – –

P16.1 occupants can control various
appliances like the food processor,
water boiler. . . etc. by remote
controls

Control various appliances
by remote control

True – –

138 M. Shehata et al. / Science of Computer Programming 67 (2007) 125–161

Table 2
Dynamic behavior simple policies table

ID Description Pre-state Triggering
event

Action Next state Variables Variables
value range

P1.1 Security Alarm is
Activated/deactivated by
a switch from inside the
house called alarm
switch.

SecurityAlarm=off/on Activate/
deactivate se-
curity alarm
switch
is pressed

Activate/
deactivate
security alarm

SecurityAlarm
=on/off

– –

P1.2 Alarm is triggered when
the feature is active and a
magnetic reeds sensor
indicates that a window is
being opened

SecurityAlarm
=on,
Alarm=not set,
Windows()=
closed

Window is
opened

Set security
alarm

SecurityAlarm
=on, Alarm=set,
windows()=open

– –

P1.3 Alarm is triggered when
the feature is active and
the main door lock sensor
indicates that the main
door lock is being opened

SecurityAlarm
=on,
Alarm=not set,
MainDoorLock=close

Main door
lock is
opened

Set security
alarm

SecurityAlarm
=on, Alarm=set,
MainDoorLock=open

– –

P1.4 Alarm is triggered when
the feature is active and a
PIR sensor Indicates
movement in X1

SecurityAlarm
=on,
Alarm=not set,
PIR=negative

Movements
in X1

Set security
alarm

SecurityAlarm
=on, Alarm=set,
PIR=positive

X1:
Loca-
tion

{LivRm,
BdRm,
Hall, kitch}

P1.5 Alarm is triggered when
the feature is active and
pressure pads indicate the
presence of person in X2

SecurityAlarm
=on,
Alarm=not set,
PressurePad=

negative

Pressure pad
in X2 is
pressed

Set security
alarm

SecurityAlarm
=on, Alarm=set,
PressurePad=positive

X2:
loca-
tion

{LivRm,
BdRm,
Hall}

P2.1 Vacation Control is
Activated/deactivated by
a switch from inside the
house called vacation
switch

VacationControl
=off/on

Activate/
deactivate va-
cation control
switch
is pressed

Activate/
deactivate
vacation
control

VacationControl=on/off– –

P2.2 Vacation control Turns on
TV for 60 min at X3

VacationControl
=on, TV=off

Time=X3 Turn on TV
for 60 min

VacationControl=on,
TV=on

X3:
Time

{00:00–
23:59}

P2.3 Vacation control turns on
lights for 60 min at X4 in
X5

VacationControl
=on,
Lights(X5)=off

Time=X4 Turn on lights
for 60 min in
X5

VacationControl=on,
Lights(X5)=on

X4:
Time,
X5:
Loca-
tion

X4={00:00
–23:59}

X5 =

{LivRm,
BdRm}

P3.1 Main Door lock feature
will lock the main door
lock of the house when
main door shut.

MainDoor=open
MainDoorLock=open

Main door is
shut

Lock the main
door lock

MainDoor
=closed
MainDoorLock
=closed

–

P3.2 Occupants can unlock the
main door from inside by
interior switch

MainDoor
=closed
MainDoorLock
=closed

Unlock main
door switch is
pressed

Unlock the
main door
lock and open
the main door

MainDoor=open
MainDoorLock
=open

– –

P3.3 Unlocks the main door
when the Gas/ Heat/
Smoke sensor triggers.

MainDoor
=closed
MainDoorLock
=closed

Gas/heat/
Smoke sensor
is triggered

Unlock the
main door
lock and open
the main door

MainDoor=open
MainDoorLock
=open

– –

M. Shehata et al. / Science of Computer Programming 67 (2007) 125–161 139

Table 2 (continued)

ID Description Pre-state Triggering
event

Action Next state Variables Variables
value range

P4.2 Turns on/off X6 A/V
device at X7

X6On=false/true Time=X7 Turn on/off
the A/V device
X6

X6On=True/false X6:
A/V
de-
vice,
X7:
Time,

X6 = {TV,
CD, DVD}

X7 =

{00:00–
23:59}

P5.1 Presets the audio level of
audio device X8 to X9
when turned on

X8On=False
X8Audio level
=DxR

X8 is turned
on

Preset the
audio level of
X8 to X9

X8On=True,
X8Audio level=X10

X8:A/V
de-
vice,
X9:Audio
level

X8 = {TV,
CD, DVD},
X9 =

{1..63}

P6.1 Increases/Decreases the
temp. inside the house to
X11 when the reading
from the thermostats are
different from this preset
temp.

Temp=DxR Thermostats
6= X11

Increases/
Decreases the
temp. inside
the house to
X11

Temp=X11 X11:
Temp.

{15..35}

P6.2 Increases/decreases the
temperature of the house
to X12 at X13.

Temp=DxR Time=X13 Increase/
decrease temp
of the house
to X12

Temp=X12 X12:
Temp.
X13:
Time

X12 =

{15..35}

X13 =

{00:00–
23:59}

P8.1 Increases/decreases light
intensity to correspond to
the increase/decrease of a
light dimmer slider

LightIntens()
=DxR

Increase/
decrease of
the dimmer
slider

Increase/
decrease light
intensity to
match
increase/
decrease of
the slider

LightIntens.()
=DimmerSlider

– –

P8.2 Increases the light
intensity during night in
X14 to a maximum
within 2 min when a
positive PIR signal is
received from X14.

Daylight=false
Lights(X14)=off
LightIntens(X14)=0

Movement in
X14

Increase the
light intensity
in X14 to a
max within 2
min

Daylight=false
Lights(X14)=on
LightIntens.(X14)
=max

X14:
Loca-
tion

{LivRm,
BdRm,
bathRm}

P8.3 Automatically shuts
down the lights during
night in X15 when a PIR
signal is negative for 15
min from X15.

Daylight=false
Lights(X15)=on
LightIntens
(X15)=DxR

No
movements in
X15 for 15
min

Shut down the
lights

Daylight=false
Lights(X15)=off
LightIntens.(X15)
=0

X15:
Loca-
tion

{LivRm,
BdRm,
bathRm,
hall}

P8.4 Automatically turns on
the lights according to a
daylight sensor when the
night begins.

Daylight=True
Lights()=off

Night begins Turn lights on
automatically

Daylight=false
Lights()=on

– –

P9.1 Automatically opens/
closes the curtains and
blinds in X16 at X17.

CurtainsBlinds
(X16)=close
/open

Time=X17 Open/close
the blinds and
curtains in
X16

CurtainsBlinds
(x16)=open/ close

X16:
Loca-
tion,
X17:
Time

X16 =

{LivRm,
BdRm}

X17 =

{00:00–
23:59}

(continued on next page)

140 M. Shehata et al. / Science of Computer Programming 67 (2007) 125–161

Table 2 (continued)

ID Description Pre-state Triggering
event

Action Next state Variables Variables
value range

P9.2 Automatically open/close
the curtains and blinds in
X18 according to
daylight sensor

Daylight=
false /true,
CurtainsBlinds
(X18)=close
/open

Day/night
begins

Open/close
curtains and
blinds in X18

Daylight=true/
false,
CurtainsBlinds
(x18)=open/ close

X18:
Loca-
tion

{LivRm,
BdRm}

P10.1 Opens/closes the
windows in X19 at X20

Windows(X19)
=close/open

Time=X20 Open/close
windows in
X19

Windows(X19)=
open/close

X19:
Loca-
tion,
X20:
Time

X19 =

{LivRm,
BdRm}

X20 =

{00:00–
23:59}

P11.1 Shuts down the water tap
when the water reaches
or exceeds 75% of the
total size of the sink or
the tub either in the
kitchen or the bathroom

Tap/shower-
Valve=open

Water level
≥75%

Shutdown
water

Tap/showerValve
=closed

– –

P12.1 Activates a remote access
module when receives a
telephone call for X21
rings with no answer

Telephone=idle
RemoteAccess=idle

Receive a call
request, and
no answer for
X21 rings.

Activate
remote access
module

Telephone=busy,
RemoteAccess
=Active

X21:
num-
ber of
phone
rings

{2..8}

P13.2 Activates an answer
machine to record
messages when receiving
a call with no answer for
X21 rings

Telephone=idle
AnswerMachine
=idle

Receive a call
request, and
no answer for
X21 rings.

Activate
answer
machine

Telephone=busy,
AnswerMachine=on

X21:
num-
ber of
phone
rings

{2..8}

P14.1 Shut down and prevent
any activation of the stove
during X22 and X23

Stove=DxR Time=X22 Shutdown and
prevent any
activation of
the stove till
X23

Stove=off X22,
X23:
Time

{00:00–
23:59}

P14.2 Shutdown the stove when
the Gas/Heat/Smoke
sensor is triggered

Stove=DxR Gas/heat/
Smoke sensor
is triggered

Shutdown the
stove

Stove=off – –

P15.1 Automatically turns on
the kitchen fan when the
humidity sensor is
triggered

KitchenFan=off Humidity
sensor is
triggered

Turn on
kitchen fan

KitchenFan=on – –

P15.2 Automatically shut off
the kitchen fan when the
humidity signal is lost for
20 min while fan is on

KitchenFan=on Humidity
sensor is
negative for
20 min

Turn off the
kitchen fan

KitchenFan=off – –

has the following columns: ID: contains a unique identifier for each simple policy. This ID will be used to refer to this
simple policy later on. Description contains an informal description of the simple policy. Rule describes the required
property to be valid at all times. Condition contains any specific conditions that may be relevant to this simple policy
and if no conditions apply, then it is given the value True. Table 2 contains dynamic behavior simple policies and has
the following columns: ID and description: both of them are used in the same way as in Table 1. Pre-state describes

M. Shehata et al. / Science of Computer Programming 67 (2007) 125–161 141

the state of the system before the trigger event occurs. Triggering event describes the event that requires the system
to take a certain action as described in the simple policy. Action describes the system response to the trigger event in
order to fulfill the simple policy. Next state describes the state that the system will reach after executing the specified
action. In order to accommodate domains that include variables, such as the smart homes domain, the tables include
two more columns which contain the variables in the corresponding simple policy and their value range. These are
represented by Variables and Variables Value Range.

State variables were used to describe the pre-state and next state of the system. For example,
MainDoorLock=closed states that the main door lock is in a closed state. Not every state will have a value assigned to
it. The Value DxR in the table corresponds to a don’t care value. The don’t care value is necessary to represent certain
cases as in P6.2 where it does not matter what the value of the previous temperature is because the objective of P6.2
is to increase/decrease the temperature to the predefined setting regardless of the previous temperature.

4.4.3. Results of step 3: Trigger events extraction
In this step the developer identifies and extracts all the different trigger events from Table 2. The idea behind this

step is to identify different simple policies that are triggered by the same trigger event. The results of this step are
shown in Table 3.

Table 3
Trigger events and the simple policies they trigger

Event ID Informal event description Simple policies triggered by this event

E1 Activate/deactivate security alarm switch is pressed P1.1

E2 A Window is opened P1.2

E3 Main door lock is opened P1.3

E4 Movements P1.4, P8.2

E5 Pressure pad is pressed P1.5

E6 Activate/deactivate vacation control switch is pressed P2.1

E7 Time P2.2, P2.3, P4.2, P6.2, P9.1, P10.1, P14.1

E8 Main door is shut P3.1

E9 Unlock main door switch is pressed P3.2

E10 Gas/heat/Smoke sensor is triggered P3.3, P14.2

E11 A/V device is turned on P5.1

E12 Thermostats 6= X11 P6.1

E13 Increase/decrease of the dimmer slider P8.1

E14 No movements in X15 for 15 min P8.3

E15 Day begins P8.4, P9.2

E16 Night begins P9.2

E17 Water level ≥75% P11.1

E18 Receive a call request, and no answer for X21 rings. P12.1, P13.2

E19 Humidity sensor is triggered P15.1

E20 Humidity sensor is negative for 20 min P15.2

4.4.4. Results of step 4: Linked events identification
Linked events can best be described using an example. Consider the event E2 stating that “A window is opened”.

The occurrence of this event will most likely cause a change in the temperature of the house and therefore the event

142 M. Shehata et al. / Science of Computer Programming 67 (2007) 125–161

Table 4
Linked events

ID Informal event description Linked to Mathematical representation

E1 Activate/deactivate security
alarm switch is pressed

E2, E3, E4, E5, E6, E8, E9,
E13, E18

E1<∼>E2, E1<∼>E3, E1<∼>E4, E1<∼>E5, E1<∼>E6, E1
<∼> E8, E1∼>E9, E1<∼>E13, E1∼>E18

E2 A window is opened E9, E12, E18, E20 E2<∼>E9, E2∼>E12, E2∼>E18, E2∼>E20

E3 Main door lock is opened E2, E4, E5, E6, E11, E13,
E14, E18, E20

E3∼ >E2, E3< ∼ >E4, E3< ∼ >E5, E3< ∼ >E6, E3∼ >E11,
E3<∼>E13, E3∼>E14, E3∼>E18, E3∼>E20

E4 Movements E2, E5, E6, E8, E9, E11, E13,
E18

E4∼ >E2, E4< ∼ >E5, E4∼ >E6, E4∼ >E8, E4∼ >E9,
E4∼>E11, E4∼>E13, E4∼>E18

E5 Pressure pad is pressed E2, E6, E8, E9, E11, E13, E18 E5∼ >E2, E5∼ >E6, E5< ∼ >E8, E5∼ >E9, E5∼ >E11,
E5∼>E13, E5∼>E18

E6 Activate/deactivate vacation
control switch is pressed

E8, E9, E13, E14, E18 E6<∼>E8, E6∼>E9, E6∼>E13, E6∼>E14, E6∼>E18

E7 Time Ei , where i = 1..20 E7∼>Ei , where i = 1..20

E8 Main door is shut E2, E9, E10, E11, E13, E14,
E18

E8∼ >E2, E8∼ >E9, E8∼ >E10, E8∼ >E11, E8< ∼ >E13,
E8∼>E14, E8∼>E18

E9 Unlock main door switch is
pressed

E3, E12, E13, E14, E18 E9∼>E3, E9∼>E12, E9∼>E13, E9∼>E14, E9∼>E18

E10 Gas/heat/smoke sensor is
triggered

E2, E3, E4, E5, E9, E12, E18,
E19

E10∼ >E2, E10∼ >E3, E10∼ >E4, E10∼ >E5, E10∼ >E9,
E10<∼>E12, E10∼>E18, E10∼>E19

E11 A/V device is turned on E18 E11∼>E18

E12 Thermostats 6= X11 E18, E19, E20 E12∼>E18, E12∼>E19, E12∼>E20

E13 Increase/decrease of the
dimmer slider

E18 E13∼>E18

E14 No movements in X15 for 15
min

E18 E14∼>E18

E15 Day begins E1, E2, E3, E4, E5, E9, E11,
W12, E13, E18

E15∼ >E1, E15∼ >E2, E15∼ >E3, E15∼ >E4, E15∼ >E5,
E15∼>E9, E15∼>E11, E15∼>E12, E15∼>E13, E15∼>E18

E16 Night begins E1, E2, E3, E4, E5, E9, E11,
E12, E13, E14, E18

E16∼ >E1, E16∼ >E2, E16∼ >E3, E16∼ >E4, E16∼ >E5,
E16∼>E9, E16∼>E11, E16∼>E12, E16∼>E13, E16∼>E14,
E16∼>E18

E17 Water level=75% E4, E5, E10, E18, E19 E17∼>E4, E17∼>E5, E17∼>E10, E17∼>E18, E17∼>E19

E19 Humidity sensor is triggered E18 E19∼>E18

E20 Humidity sensor is negative
for 20 min

E18 E20∼>E18

E12 “Thermostats 6= X11” will also be triggered. This means that whenever event E2 occurs then event E12 will also
occur as a logical consequence after a short time period. This means that event E2 leads to event E12 (or event E12 is
linked to E2) and this is expressed as E2 ∼> E12 where the curly arrow (∼>) indicates that the occurrence of first
event will most likely lead to the occurrence of second event.

Linked events can be formally defined as follows: “For events that can be initiated by a user (U) or a system (S):
Event σ2 is said to be linked to event σ1 (σ1 ∼> σ2) if event σ1 can be logically followed by event σ2” or formally:
(σ1 ∼> σ2) ↔ (@ σ1 → (σ2 = S.createEvent() ∨ σ2 = U.createEvent())). This latter formula can be read as
follows “(event σ1 leads to event σ2) is equivalent to (at the occurrence of σ1 this will lead to (σ2 is created by the
system S OR σ2 is created by the user U))”.

M. Shehata et al. / Science of Computer Programming 67 (2007) 125–161 143

The importance of linked events is to examine the actions of the policies that might be triggered sequentially by
sequential events and the effects of later actions on actions that are already being executed (refer to Section 3.3,
guideline 4 for an example). The results of this step are shown in Table 4. It is worth mentioning that when two events
can lead to each other (i.e. E1 ∼> E2 and E2 ∼> E1) then this can be written as E1 <∼> E2. In our case study, this
is only listed once in the row of the first event E1 in Table 4.

Linked events can also be used to examine interactions that arise when there is a chain of requirements actions due
to their linked events, which is called infinite looping. Although this will make the interaction analysis more thorough,
but it will require more formalism put into the IRIS approach which degrades its semi-formality and make it tends
towards using formal semantics such as state charts.

4.4.5. Results of step 5: Graphical representation
In this step, an event-based graphical representation is used to link each event from Table 4 with the simple policies

it triggers. This graphical representation facilitates the detection of interactions between the simple policies. Each
simple policy has the following attributes: Pre-state, Action, and Next state. The result of this step is shown in Fig. 6.

Fig. 6. Events and the simple policies they trigger.

4.4.6. Results of step 6: Interactions detection
In this step, the developer detects interactions between simple policies using the guidelines introduced in

Section 3.3. The detection is subjective which means a human developer will use the different tables and graphs
developed along with the provided guidelines to determine if there exists an interaction between two simple policies
or not.

According to the presented interaction taxonomy (Section 3.3), there are three types of interactions: Interactions
between two system axiom simple policies, interactions between a system axiom simple policy and a dynamic
behavior simple policy, and interactions between two dynamic behavior simple policies. The developer now tries
to find interactions within these three categories. Accordingly, the developer starts by looking at each of these

144 M. Shehata et al. / Science of Computer Programming 67 (2007) 125–161

Fig. 6. (continued)

categories independently and then applies all the guidelines provided under this category to detect interactions between
simple policies. This section presents samples of the interactions detected in each interactions type along with a full
description of how these interactions were detected. A summary of all the detected results is presented in Table 9 to
give an overview of the overall results of applying IRIS to smart homes. Also, to provide a comprehensive coverage

M. Shehata et al. / Science of Computer Programming 67 (2007) 125–161 145

Table 5
Example of interaction between two system axiom simple policies using guideline 1

Interaction ID I52

Type of interaction Interaction between two system axiom simple policies

Interacting simple policies P4.1 and P5.2

Guideline used Guideline 1

Explanation and scenario of
interaction

There is a contradiction between the two values of the Rule attribute for the two system axiom
simple policies. The rule of P4.1 can override the rule of P5.2 or vice versa. An interaction scenario
can be “what happens when the user tries to use the remotes to go beyond the max audio level of
the house?” If the system allows the user to use the remote control to exceed the maximum audio
level then the P4.1 rule has overridden the P5.2 rule. But if the system will not allow the user to use
the remote to go beyond the maximum audio level then the P5.2 rule has overridden P4.1 rule. It is
worth mentioning that both simple policies are of equal priorities

of the obtained results, all detected interactions are presented in Appendix A along with a full description of each
interaction and a possible interaction scenario for the two interacting simple policies.

As mentioned earlier, a key issue on detecting interactions between simple policies is the application of the
interaction detection guidelines described in Section 3.3. This is very important because these guidelines serve as
the experience factor for a regular human developer. Also, the developed tables and graphs from the previous steps
serve as a clear presentation of all the information that will facilitate the detection process. Therefore, with these
guidelines being applied on the developed tables and graphs, the subjectivity part of the approach is heavily reduced.
In the following, we illustrate how each of the guidelines is applied to the case study along with examples of detected
interactions. Each example of interactions will be presented in a standard table form as shown in Table 5.

4.4.6.1. Interactions between two system axiom simple policies using guideline 1. This type of interactions occurs
between two system axiom simple policies. Guideline 1 is used to detect the interaction: “Two system axiom simple
policies interact when the rule attribute (see Table 1) of one system axiom simple policy contradicts the rule attribute of
a second system axiom simple policy”. Based on this guideline, the developer is required to examine the system axiom
simple policies table (see Table 1) developed in step 2. The developer has to pairwise compare all system axiom simple
policies (Table 1) with the aim of finding contradictions between the Rule attributes of the two simple policies under
investigation. Such a contradiction is an indication of an interaction between the two system axiom simple policies.

According to Table 1, there are 15 comparisons necessary in order to examine all system axiom simple policies in
the smart homes case study. Table 5 provides an example of such an interaction that was detected using guideline 1.

4.4.6.2. Interaction between a system axiom simple policy and a dynamic behavior simple policy using guideline
2. The second type of interactions occurs between a system axiom simple policy and a dynamic behavior simple
policy. This type of interactions is detected using guideline 2 which states that “an interaction between a system
axiom simple policy and a dynamic behavior simple policy occurs when the action attribute of the dynamic behavior
simple policy (see Table 2) contradicts the rule attribute of the system axiom simple policy (see Table 1)”. Based on
this guideline, the developer is required to examine the dynamic behavior simple policies (Table 2) and system axiom
simple policies tables (Table 1) developed in step 2. The developer has to compare pairwise every dynamic behavior
simple policy and every system axiom simple policy with the objective of finding contradictions between the value of
the Action attribute of the dynamic behavior simple policy and the Rule attribute of the system axiom simple policy.
An interaction is detected if the Action attribute of the dynamic behavior simple policy contradicts the Rule attribute
of the system axiom simple policy. Although this might seem to be a very long process, the tool presented in Section 5
will extract the Action attribute of the dynamic behavior simple policy and the Rule attribute of the system axiom
simple policy, display them on the screen along with guideline 2 and ask the developer to look for contradictions.
Then the tool support extracts the next comparison.

There are 174 comparisons necessary in order to detect all possible interactions between a system axiom simple
policy and a dynamic behavior simple policy in the case of the smart homes case study. Table 6 provides an example
of an interaction between a system axiom simple policy and a dynamic behavior simple policy that was detected using
guideline 2.

146 M. Shehata et al. / Science of Computer Programming 67 (2007) 125–161

Table 6
Example of interaction between a system axiom simple policy and a dynamic behavior simple policy using guideline 2

Interaction ID I24

Type of Interaction Interaction between a system axiom simple policy and a dynamic behavior simple policy

Interacting simple policies P2.2 and P4.1

Guideline used Guideline 2

Explanation and scenario of
interaction

There is a contradiction between the value of the Action attribute of the dynamic behavior simple
policy (P2.2) and the value of the Rule attribute for the system axiom simple policy (P4.1). The
action of P2.2 violates the rule of P4.1. A possible interaction scenario could be the following: A
user gets home while the vacation control feature is active and the action of P2.2 is being executed
and the user tries to use the remote control to switch off the TV. According to the definition of the
vacation control feature, the control of the TV is now exclusively done by the feature. When the
user now tries to use the remote and the remote does not work then the action of P2.2 has broken
the rule of P4.1. On the other hand, if the remote works then P4.1 rule (which gave control of the
TV to the user) has cancelled P2.2 action before its completion. It is again worth mentioning that
both simple policies are of equal priority.

4.4.6.3. Interaction between two dynamic behavior simple policies using guideline 3. The third type of interactions
occurs between two dynamic behavior simple policies. Guidelines 3 and 4 are used to detect interactions of this type.
First we consider the interactions according to guideline 3 which states that “an interaction between two dynamic
behavior simple policies occurs if the previous state attributes of both dynamic behavior simple policies are the same
AND the trigger event attributes of both dynamic behavior simple policies are the same AND the Action attributes of
both dynamic behavior simple policies contradict each other”.

Based on this guideline, the developer is required to examine Fig. 6 which was developed in step 5. S/he looks for
trigger events that trigger more than one dynamic behavior simple policy. With each one of these trigger events, the
developer compares every two dynamic behavior simple policies. The focus in this comparison is on finding identical
pre-states for both dynamic behavior simple policies under investigation but with contradicting actions. With the aid
of Fig. 6 developed in step 5 and the tool support that automatically finds events that trigger more than two dynamic
behavior simple policies and displays them, this becomes a trivial task.

There are 25 comparisons necessary in order to detect all possible interactions between two dynamic behavior
simple policies using guideline 3 in the case of the smart homes case study. Table 7 provides an example of a detected
interaction of this type.

Table 7
Example of interaction between two dynamic behavior simple policies using guideline 3

Interaction ID I63

Type of interaction Interaction between two dynamic behavior simple policies

Interacting simple policies P6.2 and P10.1

Guideline used Guideline 3

Explanation and scenario of
interaction

Both simple policies are triggered by E7 AND they can be considered to have the same pre-states
AND there is a contradiction between the two actions of the two simple policies. The action of
P10.1 has a negative impact on the action of P6.2. An example of an interaction scenario: “The
system opens the windows and at the same time tries to raise the temperature of the house”. It is
obvious that if the temperature outside the house is cold then action of P10.1 has negative impact
on action of P6.2.

4.4.6.4. Interaction between two dynamic behavior simple policies using guideline 4. We now consider the
interactions between two dynamic behavior simple policies according to guideline 4 which states that “two dynamic
behavior simple policies interact when they are triggered by linked events and the action of one dynamic behavior
simple policy cancels or contradicts the action of the other dynamic behavior simple policy”.

Based on this guideline, the developer is required to examine Fig. 6 which was developed in step 5 using the linked
events table from step 4. The developer now has to focus on the dynamic behavior simple policies that are triggered

M. Shehata et al. / Science of Computer Programming 67 (2007) 125–161 147

Table 8
Example of interaction between two dynamic behavior simple policies using guideline 4

Interaction ID I65

Type of interaction Interaction between two dynamic behavior simple policies

Interacting simple policies P8.1 and P8.2

Guideline used Guideline 4

Explanation and scenario of
interaction

These two simple policies are triggered by the linked events E4 and E13 where E4 ∼> E13. The
action of P8.1 can override and cancel the action of P8.2 before its completion. An example of an
interaction scenario is the situation when someone wakes at night and tries to increase the light
through the light dimmer. According to P8.2 a person that wakes at night and walks into a specified
part of the house causes the lights to increase in that part to a maximum over the period of two
minutes. But the user can turn the light dimmer after 30 s to increase/decrease the light intensity.
In such a situation, P8.2 was triggered first by E13, i.e., the system starts increasing the light over
a period of two minutes. But then that person changes the light dimmer to increase/decrease the
lights and thus triggering P8.1 which in turn cancels the action of P8.1 before its completion.

by linked trigger events. This means that the developer looks at the linked trigger events table (see Table 4) and selects
the first two linked events. Then the developer examines the dynamic behavior simple policies that are triggered by
these two linked events with the focus on finding an action of one dynamic behavior simple policy that will cancel
or contradict the action of the other dynamic behavior simple policy. Then the developer goes back to select the next
two linked events and goes through the same comparison again. With the aid of the linked event table developed in
step 4, Fig. 6 which was developed in step 5, and the tool support that automatically extracts every 2 linked events
and displays the dynamic behavior simple policies they trigger on the screen using step 5 graphical representation, the
interaction detection becomes a manageable task.

Guideline 4 results in 311 comparisons in the smart homes case study. Table 8 provides an example of a detected
interaction of this type.

4.4.6.5. Summary of the detected interactions. Table 9 presents the summary of all the obtained results (see
Appendix A for a possible interaction scenario of each of the detected interactions). The simple policy column contains
the simple policy under investigation while the interacting simple policies column lists the simple policies that interact
with the simple policy under investigation. Note that when an interaction is detected between two simple policies (e.g.
P1.1 and P1.2), then this interaction is listed in the row of the first policy (P1.1) only and will not be repeated as part
of the interactions of the second policy (P1.2). The total number of detected unique interactions is 83 interactions.

4.5. Discussion of the obtained results

Section 4.4 presented the use of IRIS to detect interactions among policies of smart homes. The case study had the
following number of features and simple policies as presented in Table 10.

This section evaluates and discusses the obtained results using the three measures of Suitability, Accuracy, and
Reduction. Suitability measures how suitable the approach was for detecting interactions between the 35 simple
policies. This procedure is most beneficial for systems that have many policies describing the dynamic behavior
versus a few policies describing system axioms as in such a case there is a significant reduction of comparisons (see
below). Since the smart home case study had only 6 system axioms versus 29 dynamic behavior simple policies, the
procedure was very suitable for this particular case study. Moreover, the tool support described in the next section
made the application of the procedure easier.

Accuracy shows how precise the process of detecting interactions was and if any feature interactions were missed.
Unfortunately, there are no fully documented results in the literature with which we could have compared our results.
However, Kolberg et al. in [38] lists an overview of the interactions that arise between services supporting networked
appliances in a smart home environment. This overview included some interaction examples. All interaction exam-
ples mentioned in [38] were detected using IRIS. Moreover, to support the accuracy claim of our case study, IRIS was
successfully applied on different other case studies for which there were results reported by other researchers. Our pre-
vious work in [39] lists these case studies and compares the results obtained through the application of IRIS with those
obtained by other researchers. IRIS was among those approaches that detected the highest number of interactions.

148 M. Shehata et al. / Science of Computer Programming 67 (2007) 125–161

Table 9
Summary of interaction detection results

Policy Interacting policies Policy Interacting policies

P1.1 P1.2, P1.3, P1.4, P1.5, P3.2, P10.1, P12.1 P1.2 P3.2, P10.1, P12.1

P1.3 P3.2, P3.3, P12.1 P1.4 P3.2, P8.2, P12.1

P1.5 P3.2, P8.2, P12.1 P2.1 P2.2, P2.3, P10.1, P12.1

P2.2 P4.1, P4.2, P5.2, P9.1, P9.2, P10.1, P12.1 P2.3 P6.1, P6.2, P8.1, P8.2, P8.3, P8.4, P9.1, P9.2, P10.1, P12.1

P3.1 P3.3, P12.1 P3.2 P6.1, P6.2, P12.1

P3.3 P6.1, P6.2, P12.1 P4.1 P4.2, P5.1, P5.2, P12.1

P4.2 P5.2, P12.1 P5.1 P5.2, P12.1

P5.2 P12.1, P16.1 P6.1 P6.2, P10.1, P12.1

P6.2 P10.1, P12.1 P7.1 Nothing

P7.2 Nothing P8.1 P8.2, P8.4, P12.1

P8.2 P12.1 P8.3 P12.1

P8.4 P12.1 P9.1 P9.2, P12.1

P9.2 P12.1 P10.1 P12.1

P11.1 P12.1 P12.1 P13.1, P13.2, P14.1, P14.2, P15.1, P16.1

P13.1 Nothing P13.2 Nothing

P14.1 P16.1 P14.2 P16.1

P15.1 P16.1

Table 10
Statistics on the smart homes case study

Number of features 16

Number of simple policies 35

Number of detected interactions using IRIS 83

Reduction is a measure that indicates how much the necessary number of pairwise comparisons could be reduced
due to the application of IRIS. The number of comparisons that were done using IRIS compared to the number of
comparisons that an expert would have to do was 525 comparisons as opposed to 630. Thus we have achieved a 16.7%
reduction in the number of pairwise comparisons. Although this reduction cannot be directly translated into the same
percentage reduction in time and effort due to the fact that the application of IRIS will cause an overhead in time
and effort, but we claim that IRIS, as a structured approach, is likely to increase the number of detected interactions.
Hopefully, the increase in the number of detected interactions will compensate for the additional time and effort
overhead of applying IRIS.

5. Tool support

Tool support is required to make the application of IRIS easier. Especially the transfer of information from one table
to another, the extraction of the triggering events and the graphical representation of step 5 could greatly benefit from
tool support. It was therefore decided to build an extension to the DOORS requirements management tool [40] from
Telelogic. This would allow developers who have their specification developed with the DOORS tool to easily apply
the six steps of IRIS. DOORS was chosen because of its wide use in the industry. It offers an application programming
interface (API) that can be programmed using the DOORS Extension Language (DXL) [41]. This language gives the
programmer access to the internal DOORS functionality and allows scripts to be written. DXL is very similar to the
C-language but has some additional commands to accommodate the DOORS environment.

M. Shehata et al. / Science of Computer Programming 67 (2007) 125–161 149

Fig. 7. A screen shot for the interactive screen for classifying policies.

Fig. 8. A screen shot for the created dynamic behavior table.

The current prototype of the tool allows the automation of the six steps as described in Section 4.4. It gradually
goes from the first step to the sixth step with user interactive screens while creating the required tables and graphs.
The tool support starts with the first step of IRIS by automatically extracting the relevant requirements from all the
text stored in the project and then displays them one by one asking the user to classify each one as shown in Fig. 7.
Then the tool creates a table that has the classification of the requirements. The second step of IRIS is carried out in
the tool support by automatically extracting the requirements and asking the user to input the values for the attributes
corresponding to each requirement (e.g., Rule and Condition in the case of a system axiom and Pre-state, Trigger
Event, Action, and Next state in the case of a dynamic requirement). Once finished, the tool support automatically
creates tables and stores all the data collected from the user in their perspective places (see Fig. 8). The third step

150 M. Shehata et al. / Science of Computer Programming 67 (2007) 125–161

Fig. 9. A screen shot for Trigger events extraction.

Fig. 10. A screen shot for the created graphical representation.

is carried out automatically where the tool support extracts unique trigger events and creates a table to store these
trigger events along with the requirements they trigger as seen in Fig. 9. The linked events extraction is done by the
tool support displaying each event separately along with a list of other events. The user will be prompted to select if
the event under consideration is linked to another event. Once finished, a table is automatically created that has linked
events information. The graphical representations are then automatically generated for all dynamic requirements as
shown in Fig. 10. This step will include generating all graphical representation for all requirements triggered by same
events. Finally the tool support asks the user to detect interactions based on the provided set of interaction detection
guidelines.

The tool support has proven to be an important aid when performing the smart home case study. With the help of
such a tool the process of detecting interactions has become much easier and faster. The full details of how the tool
support was created in DOORS can be found in [46].

6. Related work

The policy research community has recognized that there are interaction issues between policies and has referred
to it as policy conflicts. However, so far there has been very little research done to address the problem of policy
conflicts. For example, [19] defined policies in a hierarchical way to prevent policy conflicts. But even with such an
approach, if a policy in the hierarchy changes then policies can still conflict. Sloman et al. [20,21] promote the use of
meta-policies, i.e., policies about creating policies, as a way to prevent conflicts. The work in [22] acknowledges the
inevitability of policy conflicts and suggests a negotiation approach for their resolution. The work in [23] describes
the use of policies in the telecommunications domain. It suggested the use of a feature interaction manager where
policies are used to control the composition of services and features in telephony features and therefore avoiding the

M. Shehata et al. / Science of Computer Programming 67 (2007) 125–161 151

problem of feature interactions. The work in [24] proposed a policy architecture for enhancing telephony features and
even promoted the use of policies as the features of the future.

Most of the work done so far have not comprehensively addressed the problem of policy interactions. For example,
the work in [23] and [24] has been limited towards the use of policies in the traditional telecommunications domain.
The work in [20] and [22] only look at the prevention of policy interactions and not their detection. However,
so far no prevention technique can guarantee that no interactions will occur. Furthermore, there has not been so
far a precise definition of when two policies are considered interacting. Even though policies are heavily used in
defining user preferences in smart homes, there is so far no work done on investigating the policy interactions in this
domain.

Some other recent research efforts have tried to address the problem of policy conflicts. Bandara et al. in [42]
proposed the use of event calculus to transform both policy and system behaviour into formal notation and hence be
able to use a priori analysis to detect conflicts between policies. However, this work uses formal notation and it is
not clear if it can be easily applied in the smart homes domain. In [43], Blair and Turner uses an architecture and
its realization for distributed and hierarchical policies within the telecommunications domain. However, this work is
specific to the telecommunication domain and there were no indication of its applicability in other domains.

From the industry perspective, there has been several attempts by companies to build smart homes technologies
such as the Philips ambient intelligence in HomeLab [44]. This homelab is designed to serve as a prototype for novel
technologies that require interconnection between home systems and hence provide smart behaviour of a home to its
occupants. Another example is the Aware Home Research Initiative (AHRI) [45] which is an interdisciplinary research
endeavor at the Georgia Institute of Technology that addresses challenges facing the future of technologies in building
an intelligent home aware of the needs of its occupants. The purpose for the Aware Home Research Initiative is to
investigate what kinds of services can be built on top of an environment that is aware of the activities of its occupants
especially elder people who are in need of assistive technology to lead a normal life.

7. Conclusions

This paper proposed the use of a semi-formal approach, IRIS, to detect interactions in any domain. A
comprehensive view of the integration of policies and features was presented. A case study was carried out for
detecting interactions among policies in smart homes using the proposed semi-formal approach and was presented
in this paper. The proposed approach was successfully customized and applied in the smart homes domain. It was able
to discover 83 interactions among 35 user policies using only 525 pairwise comparisons as apposed to 630 a human
expert would have to do. These results support the paper’s main claim of being able to use our semi-formal approach,
IRIS, successfully to detect interactions between policies. Further, these results serve as the first fully documented
results of interactions between policies in the smart homes domain.

Appendix A

This appendix presents all the detected interactions in the proposed case study. The aim is to provide clarification
on how each interaction was detected and an example scenario of interaction for illustration purposes. Table A.1 uses
the following abbreviations:

• ID: A unique interaction ID for each interaction
• Policies: Identify the two simple policies that interact
• Analysis: Lists what analysis procedure was used to detect the interaction
• Interaction: Lists an example scenario of a possible interaction, and suggests a resolution. The scenario listed

might not be the only possible interaction scenario and there might be other situations in which the two policies
interact. Similarly, the solution is only a suggestion and the manufacturer and occupants might prefer other
solutions.

The procedure described in Section 4.4.6 explains in details how interactions are detected. This procedure was also
used to detect the interactions listed in this appendix. Equal priorities of all simple policies were assumed during the
detection process.

152 M. Shehata et al. / Science of Computer Programming 67 (2007) 125–161

Table A.1
Detected interactions and suggested solution in the smart homes domain using IRIS

ID Policies Analysis Interaction

I1 P1.1,
P1.2

Linked
events
E1, E2

Type: The action of P1.1 overrides the action of P1.2.
Scenario: A thief opens the window and once he is in, he quickly deactivates the alarm using the alarm
switch thus making the alarm appear as a system glitch.
Solution: Freeze the security alarm control panel as soon as alarm is triggered until a PIN is provided.

I2 P1.1,
P1.3

Linked
events
E1, E3

Type: The action of P1.1 overrides the action of P1.3.
Scenario: A thief opens the door and once he is in, he quickly deactivates the alarm using the alarm
switch thus making the alarm appear as a system glitch.
Solution: Freeze the security alarm control panel when alarm triggers until a PIN is provided.

I3 P1.1,
P1.4

Linked
events
E1, E4

Type: The action of P1.1 overrides the action of P1.4.
Scenario: A thief is in the house and once he sees the PIR, he quickly deactivates the alarm using the
alarm switch thus making the alarm appear as a system glitch.
Solution: Freeze the security alarm control panel when alarm triggers until a PIN is provided.

I4 P1.1,
P1.5

Linked
events
E1, E5

Type: The action of P1.1 overrides the action of P1.5.
Scenario: A thief is in the house, once he feels the alarm is triggered by the pressure pads, he quickly
deactivates the alarm using the alarm switch thus making the alarm appear as a system glitch.
Solution: Freeze the security alarm control panel when alarm triggers until a PIN is provided.

I5 P1.1,
P3.2

Linked
events
E1, E9

Type: The action of P3.2 overrides the action P1.1.
Scenario: P1.1 activates the security alarm to secure the house, while P3.2 can still override P1.1 and
the door can be opened. For example, if a thief is inside the house and wants to get out, he can just press
the open door switch to get out. Another example, if an occupant opens the doors using P3.2 then it will
falsely trigger the alarm.
Solution: If alarm is activated using P1.1, a PIN is required before executing P3.2.

I6 P1.1,
P10.1

Linked
events
E1, E7

Type: The action of P10.1 negatively impacts the action of P1.1.
Scenario: Occupant schedules windows to open in a certain place at a certain time and while this action is
executing, occupant without knowing that windows are opening, activates alarm and hence falsely triggers
the alarm.
Solution: Ask the occupant to secure open doors and windows before executing P1.1.

I7 P1.1,
P12.1

Linked
events
E1, E18

Type: The action of P12.1 negatively impacts the action of P1.1.
Scenario: Occupant A comes home and deactivates alarm. Occupant B at work can’t remember if he
activated alarm or not, so he calls and activates alarm using remote access module. Occupant A opens a
window and alarm triggers.
Solution: Information about the last deactivation of the security alarm is provided over the phone to the
person who wants to use the remote access module to set the alarm.

I8 P1.2,
P3.2

Linked
events
E2, E9

Type: The action of P3.2 overrides the action of P1.2.
Scenario: An occupant unlocks the main door using P3.2 while the alarm system is active. If this disables
the alarm, to avoid a false trigger, and the main door is opened, then a thief could open a window in the
basement at the same time and the alarm will not be triggered. Thus P1.2 action is overridden by P3.2
action.
Solution: When P3.2 opens the door, then only the door is excluded from triggering the alarm.

I9 P1.2,
P10.1

Linked
events
E2, E7

Type: The action P10.1 negatively impacts the action of P1.2.
Scenario: If the occupant sets a time when the windows open automatically while the security alarm is
active then the action of P10.1 will falsely trigger the alarm.
Solution: The occupant is notified to cancel scheduled windows opening times before alarm is allowed
to be active.

I10 P1.2,
P12.1

Linked
events
E2, E18

Type: The action of P12.1 overrides the action of P2.1.
Scenario: A thief breaks into the house through a window. One second later, an occupant uses the remote
access module to cancel the alarm as he is on his way home. The alarm trigger looks like a system glitch
and thief escapes.
Solution: If the alarm is triggered then the remote access module cannot disable the alarm system.

M. Shehata et al. / Science of Computer Programming 67 (2007) 125–161 153

Table A.1 (continued)

ID Policies Analysis Interaction

I11 P1.3,
P3.2

Linked
events
E3, E9

Type: The action of P3.2 negatively impacts the action of P1.3.
Scenario: Occupants open the main door using the interior main door switch while the alarm is active.
This falsely triggers an alarm.
Solution: The system shall ask for a PIN before opening the door if alarm is active.

I12 P1.3,
P3.3

Linked
events
E3, E10

Type: The action of P3.3 negatively impacts the action of P1.3.
Scenario: Steam and smoke from cooking causes the G/H/S detector to trigger while the alarm is active.
The system opens the main door according to P3.3. Thus the intruder alarm triggers falsely.
Solution: Intruder alarm is disabled when the G/H/S detector triggers.

I13 P1.3,
P12.1

Linked
events
E3, E18

Type: The action of P12.1 overrides the action of P1.3.
Scenario: A thief breaks into the house through the door and the alarm is triggered. One second later, an
occupant uses the remote access module to deactivate the alarm as he is on his way home. Then the thief
can get away as the alarm trigger looks like a system glitch.
Solution: If alarm is triggered then the remote access module cannot disable the security alarm.

I14 P1.4,
P3.2

Linked
events
E4, E9

Type: The action of P3.2 overrides the action of P1.4.
Scenario: An occupant unlocks the main door using P3.2 while the alarm system is active. To avoid false
triggering of alarm, the system disables the alarm then opens main door. If during this time a thief breaks
in from the upper floor and his movements are detected by a PIR, then alarm will not be triggered because
it is temporarily disabled.
Solution: When P3.2 opens the main door, then only the main door is excluded from triggering the alarm.

I15 P1.4,
P8.2

Same trigger
event E4

Type: The action of P8.2 negatively impacts the action of P1.4.
Scenario: An occupant sets the same part of the house (e.g. hallway) for both lights (in P8.2) and security
(P1.4) to check for a positive PIR signal. The occupant gets up at night and the PIR sensor detects his
movements thus the system activates lights but also activates the alarm which in this case is triggered
falsely by the occupant.
Solution: Don not allow occupants to set the same area for lights increase and security check.

I16 P1.4,
P12.1

Linked
events
E4, E18

Type: The action of P12.1 overrides the action of P1.4.
Scenario: A thief breaks into the house and triggers the alarm by a positive PIR signal. But an occupant
uses the remote access module to deactivate the alarm as he is on his way home. Then the thief can get
away as the alarm trigger looks like a system glitch.
Solution: If alarm is triggered then the remote access module cannot disable the security alarm.

I17 P1.5,
P3.2

Linked
events
E5, E9

Type: The action of P3.2 overrides the action of P1.5.
Scenario: An occupant unlocks the main door using P3.2 while the alarm system is active. To avoid false
triggering of alarm, the system disables alarm then opens main door. If during this time a thief breaks
in from upper floor and his movements are detected by pressure pads, then alarm will not be triggered
because it is temporarily disabled.
Solution: When P3.2 opens the main door, then only the main door is excluded from triggering the alarm.

I18 P1.5,
P8.2

Linked
events
E4, E5

Type: The action of P8.2 negatively impacts the action of P1.4.
Scenario: An occupant sets the same part of the house (e.g. hallway) for both lights and security to check
for PIR and pressure pads signals. The occupant gets up at night and activates lights by PIR but also walks
on the pressure pads in the hallway thus triggers alarm by himself falsely.
Solution: Do not allow occupant to set the same area for lights increase and pressure pads security check.

I19 P1.5,
P12.1

Linked
events
E5, E18

Type: The action of P12.1 overrides the action of P1.5
Scenario: A thief breaks into the house and triggers the alarm by the pressure pads. But an occupant uses
the remote access module to deactivate the alarm as he is on his way home. Then the thief can get away
as the alarm trigger looks like a system glitch.
Solution: If alarm is triggered then the remote access module cannot disable the security alarm.

I20 P2.1,
P2.2

Linked
events
E6, E7

Type: The action of P2.1 overrides the action of P2.2.
Scenario: If an occupant presses the deactivate switch while P2.2 is executing, then P2.1 will cancel the
action of P2.2 before completion. Note that both functionalities are of equal priorities. This might be
important if a child is the one who deactivated the vacation control.
Solution: P2.1 is of higher priority and a PIN is required before the actual deactivation of the vacation
control.

(continued on next page)

154 M. Shehata et al. / Science of Computer Programming 67 (2007) 125–161

Table A.1 (continued)

ID Policies Analysis Interaction

I21 P2.1,
P2.3

Linked
events
E6, E7

Type: The action of P2.1 overrides the action of P2.3.
Scenario: If an occupant presses the deactivate switch while P2.3 is executing, then P2.1 will cancel the
action of P2.3 before completion. Note that both functionalities are of equal priorities. This might be
important if a child is the one who deactivated the vacation control.
Solution: P2.1 is of higher priority and a PIN is required before the actual deactivation of the vacation
control.

I22 P2.1,
P10.1

Linked
events
E6, E7

Type: P10.1 negatively impacts the action of P2.1.
Scenario: P10.1 is a security hole that negatively impacts the intended purpose of P2.1 which is to keep
the house safe during extended periods of absence. For example, an occupant activates vacation control
(P2.1) as a protection of the house while away but P10.1 can still open windows and thus negatively
impact the intended purpose of P2.1
Solution: Ask the occupant to cancel scheduled window opening before activating vacation control.

I23 P2.2,
P4.1

P2.2 interacts
with system
axiom P4.1

Type: The rule of P4.1 overrides the action of P2.2
Scenario: The vacation control is on and P2.2 is executing. The occupant comes home and forgets to turn
the vacation control off. The occupant then tries to use the remote control to turn the TV off. If the TV is
turned off, then the rule P4.1 overrode the action of P2.2. If not then P4.1 is violated by P2.2.
Solution: The occupant must turn the vacation control off first before being able to use the remote control.

I24 P2.2,
P4.2

Same trigger
event E7

Type: The action of P4.2 overrides the action of P2.2.
Scenario: An occupant sets the action of P2.2 to turn on the TV at time X for 60 min while the action of
P4.2 was set to turn off the TV at the same time X. A similar scenario can also occur if the defined times
overlap.
Solution: Manual settings by occupants for TV, such as P4.2, are cancelled when the vacation control is
active.

I25 P2.2,
P5.2

P2.2 interacts
with system
axiom P5.2

Type: The action of P2.2 overrides the rule of P5.2.
Scenario: An occupant sets the TV to Y volume. The next day he lowers the max audio level in P5.2
below Y. Then he activates the vacation control (thus activating P2.2) and leaves. When P2.2 starts the
TV with the last setting of volume which is Y, it violates P5.2.
Solution: The vacation control starts the TV with a volume below the allowed max audio level.

I26 P2.2,
P9.1

Same trigger
event E7

Type: The action of P9.1 negatively impacts the action of P2.2.
Scenario: P9.1 will be a security hole that negatively impacts the intended purpose of P2.2. For example,
if the predefined areas of curtain and blinds are the same as the location of TV and the predefined time is
the same for P2.2 and P9.1, then this will enable passers-by to see that no one is watching TV.
Solution: Disable the opening of curtains and blinds when the vacation control is opening the TV.
However when the TV is not on then curtains and blinds can be opened/closed to give impression that
occupants are home.

I27 P2.2,
P9.2

Linked
events
E7, E15

Type: The action of P9.2 negatively impacts the action of P2.2.
Scenario: P9.2 will be a security hole that negatively impacts the intended purpose of P2.2. For example,
if the predefined area of curtains and blinds are the same as the location of TV and the predefined time
is the same for P2.2 and P9.1, then this will let anyone looking from windows know that no one home
watching TV
Solution: Disable the opening of curtains and blinds when the vacation control is opening the TV.

I28 P2.2,
P10.1

Same trigger
event E7

Type: The action of P10.1 negatively impacts the action of P2.2.
Scenario: The action of P10.1 will be a security hole that counteracts the intended purpose of vacation
control P2.2 which is to keep the house safe during extended periods of absence. For example, an occupant
activates vacation control (P2.2) and windows control (P10.1) then leaves.
Solution: Disable the opening of windows when the vacation control is activated.

I29 P2.2,
P12.1

Linked
events
E7, E18

Type: The action of P12.1 overrides the action of P2.2
Scenario: Occupant A activates vacation control (and thus P2.2) and leaves. Occupant B calls and use
remote access module (P12.1) to turn off the TV or even cut off the power to it. Hence overriding the
action of P2.2
Solution: Remote access module cannot control TV when vacation control is active

M. Shehata et al. / Science of Computer Programming 67 (2007) 125–161 155

Table A.1 (continued)

ID Policies Analysis Interaction

I30 P2.3,
P6.1

Linked
events
E7, E12

Type: The action of P2.3 negatively impacts the action of P6.1.
Scenario: An occupant chooses low Temperature for P6.1 and also chooses to turn on all lights with high
watts. The heat radiated from the light bulbs swill affect the decrease of temperature and requires more
power for the HVAC.
Solution: With low temperature settings, use medium light intensity or low power lamps.

I31 P2.3,
P6.2

Same trigger
event E7

Type: The action of P2.3 negatively impacts the action of P6.2.
Scenario: An occupant chooses low Temperature for P6.2 and also chooses to turn on all lights with high
watts. The heat radiated will affect the decrease of temperature and requires more power for the HVAC.
Solution: With low temperature settings, use medium light intensity or low power lamps.

I32 P2.3,
P8.1

Linked
events
E7,E13

Type: The action of P8.1 overrides the action of P2.3.
Scenario: Vacation control is on and occupant comes home. P2.3 has finished (after 60 min) and starts
shutting off lights while occupant uses light dimmer to increase the light intensity and the lights might
not respond to this request.
Solution: Occupant must turn the vacation control off once s/he enters the house before getting control
over lights.

I33 P2.3,
P8.2

Linked
events
E4, E7

Type: The action of P2.3 overrides the action of P8.2.
Scenario: The occupant comes home and forgets to deactivate vacation control (P2.3). At night P2.3
triggers and switches on the lights for 59 min. Then occupant gets up to go to bathroom hence triggering
P8.2 which will increase light to the max over 2 min. But P2.3, after first minute, shuts down lights
because the 60 min have elapsed.
Solution: Occupant must turn off the vacation control once s/he gets home before other policies are
active again.

I34 P2.3,
P8.3

Linked
events
E7, E14

Type: The action of P8.3 overrides the action of P2.3.
Scenario: An occupant has both P2.3 and P8.3 active. P2.3 triggers and switches the lights on. After 15
min P8.2 switches off lights because no one is home. Thus P8.3 switches off lights after 15 min (not 60
min as in P2.3).
Solution: Disable other light control policies when vacation control is activated.

I35 P2.3,
P8.4

Linked
events
E7, E15

Type: The action of P8.4 overrides the action of P2.3.
Scenario: P2.3 is triggered and switches on the lights for 60 min. At the end of the 60 min, the system
starts shutting off the lights. At the same instant, the night begins and P8.4 starts to open lights while they
are being shut off. Therefore the lights are not shut off and P3.2 action is not completed
Solution: Disable other light control policies when vacation control is activated.

I36 P2.3,
P9.1

Same trigger
event E7

Type: The action of P9.1 negatively impacts the action of P2.3.
Scenario: P9.1 will be a security hole that negatively impacts the intended purpose of P2.3. For example,
if the predefined area is the same for curtains and lights and the predefined time is also the same for P2.3
and P9.1, then anyone looking from windows know that no one home opening/closing the lights.
Solution: Close curtains/blinds during times when vacation control is active and lights are about to be
turned on/off.

I37 P2.3,
P9.2

Linked
events
E7, E15

Type: The action of P9.2 negatively impacts the action of P2.3.
Scenario: P9.2 will be a security hole that negatively impacts the intended purpose of P2.3. For example,
If the predefined area is the same for curtains and lights and the predefined time is also the same for P2.3
and P9.2. Then anyone looking from windows know that no one home opening/closing the lights.
Solution: Close curtains and blinds during times when vacation control is active and the lights are about
to be turned on/off. However, curtains and blinds can be opened during other times to give impression
that occupants are home.

I38 P2.1,
P12.1

Linked
events
E6, E18

Type: The action of P12.1 overrides the action of P2.1
Scenario: Occupant A deactivates vacation control when she comes home. Occupant B is away and
cannot remember if he activated the vacation control or not, so he calls and uses remote access module
(P12.1) to turn on vacation control. Occupant A at home looses control over lights and TV.
Solution: State last activation/deactivation information of security alarm over the phone to the person
who wants to use the remote access module to set the alarm.

(continued on next page)

156 M. Shehata et al. / Science of Computer Programming 67 (2007) 125–161

Table A.1 (continued)

ID Policies Analysis Interaction

I39 P2.3,
P10.1

Same trigger
event E7

Type: The action of P10.1 negatively impacts the action of P2.3.
Scenario: P 10.1 will be a security hole that counteracts the intended purpose of vacation control P2.3
which is to keep the house safe while extended periods of absence. For example, an occupant activates
vacation control (P2.3) and windows control (P10.1) then leaves.
Solution: Disable the opening of windows when the vacation control is activated.

I40 P2.3,
P12.1

Linked
events
E7, E18

Type: The action of P12.1 overrides the action of P2.3.
Scenario: Occupant A activates vacation control (and thus P2.3) and leaves. Occupant B calls and uses
the remote access module (P12.1) to turn off all lights in the home, hence overriding the action of P2.3.
Solution: Remote access module cannot control lights when vacation control is active.

I41 P3.1,
P3.3

Linked
events
E8, E10

Type: The action of P3.3 overrides the action of P3.1.
Scenario: The only occupant at home shuts the main door expecting it to lock automatically according to
P3.1 and leaves. One minute later, G/H/S triggers and opens door according to P3.3, thus leaving house
vulnerable to anyone.
Solution: Only open the main door when there is someone inside (movements can be detected using PIR).

I42 P3.1,
P12.1

Linked
events
E8, E18

Type: The action of P12.1 is used to override the action of P3.1.
Scenario: Occupant A is leaving and shuts the doors behind her expecting it to lock automatically. While
shutting, occupant B calls and opens the main door lock. Thus house is vulnerable.
Solution: Critical parts of the house like the main door cannot be controlled by remote access module.

I43 P3.2,
P6.1

Linked
events
E9, E12

Type: The action of P3.2 negatively impacts the action of P6.1.
Scenario: When occupants use P3.2 to open the main door while P6.1 is triggered trying to raise the
temperature of the house. The open door will affect the increase of temperature if left open for a long
time.
Solution: Close the door after some time units to maintain the temperature of the home.

I44 P3.2,
P6.2

Linked
events
E7, E9

Type: The action of P3.2 negatively impacts the action of P6.2.
Scenario: When occupants use P3.2 to open the main door while P6.2 is triggered trying to raise the
temperature of the house. The open door will affect the increase of temperature if left open for a long
time.
Solution: Close the door after some time units to maintain the temperature of the home.

I45 P3.2,
P12.1

Linked
events
E9, E18

Type: The action of P12.1 overrides the action of P3.2
Scenario: Occupant A presses unlock door interior switch to unlock door. Occupant B calls and uses
remote access module to lock door, as he suspects it was left open. Occupant A tries to open the door but
it does not respond.
Solution: The interior switch has higher priority and still opens the house’s main door lock.

I46 P3.3,
P6.1

Linked
events
E10, E12

Type: The action P3.3 negatively impacts the action of P6.1.
Scenario: P6.1 tries to raise the house’s temperature. G/H/S is triggered by mistake (e.g. battery fault or
short circuit) and opens the door according to P3.3. If left for a long time, it will affect the ability of P6.1
to increase temperature.
Solution: Close door after some time units, but only if the G/H/S alarm has stopped.

I47 P3.3,
P6.2

Linked
events
E7, E12

Type: The action P3.3 negatively impacts the action of P6.2.
Scenario: P6.2 tries to raise the house’s temperature. G/H/S is triggered by mistake (e.g. battery fault or
short circuit) and opens the door according to P3.3. If left for long time, it will affect the ability of P6.2
to increase temperature.
Solution: Close door after some time units, but only if the G/H/S alarm has stopped.

I48 P3.3,
P12.1

Linked
events
E10, E18

Type: The action of P12.1 overrides the action of P3.3.
Scenario: G/H/S triggers because of a fire and opens the main door and hence occupant A tries to get out.
Occupant B calls and uses the remote access module to close the main door (as he suspects it might have
accidentally been left open). Occupant A is then stuck inside.
Solution: Remote access module is disabled in case of emergencies, such as fire.

I49 P4.1,
P4.2

P4.2 interacts
with system
axiom P4.1

Type: The action of P4.2 overrides the rule of P4.1
Scenario: Occupant A uses the remote control to switch on the TV while at the same time P4.2 is
scheduled by occupant B to turn off the TV. The TV shuts according to the action of P4.2 and hence
P4.1 rule has been violated.
Solution: Assign higher priority for the system axiom P4.1.

M. Shehata et al. / Science of Computer Programming 67 (2007) 125–161 157

Table A.1 (continued)

ID Policies Analysis Interaction

I50 P4.1,
P5.1

P5.1 interacts
with system
axiom P4.1

Type: P4.1 rule overrides the action of P5.1
Scenario: Some A/V devices (like TVs) take several seconds before they are actually on. If during this
time, an occupant uses the remote control to raise volume very high (using P4.1), then the device will have
different volume setting when it is actually on than the preset sound level defined in P5.1. For example, a
parent presets TV volume to start at volume X but a child increases volume (using P4.1) to the maximum
before the actual start of the TV device.
Solution: Assign higher priority for the action of P5.1.

I51 P4.1,
P5.2

Two interacting
system axiom
P4.1, P5.2

Type: The rule of P4.1 overrides the rule of P5.2.
Scenario: An occupant tries to use the remote control of an A/V device to go beyond the maximum preset
audio level of the house. Note that this might be a multi-user environment like parents and children.
Solution: Assign higher priority for the rule of P5.2.

I52 P4.1,
P12.1

P12.1 interacts
with system
axiom P4.1

Type: The action of P12.1 overrides the rule of P4.1.
Scenario: Occupant A uses the remote control to turn on the TV (using P4.1 rule). Occupant B calls and
uses the remote access module (P12.1) to turn off all A/V devices (as he suspects he forgot to switch them
off when he left).
Solution: State last activation information over phone before turning off any A/V device.

I53 P4.2,
P5.2

P4.2 interacts
with system
axiom P5.2

Type: The action of P4.2 overrides the rule of P5.2.
Scenario: Occupant A (e.g. parent) uses P5.2 to set a relatively low maximum audio level for the house.
Every family member uses P4.2 to turn on an A/V device at overlapping time settings. The combined
volume of the several audio devices will exceed the max volume allowed for the home.
Solution: Assign higher priority of P5.2 and do not allow combined volumes of A/V devices to exceed
the max. limit.

I54 P4.2,
P12.1

Linked events
E7, E18

Type: The action of P12.1 overrides the action of P4.2.
Scenario: Occupant A sets the VCR to turn on and record a show. Occupant B calls from work to
completely shut down all A/V devices as he suspects that he left one of them on. This prevents P4.2
action from ever executing.
Solution: State to user over phone if there are any A/V devices affected by power cut off or scheduled to
work later.

I55 P5.1,
P5.2

P5.1 interacts
with system
axiom P5.2

Type: The action of P5.1 overrides the rule of P5.2.
Scenario: Occupant A (e.g. parent) sets the maximum audio level of the house to X. Occupant B (e.g.
child) presets audio of TV and CD to levels that when combined (i.e. added to each other) will exceed
max audio level of house X.
Solution: Assign higher priority to P5.2 and do not allow combined volumes of A/V devices to exceed
the max. limit.

I56 P5.1,
P12.1

Linked events
E11, E18

Type: The action of P12.1 overrides the action of P5.1.
Scenario: Occupant A (e.g. parent) receives a phone call from a neighbor that TV is too loud. The parent
calls and uses remote access module to lower volume of all A/V devices. At the same time, occupant B
(e.g. child) turns on a CD recorder expecting a certain audio level, as specified in P5.1, but the parent has
lowered volume using P12.1.
Solution: State over the phone if there are A/V devices affected by lowering the volume. In all cases, a
priority assignment is needed in case parent still proceed with lowering the volume.

I57 P5.2,
P12.1

P12.1 interacts
with system
axiom P5.2

Type: The action of P12.1 overrides the rule of P5.2.
Scenario: Occupant A uses P5.2 to set a low maximum audio level Y for the house. Occupant B calls
and uses the remote access module to activate several A/V devices that have audio levels which when
combined (i.e. added to each other) will be greater than Y.
Solution: Assign higher priority for P5.2 and do not allow combined volumes of A/V devices to exceed
the max limit.

I58 P5.2,
P16.1

P16.1 interacts
with
system axiom
P5.2

Type: The action of P16.1 overrides the rule of P5.2.
Scenario: The already existing audio level of the house is almost at maximum. Occupant A activates
various loud appliances like the food processor and blender. Although appliances are not A/V devices
they increase the noise level of the house and violates the intended purpose of P5.2 which is to keep the
house below a certain noise level.
Solution: Reduce the volume of an A/V device to compensate for the additional noise of appliances.

(continued on next page)

158 M. Shehata et al. / Science of Computer Programming 67 (2007) 125–161

Table A.1 (continued)

ID Policies Analysis Interaction

I59 P6.1,
P6.2

Linked
events
E7, E12

Type: Action of P6.2 overrides the action of P6.1.
Scenario: Occupant A uses P6.1 to preset X as the temperature of the house for the whole day. Occupant
B is not aware of the preset value of X and sets another temperature Y during day using P6.2. If X is
different from Y then later one might override the prior temperature.
Solution: Do not allow different temperature settings in overlapping time intervals.

I60 P6.1,
P10.1

Linked
events
E7, E12

Type: The action of P10.1 negatively impacts the action of P6.1.
Scenario: P10.1 opens the windows. If the outside temperature is low then the opened windows will
negatively impact P6.1 and prevent the HVAC unit from keeping the room temperature at the predefined
temperature setting.
Solution: The system checks for the outside temperature and if the temperature affect the room
temperature if the windows are open then the occupant is prompted to choose between either one of
the policies.

I61 P6.1,
P12.1

Linked
events
E12, E18

Type: The action of P12.1 overrides the action of P6.1.
Scenario: The temperature inside the house gets low and P6.1 triggers. An occupant calls and uses the
remote access module to shutdown the HVAC unit before completing its work. A similar scenario can
occur when the occupant calls and uses the remote access module to open the windows.
Solution: User is informed over phone if temperature is affected by the remote access module action.

I62 P6.2,
P10.1

Same trigger
event E7

Type: The action of P10.1 negatively impacts the action of P6.2.
Scenario: P10.1 opens the windows. If the outside temperature is low then the opened windows will
negatively impact P6.2 and prevent the HVAC unit from getting the room temperature to the predefined
temperature setting.
Solution: The system checks for the outside temperature and if the temperature affect the room
temperature if the windows are open then the occupant is prompted to choose between either one of
the policies.

I63 P6.2,
P12.1

Linked
events
E7, E18

Type: The action of P12.1 overrides the action of P6.2.
Scenario: P6.2 triggers to increase/decrease the temperature to the predefined settings. The occupant
calls and uses the remote access module to shutdown the HVAC unit before the predefined temperature
has been reached. Or the occupant calls and uses the remote access module to open the windows.
Solution: The occupant is informed over the phone if the temperature is affected by the action of the
remote access module and is asked to confirm the action.

I64 P8.1,
P8.2

Linked
events
E4, E13

Type: The action of P8.1 overrides the action of P8.2.
Scenario: An occupant wakes up at night and P8.2 triggers to increase the light to a maximum over 2
min. The occupant uses light dimmer to decrease the lights intensity (P8.1). Thus both are not able to
execute at same time.
Solution: Assign higher priority to manual light dimmer and terminate the action of P8.2 if light dimmer
is used.

I65 P8.1,
P8.4

Linked
events
E13, E15

Type: The action of P8.1 overrides the action of P8.4.
Scenario: An occupant uses the light dimmer to decrease the light’s intensity (P8.1) but at the same time
the night starts and P8.4 tries to turn on and increase the intensity of lights to the specified maximum.
Solution: Assign higher priority to manual light dimmer and terminate the action of P8.4 if light dimmer
is used.

I66 P8.1,
P12.1

Linked
E13, E18

Type: The action of P12.1 overrides the action of P8.1.
Scenario: Occupant A gets home and uses the light dimmer to increase the light intensity (P8.1).
Occupant B calls and uses the remote access module to switch off all lights as he suspects he left them
on.
Solution: Assign higher priority to manual light dimmer and terminate the action of P12.1 if light dimmer
is used.

I67 P8.2,
P12.1

Linked
events
E4, E18

Type: The action of P12.1 is used to cancel the action of P8.2.
Scenario: Occupant A gets up at night and thus triggering P8.2 to increase light intensity. Occupant B
calls and uses the remote access module to switch off all lights as he suspects he left them on not knowing
that occupant A is home
Solution: Inform the user over the phone that someone is at home and ask for confirmation before
executing actions.

M. Shehata et al. / Science of Computer Programming 67 (2007) 125–161 159

Table A.1 (continued)

ID Policies Analysis Interaction

I68 P8.3,
P12.1

Linked
events
E14, E18

Type: The action of P8.3 overrides the action of P12.1
Scenario: An occupant uses P12.1 to switch on the lights in the garage just before his arrival. For some
reason he is 15 min late (P8.3 has now switched off the lights) and when he gets into the garage the lights
are off.
Solution: The occupant is informed over the phone if he wants to double the time before P8.3 switches
off the lights. Then the occupant can decide to accept or not.

I69 P8.4,
P12.1

Linked
events
E15, E18

Type: The action of P12.1 overrides the action of P8.4.
Scenario: Occupant A activates P8.4 when she gets home and takes a shower. Night begins and P8.4
switches on the lights including the bathroom light. Occupant B calls and uses the remote access module
(P12.1) to switch off all lights not knowing that occupant A is home.
Solution: Inform user over the phone that someone is at home and ask for confirmation before executing
the actions.

I70 P9.1,
P9.2

Linked
events
E7, E15

Type: The action of P9.1 overrides the action of P9.2.
Scenario: Occupant A uses P9.1 to set the curtains/blinds to open at 6 pm (same time night starts).
Occupant B sets curtains/blinds to close when night begins using P9.2.
Solution: Assign higher priority to either one of them.

I71 P9.1,
P12.1

Linked
events
E7, E18

Type: The action of P12.1 overrides the action of P9.1.
Scenario: Occupant A sets the curtains to open at time X using P9.1. When time X comes, the curtains
start opening. Occupant B calls and uses the remote access module to close curtains thus canceling action
of P9.1.
Solution: Inform user over phone of affected policies actions (P9.1) and ask for confirmation before
execution.

I72 P9.2,
P12.1

Linked
events
E15, E18

Type: The action of P12.1 overrides the action of P9.2
Scenario: Occupant A sets the curtains to open in the early morning using P9.2 and when the day begins
the curtains open. Occupant B, who spent the night at work, calls and uses the remote access module to
close curtains (as he suspects he might have left them open) thus canceling action of P9.2.
Solution: Inform the user over phone of affected policies actions (P9.2) and that there is someone at home
who had set a new policy that uses P9.2. Then user is asked for confirmation before proceeding to execute
any commands.

I73 P10.1,
P12.1

Linked
events
E7, E18

Type: The action of P12.1 overrides the action of P10.1.
Scenario: Occupant A sets the windows to open at time X using P10.1. At time X, the windows starts
opening. Occupant B calls and uses the remote access module to close all windows thus canceling action
of P10.1.
Solution: Inform the user over the phone of affected policies actions (P10.1) and that there is someone
at home who set a new policy that uses P10.1. Then user is asked for confirmation before proceeding to
execute any commands.

I74 P11.1,
P12.1

Linked
events
E17, E18

Type: The action of P12.1 overrides the action of P11.1.
Scenario: Occupant A takes a shower and leaves without tightly closing the water tap. The water starts
filling the tub till it reaches 75%. P11.1 triggers and starts closing the water tap. Occupant B calls and
uses the remote access module to open the water tap in shower for 10 min to fill the tub before his arrival
and thus flooding bathroom.
Solution: Assign higher priority to P11.1.

I75 P12.1,
P13.1

P12.1 inter-
acts with
system
axiom P13.1

Type: The action of P12.1 overrides the rule of P13.1.
Scenario: When one occupant calls and uses the remote access module (P12.1) for a long time this
violates the presence of a telephone line enforced by P13.1 as they both use the same telephone line.
Solution: Do not allow extended use of the remote access module beyond a certain time limit.

I76 P12.1,
P13.2

Same trigger
event E18

Type: Next state non-determinism between P12.1 and P13.2.
Scenario: The system will have a next state non-determinism if the occupant assigns the number of rings
to activate the remote access module and the answer machine to be the same. The system does not know
which next state it should transfer to: the answer machine or the remote access module.
Solution: Assign higher priority to either one of them.

(continued on next page)

160 M. Shehata et al. / Science of Computer Programming 67 (2007) 125–161

Table A.1 (continued)

ID Policies Analysis Interaction

I77 P12.1,
P14.1

Linked
events
E7, E18

Type: The action of P12.1 overrides the rule of P14.1.
Scenario: A parent uses P14.1 to prevent any activation of the stove while s/he is out. A child uses a cell
phone to call the home phone number and uses the remote access module to activate the stove.
Solution: Assign higher priority to P14.1.

I78 P12.1,
P14.2

Linked
events
E10, E18

Type: The action of P12.1 overrides the action of P14.2.
Scenario: The G/H/S triggers and shuts down the stove to prevent any fire (P14.1). Occupant A .calls and
uses the remote access module (P12.1) to turn on the oven to be heated until he gets home.
Solution: Assign higher priority to P14.2.

I79 P12.1,
P15.1

Linked
events
E18, E19

Type: The action of P12.1 overrides the action of P15.1.
Scenario: Occupant A is cooking and the humidity sensor triggers and turns on the kitchen fan (P15.1).
Occupant B calls, not knowing that occupant A is home, and uses the remote access module to shutdown
all kitchen appliances including the kitchen fan as he suspects he might have accidentally left them on.
Solution: Inform user over phone of affected policies actions (P15.1) and that there is someone at home.

I80 P12.1,
P16.1

P12.1 inter-
acts with
system
axiom P16.1

Type: The action of P12.1 overrides the action of P16.1.
Scenario: Occupant A at home uses the remote control to run the food processor (P16.1). Occupant B,
not knowing that occupant A is home, calls and uses the remote access module to switch off all kitchen
appliances as he suspects he might has left something switched on.
Solution: Inform the occupant over the phone of affected policies actions (P16.1) and that there is
someone at home. Then the occupant is asked for confirmation before executing any commands.

I81 P14.1,
P16.1

P14.1 inter-
acts with
system
axiom P16.1

Type: The rule of P16.1 overrides the action of P14.1
Scenario: P16.1 enforces that any appliances including the stove can be controlled by the remote control.
What happens if a parent uses P14.1 to switch off the stove while being away and a child finds the remote
control and use it to turn on the stove? If the stove turns on then P14.1 was canceled; if not, then P16.1
was violated.
Solution: Assign higher priority to P14.1.

I82 P14.2,
P16.1

P14.2 inter-
acts with
system
axiom P16.1

Type: The rule of P16.1 overrides the action of P14.2.
Scenario: P16.1 enforces that any appliances including the stove can be controlled by the remote control.
What happens if the G/H/S triggers (maybe falsely) P14.2 to switch off the stove and a child finds the
remote control and insists on using it to turn on stove. If the stove turns on then P14.2 was overridden. If
not, then P16.1 was violated.
Solution: Assign higher priority to P14.2.

I83 P15.1,
P16.1

P15.1 inter-
acts with
system
axiom P16.1

Type: The action of P15.1 overrides the rule of P16.2.
Scenario: The humidity sensor is triggered and P15.1 turns on kitchen fan while. At the same time,
occupant uses remote control to switch off kitchen fan. The fan will switch off for a second but then turns
on again because the humidity sensor is still triggered. P14.2 canceled remote control action although
occupant wants to switch off the fan.
Solution: Assign human control a higher priority.

References

[1] M. Calder, E. Magill, M. Kolberg, S. Reiff-Marganiec, Feature interaction: A critical review and considered forecast, Computer Networks 41
(1) (2003) 115–141.

[2] E.J. Cameron, et al., A feature interaction benchmark for IN and beyond, IEEE Communications Magazine (March) (1993) 64–67.
[3] D. Jackson, J. Wing, Lightweight formal methods, Computer (April) (1996) 21–22.
[4] P. Zave, Formal description of telecommunication services in Promela and Z, in: Proceedings of the Nineteenth International NATO Summer

School, 1999.
[5] M. Plath, M.D. Ryan, The feature construct for SMV: Semantics, in: Sixth International Workshop on Feature Interactions in

Telecommunications and Software Systems, IOS Press, 2000, 16 pp.
[6] Q. Fu, P. Harnois, L. Logrippo, J. Sincennes, Feature interaction detection: A LOTOS-based approach, Computer Networks 32 (4) (2000)

433–448.
[7] M. Shehata, A. Eberlein, Requirements interaction management: A multi-level framework, in: 6th IASTED International Conference on

Software Engineering and Applications, MIT, USA, 2002.
[8] H. Velthuijsen, N. Griffeth, Y.-J. Lin (Eds.), International Workshop on Feature Interactions in Telecommunications Software Systems, IOS

Press, Amsterdam, Florida, 1992.
[9] L.G. Bouma, H. Velthuijsen (Eds.), Feature Interactions in Telecommunications Systems, IOS Press, Amsterdam, 1994.

M. Shehata et al. / Science of Computer Programming 67 (2007) 125–161 161

[10] K.E. Cheng, T. Ohta (Eds.), Feature Interactions in Telecommunications Systems III, IOS Press, Amsterdam, 1995.
[11] P. Dini, R. Boutaba, L. Logrippo (Eds.), Feature Interactions in Telecommunication Networks IV, IOS Press, Amsterdam, 1997.
[12] K. Kimbler, L.G. Bouma (Eds.), Feature Interactions in Telecommunications and Software Systems V, IOS Press, Amsterdam, 1998.
[13] M. Calder, E. Magill (Eds.), Feature Interactions in Telecommunications and Software Systems VI, IOS Press, Amsterdam, 2000.
[14] D. Amyot, L. Logrippo (Eds.), Feature Interactions in Telecommunications and Software Systems VII, IOS Press, Amsterdam, 2003.
[15] M. Sloman, J. Lobo, E.C. Lupu (Eds.), Proceedings of the 2nd International Workshop on Policies for Distributed Systems and Networks,

in: Lecture Notes in Computer Science, Springer-Verlag, 2001.
[16] J.B. Michael, J. Lobo, N. Dulay (Eds.), Proc. 3rd. International Workshop on Policies for Distributed Systems and Networks, IEEE Computer

Society, Los Alamitos, California, USA, June 2002.
[17] H.L. Lutfiyya, J. Moffett, F. Garcia (Eds.), Proceedings of 4th IEEE International Workshop on Policies for Distributed Systems and Networks,

IEEE Computer Society, Italy, 2003.
[18] D. Verma, M. Devarakonda, E. Lupu, M. Kohli (Eds.), Proceedings of the 5th IEEE International Workshop on Policies for Distributed

Systems and Networks, IEEE Computer Society, New York, USA, 2004.
[19] M. Amer, A. Karmouch, T. Gray, S. Mankovskii, Feature interaction resolution using fuzzy policies, in: M. Calder, E. Magill (Eds.), Feature

Interactions in Telecommunications and Software Systems VI, IOS Press, Amsterdam, 2000, pp. 94–112.
[20] E.C. Lupu, M. Sloman, Conflicts in policy-based distributed systems management, IEEE Transactions on Software Engineering 25 (6) (1999)

852–869.
[21] N. Damianou, N. Dulay, E. Lupu, M. Sloman, Ponder: A language specifying security and managements policies for distributed systems,

Research Report, Imperial College, London, 2000.
[22] G. Yee, L. Korba, Feature interactions in policy driven management, in: D. Amyot, L. Logrippo (Eds.), Feature Interactions in

Telecommunications and Software Systems VII, IOS Press, Amsterdam, 2003, pp. 231–238.
[23] A. De Marco, F. Khendek, eSERL: Feature interaction in Parlay/OSA using composition constraints and configuration rules, in: D. Amyot,

L. Logrippo (Eds.), Feature Interactions in Telecommunications and Software Systems VII, IOS Press, Amsterdam, June 2003, pp. 247–254.
[24] S. Reiff-Marganiec, K.J. Turner, A policy architecture for enhancing and controlling features, in: D. Amyot, L. Logrippo (Eds.), Feature

Interactions in Telecommunications and Software Systems VII, IOS Press, Amsterdam, 2003, pp. 239–246.
[25] M. Heisel, J. Souquières, A heuristic algorithm to detect feature interactions in requirements, in: S. Gilmore, M. Ryan (Eds.), Language

Constructs for Describing Features, Springer-Verlag, 2000.
[26] M. Shehata, A. Eberlein, Requirements interaction detection using semi-formal methods, in: ECBS 2003, 10th IEEE Symposium and

Workshops on Engineering of Computer Based Systems Huntsville Alabama, USA, April 2003.
[27] M. Shehata, A. Eberlein, A. Fapojuwo, The use of semi-formal methods for detecting requirements interactions, in: SE 2004, The IASTED

International Conference on Software Engineering, 17–19 February 2004, Innsbruck, Austria.
[28] G. Booch, J. Rumbaugh, I. Jacobson, The Unified Modeling Language User Guide, Addison-Wesley Inc, 1999, ISBN: 0201571864.
[29] D. Amyot, G. Mussbacher, URN: Towards a new standard for the visual description of requirements, in: Third SDL and MSC Workshop,

SAM02, UK, in: LNCS, vol. 2599, June 2002.
[30] T. Demarco, P.J. Plauger, Structured Analysis and System Specification, Yourdon Press, Englewood Cliffs, NJ, 1978.
[31] E. Yourdon, Modern Structured Analysis, Yourdon Press, Englewood Cliffs, NJ, 1989.
[32] M. Edge, B. Taylor, G. Dewsbury, M. Groves, The Potential for Smart Home systems in meeting the care needs of older persons and people

with disabilities, Seniors’ Housing Update 10 (1) (2000).
[33] R.L. Smith, Smart House: The Coming Revolution in Housing, GP Publishing Inc, ISBN: 0876839189, 1988.
[34] D. Briere, P. Hurley, Smart Homes for Dummies, 2nd edition, Wiley Publishing Inc, ISBN: 0764525395, 2003.
[35] Lonworks, http://www.echelon.com/products/Core/default.htm, last viewed on July 13, 2004.
[36] Konnex, http://www.konnex.org/, last viewed on July 13, 2004.
[37] X10, http://www.x10.org/, last viewed on July 13, 2004.
[38] M. Kolberg, E.H. Magill, M. Wilson, Compatibility issues between services supporting networked appliances, IEEE Communications

Magazine 41 (11) (2003).
[39] M. Shehata, A. Eberlein, A. Fapojuwo, IRIS: A semi formal approach for detecting requirements interactions, in: ECBS 2004, 11th IEEE

International Conference and Workshop on the Engineering of Computer Based Systems, 24–27 May 2004, Brno, Czech Republic.
[40] Telelogic DOORS, http://www.telelogic.com/products/doorsers/doors/index.cfm/, last viewed on July 13, 2004.
[41] I. Alexander, Get More from DOORS with DXL Links, Telelogic News Byte Magazine, May 2001.
[42] A.K. Bandara, E.C. Lupu, A. Russo, Using event calculus to formalise policy specification and analysis, in: 4th IEEE Workshop on Policies

for Networks and Distributed Systems (Policy 2003), Lake Como, Italy, 2003.
[43] L. Blair, K.J. Turner, Handling policy conflicts in call control, in: S. Reiff-Marganiec, M.D. Ryan (Eds.), Proc. 8th. International Conference

on Feature Interaction VIII, IOS Press, Amsterdam, June 2005, pp. 39–57.
[44] Philips Ambient Intelligence In HomeLab, http://www.research.philips.com/, last viewed on June 1st 2006.
[45] Georgia Home Tech, http://www.gatech.edu/innovations/futurehome/index.php, last visited June 1st 2006.
[46] M. Shehata, Detecting requirements interactions using semi-formal methods, Ph.D. Thesis, 2005, University of Calgary, Alberta, Canada.

http://www.echelon.com/products/Core/default.htm
http://www.konnex.org/
http://www.x10.org/
http://www.telelogic.com/products/doorsers/doors/index.cfm/
http://www.research.philips.com/
http://www.gatech.edu/innovations/futurehome/index.php

	Using semi-formal methods for detecting interactions among smart homes policies
	Introduction
	Features and policies
	Understanding features and policies
	Relationship between features and policies
	Features and policies in a smart home architecture

	IRIS: Identifying Requirements Interactions using Semi-formal methods
	Internal structure of IRIS
	Interaction taxonomy
	Advantages of detecting interactions using the proposed semi-formal approach IRIS

	Case study: Detecting policy interactions in smart homes
	Smart homes
	Assumptions used in the smart homes case study
	Smart homes simple policies identification
	Applying IRIS to detect interactions in smart homes
	Results of step 1: Simple policies classification
	Results of step 2: Simple policies attributes identification
	Results of step 3: Trigger events extraction
	Results of step 4: Linked events identification
	Results of step 5: Graphical representation
	Results of step 6: Interactions detection

	Discussion of the obtained results

	Tool support
	Related work
	Conclusions
	
	References

