
Computer Networks 51 (2007) 398–425

www.elsevier.com/locate/comnet
A taxonomy for identifying requirement interactions
in software systems

Mohamed Shehata a,c,*, Armin Eberlein b, Abraham O. Fapojuwo a

a Department of Electrical and Computer Engineering, University of Calgary, 2500 University Drive NW, Calgary, AB, Canada
b Department of Computer Engineering, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates

c Department of Electrical and Computer Engineering, Shoubra Faculty of Engineering, Benha University, 108 Shoubra Street, Cairo, Egypt

Available online 27 September 2006

Responsible Editor: H. Rudin
Abstract

This paper presents an interaction taxonomy for classifying and identifying requirement interactions in software
systems. The proposed taxonomy is in the form of a four-layered pyramid that defines 6 Main Interaction Categories
in the first layer, 17 Interaction Subcategories in the second layer, 29 Interaction Types in the third layer, and 29 Interac-
tion Scenarios in the fourth layer. Each interaction scenario has a corresponding interaction detection guideline that
describes how the interaction can be detected. The proposed interaction taxonomy was compared to other existing taxo-
nomies in the literature and was not only able to address all the issues in those taxonomies, but also contained many other
interaction types. The proposed interaction taxonomy serves as the first domain-independent requirement interactions
taxonomy. It provides a detailed description of when two requirements interact.
� 2006 Published by Elsevier B.V.

Keywords: Requirement engineering; Requirement interaction taxonomy; Interaction scenarios
1. Introduction

A key issue in obtaining a set of clear requirements is to introduce ways to manage negative relationships
between requirements [1]. Robinson et al. defines requirement interaction management as ‘‘the set of activities
directed towards the discovery, management, and disposition of critical relationships among a set of require-
ments’’ [2]. Requirements often interact because of the heterogeneity and diversity of stakeholders [3]. Hence,
there is a need to have a requirement interactions taxonomy that would answer questions such as: When and
why do two requirements interact? How to detect this interaction? And how do we resolve it?
1389-1286/$ - see front matter � 2006 Published by Elsevier B.V.

doi:10.1016/j.comnet.2006.08.011

* Corresponding author. Address: Department of Electrical and Computer Engineering, University of Calgary, 2500 University
Drive NW, Calgary, AB, Canada. Tel.: +1 403 2108196; fax: +1 403 282 6855.

E-mail address: Msshehat@ucalgary.ca (M. Shehata).

mailto:Msshehat@ucalgary.ca

M. Shehata et al. / Computer Networks 51 (2007) 398–425 399
To the best of our knowledge, not much work has been done in the area of general requirement interactions
taxonomies. Even though Robinson et al. defined in detail the concept of requirement interactions in [2], his
work does not include in-depth information on when two requirements are considered interacting and how to
detect such interactions. This area has traditionally been addressed by the feature interaction community. In
1994, Cameron et al. published a paper [4] describing a benchmark for classifying the different categories of
feature interactions. However, this paper is very specific to the telecommunications domain and all examples
are related to interactions between telephony features and therefore it is very hard to generalize to other soft-
ware domains. In 2000, Gibson et al. presented a taxonomy for triggered interactions using fair objects seman-
tics [5]. This work builds on the assumption of having a set of triggered features and using a semantic point of
view for classifying interactions between those telecommunications features. Hence, the work by Gibson et al.
[5] cannot be used beyond its assumption especially in cases where there can be triggered and non-
triggered requirements. In 2004, Reiff–Marganiec and Turner presented a taxonomy for identifying policy
conflicts [6]. However, this work focuses on the social nature of policies interactions and the reasons why they
occur. Also, the taxonomy in [6] is geared towards the policy domain and is therefore not generally applicable.
There are also research efforts to present partial taxonomies as sections of papers or thesis where no claim of
completeness has been made [7–10].

This paper investigates the problem of requirement interactions in software systems and presents a general
interaction taxonomy for classifying and identifying requirement interactions. The proposed taxonomy is in
the shape of a four-layered pyramid where the first layer describes 6 main interaction categories, the second
layer describes 17 interaction subcategories, the third layer describes 29 interaction types, and finally the
fourth layer describes 29 interactions scenarios that also contain 29 interaction detection guidelines. This
in-depth structure addresses the lack of details that exist in other interaction taxonomies. Moreover, the pro-
posed interaction taxonomy was compared to other existing taxonomies in the literature and was not only able
to address all the issues in those taxonomies, but also contained other interaction types.

The remainder of this paper is structured as follows: Section 2 presents the concept of system decomposi-
tion. Section 3 presents the proposed interactions taxonomy. Section 4 compares the proposed interaction
taxonomy with already existing taxonomies. Then Section 5 contains the paper’s conclusions.

2. System decomposition

In this paper we address the problem of requirement interactions and hence we focus our effort on detecting
interactions during the requirements engineering phase of system development. The output of the requirements
engineering phase is a requirements specification document that contains a set of requirements that describe
stakeholders’ needs. This set of requirements can either describe certain properties that have to be preserved
(static view) or dynamic behaviour which the system exhibits when certain triggers occur (dynamic view).
Usually there is also a description of resources the system uses (environmental view). Therefore, we consider
a system to consist of the following components:

1. System axioms: Each system axiom describes a certain property of the system that must be preserved. For
example, in the lift system [11], a system axiom states that ‘‘At any time the user can press a call button to
call the lift’’. Any system axiom consists of at least the following basic attributes [12]: ID, which is a unique
identifier for that system axiom; Description, which is an informal description of the system axiom as spec-
ified in the requirements document; and Rule, which is a description of the property that must be preserved.

2. Dynamic behaviour requirements: Each dynamic behaviour requirement describes how the system should
behave when it is in a certain state and a specific trigger event occurs. For example, a requirement from the
lift system might state the following: ‘‘When the lift stops at floor K, it will open its doors’’. Any dynamic
behaviour requirement will consist of ID and Description attributes, similar to those listed in system
axioms, plus at least the following basic attributes: Prestate, which is a description of the required system
state prior to the execution of this dynamic requirement; Trigger event, which is a description of the trigger
event required for this dynamic requirement to execute; Action, which is a description of the action carried
out by this dynamic requirement once triggered; and Next state, which describes the next state that the sys-
tem reaches after executing this requirement [12].

400 M. Shehata et al. / Computer Networks 51 (2007) 398–425
3. Resources: Each resource describes the physical elements that the system uses to fulfill its requirements. For
example, Infra Red sensors (IR) in security systems are considered as resources used to detect motion. Any
resource will consist of ID and Description attributes, similar to the ones listed in system axioms plus at
least the following basic attributes: Availability, which describes this resource’s availability; Performance,
which describes this resource’s performance; and Interface, which describes this resource’s interface [12].

Any software system can be described during the early development stage with a detailed textual descrip-
tion of requirements as mentioned above. However, the software system can also be described using features
such as in the case of telecommunication systems, or policies as in the case of smart homes systems. Regardless
of the way a system is described (using requirements, features, or policies), the system will still consist of the
three main components: a static view represented by system axioms, a dynamic view represented by dynamic
behaviour, and an environmental view represented by resources. Since any of these elements can be
represented using the attributes discussed above (e.g., Prestate, Trigger Event, Action, and Next State in
the case of dynamic behaviour), the proposed interaction taxonomy is suitable for detecting interactions
between requirements, between features, or between policies. This has been demonstrated by the different
examples presented in the fourth layer in Section 3 and also in Appendix A.

3. The proposed interaction taxonomy

3.1. General architecture

The architecture of the proposed interaction taxonomy is shown in Fig. 1. The proposed taxonomy starts in
the first layer by addressing the question of WHERE in the system the interactions can occur. Whenever two
elements (either from two different components, e.g., a system axiom and a resource, or from the same com-
ponent, e.g., two system axioms) interact, they are said to form a main interaction category that describes
where the interaction manifests itself.

The second layer of the taxonomy contains interaction subcategories and addresses the question of WHAT
attributes of the two interacting system elements, from the first layer, cause the interaction. The third layer of
the proposed taxonomy contains interaction types and addresses the question of WHY the attributes identified
in the second layer cause the interaction to occur. The fourth layer contains interaction scenarios and
addresses the question HOW to detect interaction types identified in the third layer.

The question of how to resolve interactions was left out of the taxonomy as resolution strategies heavily
depend on stakeholders preferences and on the software domain.
Fig. 1. General architecture of the proposed taxonomy.

M. Shehata et al. / Computer Networks 51 (2007) 398–425 401
3.2. First layer: main interaction categories

There are nine main interaction categories based on all possible pairwise combinations among system axi-
oms, dynamic behaviour requirements and resources. However, for reasons of simplicity, the main interaction
category ‘‘A dynamic behaviour requirement interacting with a system axiom’’ has been merged with the main
interaction category ‘‘A system axiom interacting with a dynamic behaviour requirement’’ and hence the latter
will include situations where the negative effect is from the system axiom on the dynamic behaviour require-
ment and situations when the negative effect is from the dynamic behaviour requirement on the system axiom.
This is distinguished later in the fourth layer of the taxonomy through the interaction scenario that describes
which of the two negatively affects the other. Similarly, ‘‘A resource interacting with a system axiom’’ has been
merged with ‘‘A system axiom interacting with a resource’’, and ‘‘A resource interacting with a dynamic
behaviour requirement’’ has been merged with ‘‘A dynamic behaviour requirement interacting with a
resource’’. Thus, the number of main interaction categories has been reduced from nine to six and are listed
as follows (see also Fig. 2):

Two interacting system axioms.
A system axiom interacting with a dynamic behaviour requirement.
Two interacting dynamic behaviour requirements.
A system axiom interacting with a resource.
A dynamic behaviour requirement interacting with a resource.
Two interacting resources.

In the remainder of the main body of this paper we explain and describe only the main interaction category
‘‘Two interacting dynamic behaviour requirements’’ as an ongoing example to fully explain the four layers of
the proposed taxonomy. The other five main interaction categories , , , and are included in Appendix A
at the end of this paper to provide complete details of the entire taxonomy.
Fig. 2. First layer of the proposed taxonomy.

402 M. Shehata et al. / Computer Networks 51 (2007) 398–425
3.3. Second layer: interaction subcategories

3.3.1. General description

The second layer of the proposed interaction taxonomy contains interaction subcategories that are linked to
the first layer through a decomposition relationship which is done using attributes as the basis for the decom-
position. An interaction subcategory describes what attributes of the two interacting system elements, identified
in the first layer, are really causing the interaction to occur. Therefore, to generate the second layer interaction
subcategories, each possible pair of attributes between the two interacting elements in which the first attribute is
from the first requirement and the second attribute is from the second requirement, is first listed. Then the
obtained pairs of attributes are analyzed to determine which ones can cause interactions. Any pair of attributes
that could cause an interaction is then listed and considered to be an interaction subcategory. Therefore, the
main interaction categories from the first layer are decomposed into different numbers of interaction subcate-
gories in the second layer depending on the outcome of the analysis of attribute pairs (e.g., the third main inter-
action category has four subcategories – see Fig. 3b – whereas the fourth main interaction category has three
subcategories – see Fig. 8). The general structure of decomposing a first layer main interaction category into
interaction subcategories in the second layer is shown in Fig. 3a. The first layer’s six main interactions catego-
ries resulted in the following 17 interaction subcategories in the second layer: one subcategory (S1) from the
main category , three subcategories (S2, S3, and S4) from the main category , four subcategories (S5, S6,
S7, and S8) from the main category , three subcategories (S9, S10, and S11) from the main category , three
subcategories (S12, S13, and S14) from the main category , and three subcategories (S15, S16, and S17) from
the main category . Note that each subcategory is denoted by Sn where n is the subcategory number.

In the next subsection we continue describing subcategories derived from the main interaction category
‘‘Two interacting dynamic behaviour requirements’’ as our ongoing example. However, Appendix A gives full
details about all remaining subcategories.

3.3.2. Interaction subcategories derived from the main interaction category

Fig. 3b shows how the main interaction category from the first layer is decomposed into four interaction
subcategories in the second layer. The decomposition is based on the attributes of dynamic behaviour require-
ments, namely: Prestate, Trigger event, Action, and Next state (see Section 2).

After analyzing the possible pairs of attributes that can form interaction subcategories, only the following
four pairs were found to really present interactions subcategories:

S5: Next State–Next State interactions: This subcategory contains all the interactions that arise between two
dynamic behaviour requirements because the next state attribute of the first requirement interacts with
the next state attribute of the second requirement.

S6: Action–Action interactions: This subcategory contains all the interactions that arise between two
dynamic behaviour requirements because the action attribute of the first requirement interacts with
the action attribute of the second requirement.
Fig. 3. (a) General structure of decomposing the first layer into the second layer, (b) example: interaction subcategories under the main
category .

M. Shehata et al. / Computer Networks 51 (2007) 398–425 403
S7: Action–Prestate interactions: This is a subcategory that contains all the interactions that arise between
two dynamic behaviour requirements because the action attribute of the first requirement interacts with
the prestate attribute of the second requirement.

S8: Trigger Event–Trigger Event interactions: This is a subcategory that contains all the interactions that
arise between two dynamic behaviour requirements because the Trigger Event attribute of the first
requirement interacts with the Trigger Event attribute of the second requirement.

Note that the numbering of the interaction subcategories started from 5 because there are other subcate-
gories derived from the first two main interaction categories and which can be found in Appendix A.

3.4. Third layer: interaction types

3.4.1. General description

The third layer of the interaction taxonomy describes the reasons why the attributes, identified in interac-
tion subcategories in the second layer, cause interactions. Each of these reasons are said to form an interaction
type. The number of interaction types for an interaction subcategory depends on the number of reasons that
cause the two attributes, described in this interaction subcategory, to interact.

Sometimes, certain constraints have to be met for an interaction type to occur. For example, consider the
interaction subcategory ‘‘Next State–Next State interactions’’ derived from the main interaction category
‘‘Two interacting dynamic behaviour requirements’’ (see Fig. 4b). This interaction subcategory has only one
interaction type t8 called ‘‘Non-Determinism’’ in the third layer that describes that the two attributes Next State
(of the first requirement) and Next State (of the second requirement) interact because they have different values
and therefore cause a non-determinism situation in the system. However, for this interaction type to occur, the
two dynamic behaviour requirements must have (the same prestates) AND (the same trigger events).

This is considered to be a constraint on the interaction type ‘‘Non-Determinism’’ and therefore the subcat-
egory ‘‘Next State–Next State interactions’’ is connected to the ‘‘Non-Determinism’’ interaction type through
the constraint C1 ‘‘Same prestates AND same trigger events’’. It must be noted that some of the interaction
types can be repeated more than once under the same subcategory because this interaction type occurs under
two different constraints (e.g., t10 and t12 under S6 in Fig. 4b). The general structure of deriving interaction
types in the third layer from interaction subcategories in the second layer is shown in Fig. 4a.

The 17 interaction subcategories from the second layer resulted in 29 interaction types and 5 constraints in
the third layer of the proposed interaction taxonomy. We continue with our ongoing example shown in
Fig. 4b, however the rest of the interaction types are described in their respective places in Appendix A.
Fig. 4. (a) General structure of deriving interaction types in the third layer, (b) example: interaction types under the main interaction
category .

404 M. Shehata et al. / Computer Networks 51 (2007) 398–425
3.4.2. Interaction types derived from the main interaction category

The 17 interaction subcategories from the second layer resulted in 29 interaction types and five constraints
in the third layer of the proposed interaction taxonomy. In the following, we present a description of inter-
action types under the main interaction category but all the other interaction types are listed in Appendix
A. In all the interaction types t8 to t16 described below, consider R1 and R2 to be dynamic behaviour
requirements:

t8: Non-determinism (under constraint C1): Consider R1 and R2 to have different values for their Next State
attributes. If these two requirements are executed at the same time then the system will face an ambig-
uous situation in which the system is unable to determine which state to go to (the next state specified in
R1 or the next state specified in R2). In order for two dynamic behaviour requirements to execute at the
same time, R1 and R2 must have: the same prestates AND the same trigger events. This is enforced by
C1 that preceded the interaction type t8.

t9: Dependence (under constraint C2): Consider R1 and R2 to have the same trigger events and the same
prestates and hence will be executed together. Now, suppose that the action of R1 requires that the
action of R2 be successfully executed. This means that the action of R1 depends on the action of R2,
i.e., an interaction occurs if the action of R2 is not completed successfully for any reason. This is con-
sidered as an interaction.

t10: Override (under constraint C2): Consider R1 and R2 to have the same trigger events and the same pre-
states and that they have been triggered and are executing simultaneously. Suppose that the action of R1
interrupts and cancels the action of R2 before its completion which means that the action of R1 has
overridden the action of R2. Hence there is a negative relationship between the two requirements
and, by definition, R1 and R2 interact.

t11: Negative impact (under constraint C2): Consider R1 and R2 to have the same trigger events and the same
prestates and that they have both been triggered and are executing simultaneously. Now suppose that the
action of R1 negatively impacts the action of R2. Hence, R1 and R2 interact according to the interaction
type t11.

t12: Override (under constraint C3): Consider R1 and R2 to have different trigger events and thus should be,
theoretically, unrelated and hence are not prone to interact. However, if R1 and R2 have their trigger
events linked (i.e., the occurrence of the first trigger event is followed after some time by the occurrence
of the second trigger event), hence R1 and R2 are still sequentially related and are still prone to inter-
actions. Now suppose that R1 is triggered and starts executing. R2 will also be triggered and starts
executing after some time because the trigger event of R2 is linked to the trigger event of R1. Now,
assume that the action of R1 is not yet completed while R2 is triggered. If the action of R2 cancels
and overrides the action of R1 before its completion then the two requirements interact. The interaction
type t12 is also possible when the action of R1 overrides and cancels the action of R2. In both cases, R1
and R2 interact.

t13: Negative impact (under constraint C3): Assume R1 and R2 to have linked trigger events and hence if R1
is triggered and starts executing then R2 will also be triggered and starts executing after some time. Now,
if the action of R2 negatively affects the action of R1 before its completion then the two requirements
interact. This interaction type can also occur when the action of R1 negatively impacts the action of
R2 and in both cases R1 and R2 interact.

t14: Order (under constraint C3): Consider the two dynamic behaviour requirements R1 and R2 to have
linked trigger events. Assume that the trigger of the first requirement leads to the trigger of the sec-
ond requirement, i.e., T1 �> T2, and in this case the system will exhibit a specific behaviour B1 after
the two requirements have executed their actions. Now if this specific behaviour B1 is different from
the behaviour that the system would exhibit if R2 had started first then followed by R1, i.e.,
T2 �> T1, then there is an interaction between the two requirements. This is because in this case
the actions of the two requirements are not independent but have an effect on each other. If they
were independent then the same behaviour would have been obtained no matter which action started
first.

M. Shehata et al. / Computer Networks 51 (2007) 398–425 405
t15: Bypass (under constraint C4): Consider R1 and R2 with linked trigger events. Assume that R1 is trig-
gered and starts executing and that the action of R1 prevents the system from being in a specific state.
Suppose that this specific state is the same state specified in the prestate attribute of R2. Hence when the
trigger event of R2 occurs, R2 will never execute because the system is in a state different from R2’s pre-
state. Thus R1 prevented the system from executing R2.

t16: Infinite looping (under constraint C5): If R1 is triggered and starts executing such that its action will
create the trigger event for R2 then R2 starts executing its action. Now if the action of R2 causes the
creation of the trigger event of the R1, then R1 is triggered again and starts executing its action which
will again create trigger event of R2 and so on. Hence, R1 and R2 are forced into infinite looping and
interact.
3.5. Fourth layer: interaction scenarios

3.5.1. General description

The fourth layer of the proposed interaction taxonomy contains interaction scenarios that provide detailed
explanations of interaction types from the third layer and how to detect these interaction types (Fig. 5a). The
template used to present the interaction scenarios contains the following information:

• Scenario ID: This is a unique ID that distinguishes interaction scenarios from each other.
• Interaction type: This is a description of the interaction type this scenario is associated with. The descrip-

tion does not only include the interaction type as a single leaf (e.g., t10) but it includes the whole tree branch
starting from the first layer main interaction category until the interaction type this scenario is associated
with.

• Detection guideline: The detection guideline describes how to detect the interaction type described in the
scenario by a non-expert developer. The guideline includes a textual description and, where appropriate,
a graphical description.

• Example: An example from a real life system is given to improve the understanding of how this interaction
occurs. Note that in this paper, examples are taken from the smart homes domain [13], the lift system
domain [11], e-commerce web domain, [14], and telecommunications domain [15]. However, these scenarios
are general enough to be used in other domains.

The next subsection presents interaction scenarios related to the Main interaction category ‘‘Two inter-
acting dynamic behaviour requirements’’ as the ongoing example (Fig. 5b). However, Appendix A gives full
details about all remaining scenarios.
Fig. 5. (a) General structure of deriving interaction scenarios in the fourth layer and (b) example: interaction scenarios under the main
interaction category .

406 M. Shehata et al. / Computer Networks 51 (2007) 398–425
3.5.2. Interaction scenarios under main interaction category ‘‘Two interacting dynamic requirements’’1
Scenario ID SCR8

Type of
interaction

TwoInteractingDynamicBehaviourRequirements!
NextState–NextStateInteractions!
Non-DeterminismjC1 = SameTriggerEvents & SamePreStates

Detection
guideline

IF {(R1.TriggerEvent = R2.TriggerEvent)
AND (R1.PreState = R2.PreState) AND
(R1.NextState 5 R2.NextState)} THEN {R1 interacts with R2 under
the interaction type t8}

Example • R1: ‘‘Adjust the audio level of the TV device to 35% of its maximum volume when device is
first turned on’’

• R2: ‘‘Adjust the audio level of the TV when it is turned on to the last used audio level setting
before the last shutdown’’

• Interaction: Assume that someone previously watched TV and manually adjusted the TV
audio level to 20% of its max volume before he shuts it down. Later on, when the TV is first
turned on then both R1 and R2 are triggered at the same time. Since the audio level specified
in R2 (20% of max. audio level) is different from the audio level specified in R1 (35% of the
max. volume), the system will face a non-determinism situation. Should it transit to the state
where the TV volume is 20% as specified by R2 or should it transit to the state where the TV
volume is 35% as specified by R1?

Scenario ID SCR9

Type of
interaction

TwoInteractingDynamicBehaviourRequirements!
Action–ActionInteractions!
Dependence jC2 = SameTriggerEvents & SamePreStates

Detection
guideline

IF {(R1.TriggerEvent = R2.TriggerEvent)
AND(R1.PreState = R2.PreState) AND (R1.Action
DEPENDS_ON R2.Action)} THEN {R1 interacts with R2 under
interaction type t9}

Example • R3: ‘‘Increase the temperature inside the house to the preset temperature (22 �C) when tem-
perature reading from thermostat is 6 (20 �C)’’

• R4: ‘‘Open the ventilation grills in locations (LivingRoom, BedRoom1) to allow air flow
when the temperature reading from the thermostat is 6 (20 �C)’’

• Interaction: When the temperature drops below 20 �C, then both requirements R3 and R4
trigger at the same time. However the action of R3 depends on the action of R4 as the tem-
perature is increased by pumping hot air through the ventilation grills. If R4 fails to execute
for any reason, then R3 will not be able to perform its action. Further, if the action of R4
opens only one or two ventilation grills, then the action of R3 is affected by the few opened
ventilation grills and it will not be effective enough

1 The examples of interaction scenarios in this category are taken from the Smart Homes system which is a representative of the policy
domain.

Scenario ID SCR10

Type of
interaction

TwoInteractingDynamicBehaviourRequirements!
Action–ActionInteractions! OverridejC2 = SameTriggerEvents & SamePreStates

Detection
guideline

IF {(R1.TriggerEvent = R2.TriggerEvent) AND
(R1.PreState = R2.PreState) AND (R1.Action OVERRIDES
R2.Action)} THEN {R1 interacts with R2 under the interaction type
t10}

Example • R5: ‘‘As a security measure, secure the doors and windows of a house by closing them
starting at time (11:00 pm) for (6 h)’’

• R6: ‘‘automatically opens the windows in (LivingRoom) at time (11:00 pm)’’
• Interaction: When the time is 11:00 pm the two requirements,

R5 and R6, are triggered and start executing. However,
R6 tries to open the windows but R5, which is a security
requirement with higher priority, will override the action of
R6 and will not allow it to open the windows.
If the two requirements had the same priority,
then this interaction would be described
as non-determinism using SCR8

Scenario ID SCR11

Type of
interaction

TwoInteractingDynamicBehaviourRequirements!
Action–ActionInteractions!
NegativeImpactjC2 = SameTriggerEvents & SamePreStates

Detection
guideline

IF {(R1.TriggerEvent = R2.TriggerEvent) AND
(R1.PreState = R2.PreState) AND (R1.Action
NEGATIVELY_IMPACTS R2.Action)} THEN
{R1 interacts with R2 under the interaction type t11}

Example • R6 (revisited from SCR10): ‘‘Automatically open the
windows in (LivingRoom) at time (11:00 pm)’’

• R7: ‘‘Increase/Decrease the temperature of the house
to the temperature (22 �C) at time (11:00 pm)

• Interaction: When the time is 11:00 pm the two requirements
are triggered and both of them start executing. Now, if the
temperature outside the house is too cold or too hot then
the action of R6 will negatively affect the action of R7 as R7 tries
to increase/decrease the temperature of the house when the
windows are opened

M. Shehata et al. / Computer Networks 51 (2007) 398–425 407

Scenario ID SCR13

Type of
interaction

TwoInteractingDynamicBehaviourRequirements! Action–
ActionInteractions! NegativeImpactjC3 = LinkedTriggerEvents

Detection
guideline

IF {(R1.TriggerEvent �>
R2.TriggerEvent) AND (R1.Action
NEGATIVELY_IMPACT
R2.Action)} Then {R1 interacts with R2
under the interaction type t13}

IF {(R1.TriggerEvent �>
R2.TriggerEvent) AND (R2.Action
NEGATIVELY_IMPACT
R1.Action)} Then { R1 interacts with
R2 under the interaction type t13}

Example • R6 (revisited from SCR10): ‘‘Automatically open the windows in (LivingRoom) at time
(11:10 pm)’’

• R7 (revisited from SCR11): ‘‘Increase/decrease the temperature of the house to (22 �C)
starting at (11:00 pm)’’

• Interaction: When the time is 11:00 pm, R7 is triggered and starts executing. Now, R7 tries
to increase/decrease the house temperature to the value 22 �C. However this needs some
time and meanwhile the time gets to 11:10 pm which triggers R6. Now R6 opens the win-
dows and consequently negatively affecting the action of R7

Scenario ID SCR12

Type of
interaction

TwoInteractingDynamicBehaviour
Requirements! Action–ActionInteractions! OverridejC3 = LinkedTriggerEvents

Detection
guideline

IF {(R1.TriggerEvent �>
R2.TriggerEvent) AND
(R1.Action OVERRIDES R2.Action)}
Then { R1 interacts with R2 under the
interaction type t12}

IF {(R1.TriggerEvent �>
R2.TriggerEvent) AND
(R2.Action OVERRIDES R1.Action)}
Then {R1 interacts with R2 under the
interaction type t12}

Example • R2 (revisited from SCR8): ‘‘Use the last stored audio level settings of the TV to adjust its
volume when the TV is first turned on’’

• R8: ‘‘Completely shutdown power supply to all audio/video devices starting at (mid-
night) for (5 h)’’

• Interaction: Suppose that the TV was turned on just a few seconds before midnight.
According to R2 the system will obtain the last stored audio level settings of the TV
and starts adjusting its volume. But at midnight R8 starts executing and hence all
audio/video devices including the TV are shutdown. Hence the action of R8 overrides
the action of R2 before its completion

408 M. Shehata et al. / Computer Networks 51 (2007) 398–425

Scenario ID SCR14

Type of
interaction

TwoInteractingDynamicBehaviourRequirements!
Action–ActionInteractions! OrderjC3 = LinkedTriggerEvents

Detection
guideline

IF {(SYSTEM_
BEHAVIOURjR1.TriggerEvent �> R2.TriggerEvent) 5

(SYSTEM_BEHAVIOURjR2.TriggerEvent �> R1.TriggerEvent)}
Then { R1 interacts with R2 under the interaction type
t14}

Example • R9: ‘‘The system shall support a one-click remote control 911 emergency service that calls
the emergency centre and provides the home address and a pre-recorded message once a
connection is established’’
• R10: ‘‘The system shall provide a regular telephone line with a set of telephony features
(Three Way Calling)
• Interaction: Suppose that an elderly resident A faces an emergency health condition (e.g.,
heart attack). A calls his son to take him to hospital but meanwhile, A’s condition gets worse
so he uses R9 to call 911. Now R9 finds line is busy and it cannot execute 911 directly, so the
system uses the Three Way Calling feature in R10 to put the son on hold and then connects
to the emergency centre using 911. Consider this as the system behaviour B1 when Three
Way Calling is activated first then 911 is followed later. Now, consider the same situation
but at this time A uses R9 first to call 911 then tries to use the Three Way Calling feature in
R10 to put 911 on hold and inform his son of the situation. In this case the system will not
execute the Three Way Calling as the 911 service prevents anyone from putting it on hold.
Consider this as system behaviour B2 when 911 executes first and then the Three Way
Calling. Obviously B1 5 B2 because in B1 both Three Way Calling and 911 are executed
successfully but in B2 only 911 is executed successfully

Scenario ID SCR15

Type of
interaction

TwoInteractingDynamicBehaviourRequirements! Action–
PreStateInteractions! BypassjC4 = LinkedTriggerEvents

Detection
guideline

IF {(R1.TriggerEvent �> R2.TriggerEvent)
AND (R1.Action Bypass R2.PreState)}
Then {R1 interacts with R2 under the interaction type t15}

Example • R5 (revisited from SCR10): ‘‘As a security measure, secure the doors and
windows of a house by having them closed starting at time (11:00 pm) for (6 h)’’

• R13: When the intruder alarm is triggered, the security control unit is frozen
and it can be unfrozen only by entering a PIN

• Interaction: Suppose that R13 is triggered and starts executing. One part of R13’s action
is to freeze the security control unit to prevent an intruder from disabling the alarm and
prevent the opening of doors and windows to escape. Now this would bypass the pre-
state of R5 and it will not allow the trigger event of R5 to trigger R5 simply because
the whole security control unit including doors and windows is completely frozen (in
another abnormal state). Therefore it can be said that R13 action bypasses the prestate
of R5

M. Shehata et al. / Computer Networks 51 (2007) 398–425 409

Scenario ID SCR16

Type of
interaction

TwoInteractingDynamicBehaviourRequirements! TriggerEvent–
TriggerEventInteractions!
InfiniteLoopingjC5 = DualLinkedTriggerEvents

Detection
guideline

IF {(R1.TriggerEvent <��> R2.TriggerEvent) AND
(R1.Action CREATES R2.TriggerEvent) AND
(R2.Action CREATES R1.TriggerEvent)} Then
{R1 interacts with R2 under the interaction type t16}

Example • R4 (revisited from SCR9):’’Increase the temperature inside the house to the preset tem-
perature (22 �C) when temperature reading from thermostat is 6 (20 �C)’’

• R12: ‘‘Open the windows in locations (X16 = LivingRoom and BedRoom) to decrease
the temperature when the thermostat reading is P (22) �C. Then close them again when
the thermostat reading is 6 (20) �C’’

• Interaction: Suppose that the house temperature is now at 24 �C then R12 is triggered
and the windows are opened to decrease the temperature inside the house to 20 �C.
Once the temperature is at 20 �C then the windows close but also R4 is triggered
(i.e., the action of R12 dropped the temperature to 20 which means that it created
the trigger event of R4). Now R4 starts executing and pumps hot air to increase the
temperature back to 22. Once the temperature reaches 22 then R12 is triggered and
starts executing again (i.e., the action of R4 created the trigger of R12 which is to have
a temperature P 22 �C). The preceding process repeats indefinitely. It is noted that the
first requirement is created by a person who wants to keep the house temperature at
22 �C while the second requirement is created by someone who wants to keep the house
temperature at 20 �C. This is understandable in a smart home with multi-occupants

410 M. Shehata et al. / Computer Networks 51 (2007) 398–425
4. Comparison of the proposed taxonomy to already existing taxonomies

4.1. Comparison results

In this section, we compare the proposed interaction taxonomy to the following already existing interaction
taxonomies from the literature:

1. Feature interaction benchmark for Intelligent Networks—proposed by Cameron et al. in 1994 [4]. Note
that Cameron et al. present in [4] two approaches for categorizing interactions which will be denoted in this
paper by C-1 and C-2, respectively.

2. Interaction taxonomy for services of networked appliances—proposed by Kolberg et al. in 2003 [8] and
denoted in this paper by K.

3. Interaction taxonomy for policies—proposed by Reiff Marganiec and Turner in 2004 [6] and denoted in this
paper by R.

The three taxonomies mentioned above were chosen because they are cited frequently (first taxonomy) or
there is close similarity with our proposed interaction taxonomy (second taxonomy) or they are very recent
(third taxonomy). The comparison will be based on:

1. The method used for categorizing interactions (e.g., nature of interactions).
2. The main focus of the taxonomy (e.g., telecommunication telephony features).
3. The number of interaction categories proposed in each interaction taxonomy.
4. The number of examples presented to illustrate each interaction category.

Table 1
Comparing the proposed taxonomy to other existing taxonomies

C K R S

C-1 C-2

Method of
categorization

Nature of interactions Cause of interactions Cause of
interactions

Nature of
interactions

Cause of interactions

Main focus Telecommunications
Intelligent Networks

Telecommunications
Intelligent Networks

Smart homes
networked
devices

Policies General with
restriction on
implementation
interactions

Number of
interaction
categories

Five main categories Three main Categories
12 subcategories

Four main
categories

Five main
categories 19
subcategories

Nine main categories
24 subcategories 37
types

Number of
presented
examples

22 22 (same ones used in
C-1)

5 10 37

Number of examples
addressed by our
taxonomy

Addressed: 18 Missed:
4 (implementation
interactions)

Addressed: 18 Missed:
4 (implementation
interactions)

Addressed: 5
Missed: 0

Addressed: 10
Missed: 0

N/A

C: Cameron et al. taxonomy[17]; C-1: Cameron et al. taxonomy—first approach; C-2: Cameron et al. taxonomy—second approach; K:
Kolberg et al. taxonomy [8]; R: Reiff-Marganiec and Turner taxonomy [6]; S: Shehata et al. taxonomy (proposed taxonomy).

M. Shehata et al. / Computer Networks 51 (2007) 398–425 411
5. The number of presented examples that are addressed by our proposed interaction taxonomy and whether
there are any examples that are missed and not addressed by our proposed interaction taxonomy.
Using the criteria mentioned above, the results of the comparison are summarized in Table 1.

4.2. Discussion

• Our proposed interaction taxonomy categorizes interactions according to the cause of interactions. This
satisfies the objective of our proposed taxonomy that presents where, how, and why interactions occur. This
is most beneficial in understanding the technical aspects rather than the social aspects of interactions and
also facilitates the definition of detection guidelines for detecting any interactions between two
requirements.

• Our proposed interaction taxonomy starts by categorizing interactions into high-level main interaction cat-
egories similar to other taxonomies. This helps provide a general high level understanding of the possible
interactions.

• Our proposed interaction taxonomy is able to address all examples presented in other taxonomies except
for four missed interactions found by the taxonomy of Cameron et al. Those four missed interactions
are caused by the way the system was implemented and not by the requirements of the system and therefore
they are not addressed by the proposed interaction taxonomy.

• The proposed interaction taxonomy has the limitation of not being able to address design or implementa-
tion interactions. The objective of the taxonomy is to address interactions at the requirements and early
design stages of software systems. Hence, all implementation interactions are missed by the proposed inter-
action taxonomy. However, in the majority of cases most of the critical interactions manifest themselves
during the requirements engineering phase of the software lifecycle. These interactions are captured by
our proposed interaction taxonomy.

• The proposed interaction taxonomy has the advantage of being able to work in different domains with
almost the same quality as domain-specific taxonomies. The taxonomy of Cameron et al. works very well
to detect interactions between telecommunication features in the application layer of the OSI model. How-
ever, it does not work when investigating interactions between services of other layers of the OSI model or
in other domains. Our taxonomy performs not only well in telecommunications but also in very different

412 M. Shehata et al. / Computer Networks 51 (2007) 398–425
domains. Case studies reported in [10,11,14–16] show that our taxonomy was successfully applied to detect
interactions in the telecommunications domain, the control domain, web domain, and policy domain. Even
if a new software domain needs to be inspected for interactions, our taxonomy can be applied.

• The proposed interaction taxonomy focuses mainly on detecting functional/behavioural interactions. It
currently does not detect non-functional requirements (NFR) interactions. However, part of our future
work is to expand the proposed taxonomy to be able to detect NFR interactions.

5. Conclusions

This paper addresses the problem of requirement interactions in software systems and presents a general tax-
onomy for identifying requirement interactions. In total, the proposed interaction taxonomy has 6 main inter-
action categories, 17 interaction subcategories, 29 interaction types, and 29 interaction scenarios. Each
interaction scenario also has a detection guideline that can be used to detect the corresponding interaction type.

The proposed interaction taxonomy is novel in the following sense: It is a general taxonomy that can be
applied in any domain rather than being oriented towards a specific domain. Hence it can be considered as
the first domain-independent requirements interaction taxonomy. Also, the taxonomy provides 29 interaction
scenarios that give a detailed description of when two requirement interact. The understanding of each inter-
action scenario is enhanced using a real life example that describes such an interaction. The 29 interaction sce-
narios also provide 29 detection guidelines that can be used by any developer to detect the different interaction
types.

The proposed interaction taxonomy was compared to other existing taxonomies in the literature and not
only was it able to address all the issues in those taxonomies but it also contained many other interaction types
that have not been captured by other taxonomies.

Appendix A

A.1. Details of the main interaction category ‘‘Two interacting system axioms’’2

A.1.1. Interaction subcategories

The decomposition of the main interaction category into subcategories was done based on the Rule attri-
bute of system axioms (see Section 2). Therefore, the only possible pair of attributes that can form interaction
subcategories is

S1: Rule–Rule interactions: This subcategory contains all the interactions that arise between two system
axioms because the Rule attribute of the first system axiom interacts with the Rule attribute of the sec-
ond system axiom. This subcategory is shown in the second layer of the proposed taxonomy shown in
Fig. 6.

A.1.2. Interaction types

t1: Override: Consider the two system axioms R1 and R2. Suppose that the rule of R1 overrides and cancels
the rule of R2. Hence R1 and R2 interact.

t2: Negative impact: Consider R1 and R2 to be system axioms. Suppose that the rule of R1 negatively
impacts the rule of R2. Hence, R1 and R2 interact according to the interaction type t2. This interaction
type is similar to t1; however, the difference is that in t1 the rule of R1 will completely cancel and over-
ride the rule of R2 while in t2 the rule of R1 will only negatively impact, but not completely cancel, the
rule of R2.
2 The examples of interaction scenarios in this category are taken from a web e-commerce system which is a representative of the web
domain.

Fig. 6. Details of the main interaction category .

M. Shehata et al. / Computer Networks 51 (2007) 398–425 413
A.1.3. Interaction scenarios
Scenario ID SCR1

Type of
interaction

TwoInteractingSystemAxioms! Rule–RuleInteractions! Override

Detection
guideline

IF {(R1.Rule OVERRIDES R2.Rule)} THEN {R1 interacts with R2 under the t1
interaction type}

Example • R1: ‘‘The library page on the website shall use secure logon for members only using user-
name and password’’

• R2: ‘‘All webpages on the website are accessible with no more than two clicks from the
menu bar’’

• Interaction: What happens if a user who is not logged in, wants to go to the library page?
In this case the security requirement R1 overrides R2 and redirects him to a sign in page.
This means that the user, assuming he is a member, needs more than two clicks to go to
the library page

Scenario ID SCR2

Type of
interaction

TwoInteractingSystemAxioms! Rule–RuleInteractions! NegativeImpact

Detection
guideline

IF {(R1.Rule NEGATIVELY_IMPACTS R2.Rule)} THEN {R1 interacts with R2 under
the t2 interaction type}

Example • R1: ‘‘There shall be an input acceptability checking mechanism X to validate the input
data before the system exhibits any response’’

• R2: ‘‘The response time of the system should not exceed 3.0 s’’
• Interaction: What happens if the input acceptability mechanism X is set to a very com-

plex mechanism? This will cause the system response time to increase which negatively
impacts R2

Fig. 7. Details of the main interaction category .

414 M. Shehata et al. / Computer Networks 51 (2007) 398–425
A.2. Details of main interaction category ‘‘A system axiom interacting with a dynamic requirement’’3

A.2.1. Interaction subcategories

The main interaction category describes interactions between a system axiom and a dynamic behaviour
requirement. Therefore, to derive all the interaction subcategories from it, all possible pairs of attributes of a
system axiom and a dynamic behaviour requirement are examined to determine which ones can form interac-
tion subcategories. The examination resulted in the following subcategories (which are shown in the second
layer of the taxonomy in Fig. 7):

S2: Rule–Action interactions: This subcategory contains all interactions between a system axiom and a
dynamic requirement because Rule attribute of the system axiom interacts with Action attribute of
the dynamic requirement.

S3: Rule–Prestate interactions: This subcategory contains all interactions between a system axiom and a
dynamic requirement because Rule attribute of the system axiom interacts with Prestate attribute of
the dynamic requirement.

S4: Rule–Next state interactions: This subcategory contains all interactions between a system axiom and a
dynamic requirement because Rule attribute of system axiom interacts with Next state attribute of
the dynamic requirement.
A.2.2. Interaction types

t3: Override: Consider R1 to be a system axiom and R2 to be a dynamic behaviour requirement. Suppose
that the rule of R1 overrides and cancels the Action of R2 before its completion. Hence R2 was not
successfully executed. This is a negative relationship between R1 and R2 and hence they interact.

t4: Negative impact: Suppose that the rule of R1 negatively impacts the Action of R2 which reduces the effi-
ciency of the execution of the action of R2. Hence, R1 and R2 interact.

t5: Prestate blocking: Consider R1 to be a system axiom and R2 to be a dynamic behaviour requirement.
Suppose that the rule of R1 prevents the system from being able to be in a state which is the same as
the prestate of R2. This means that R2 will never be executed since the system cannot be in its prestate.
This is a negative relationship between R1 and R2 and hence they interact.

t6: Next state delay: Suppose that the rule of R1 delays the system to reach the next state of R2. This means
that R2 has been delayed in finishing and making the system reach the next state specified in R2. This is a
negative relationship between R1 and R2 and hence they interact.
3 The examples of interaction scenarios in this category are taken from the lift system and the smart homes system.

M. Shehata et al. / Computer Networks 51 (2007) 398–425 415
t7: Next state blocking: Suppose that the rule of R1 completely prevents the system from reaching the next
state of R2. This means that the next state of R2 has been blocked. Hence R1 and R2 interact.

A.2.3. Interaction scenarios
Scenario ID SCR4

Type of
interaction

SystemAxiomInteractingWithDynamicBehaviourRequirement! Rule–
ActionInteractions! NegativeImpact

Detection
guideline

IF {(R1.Rule NEGATIVELY_IMPACTS R2.Action)} THEN {R1 interacts with R2 under
the t4 interaction type}

Example • R1 ‘‘Executive floor calls are of highest priority’’
• R2 ‘‘The lift is called by pressing the call button and it should arrive within 2 min other-

wise an alternative car is assigned to that floor’’
• Interaction: If there are calls from the executive floor then the arrival of the lift is delayed

until all calls from the executive floor are served. Hence the rule of R1 has negatively
affected the action of R2 by delaying the arrival of the lift

Scenario ID SCR5

Type of
interaction

SystemAxiomInteractingWithDynamicBehaviourRequirement! Rule–
PreStateInteractions! PreStateBlocking

Detection
guideline

IF {(R1.Rule BLOCKS R2.PreState)} THEN {R1 interacts with R2 under the t5 interaction
type}

Example • R1(maintenance) ‘‘To avoid system problems, the lift has to be maintained on a monthly
basis’’

• R2(operation) ‘‘When the lift is on standby at floor k with doors closed and it receives a
call from floor K, it opens its doors’’

• Interaction: What happens when the lift is maintained while being at floor K and some-
one calls the lift from floor K? It will not open its doors because the power is disconnected
during maintenance to prevent accidents. Hence the rule of R1 has prevented and blocked
the lift from being in standby, which is the prestate of R2

Scenario ID SCR3

Type of
interaction

SystemAxiomInteractingWithDynamicBehaviourRequirement! Rule–
ActionInteractions! Override

Detection
guideline

IF {(R1.Rule OVERRIDES R2.Action)} THEN {R1 interacts with R2 under the t3
interaction type}

Example • R1: ‘‘The max temperature of hot water from the boiler is 45 �C in order to keep the boi-
ler in safe operation’’

• R2: ‘‘Increase the temperature of the hot water to 55 �C in the washing machine when the
machine starts operating’’

• Interaction: The Rule of R1 overrides the action of R2 and does not allow the increase of
temperature to 55 �C

Scenario ID SCR6

Type of
interaction

SystemAxiomInteractingWithDynamicBehaviourRequirement! Rule–
NextStateInteractions! NextStateDelay

Detection
guideline

IF {(R1.Rule DELAYS R2.NextState)} THEN {R1 interacts with R2 under the t6
interaction type}

Example • R1 (Operation) ‘‘’Executive floor calls always has highest priority’’
• R2 (Operation) ‘‘When the lift passes by floor K and there is a call from this floor, the lift

will stop at floor K’’
• Interaction: What happens when the lift is passing by floor K and there is a call from floor

K but there are also five calls from the executive floors? In this case, the next state of R2
will not be reached which is to stop at floor K until all executive calls are served. Hence
the rule of R1 has delayed the next state of R2

Scenario ID SCR7

Type of
interaction

SystemAxiomInteractingWithDynamicBehaviourRequirement! Rule–
NextStateInteractions! NextStateBlocking

Detection
guideline

IF {(R1.Rule BLOCKS R2.NextState)} THEN {R1 interacts with R2 under the t7
interaction type}

Example • R1 ‘‘For a lift at floor K, the lift doors must close after a maximum of 1 min’’
• R2 ‘‘When something blocks lift doors, the lift interrupts the process of closing the doors

and reopens them’’
• Interaction: If a user keeps blocking the lift doors then after a 1 min the rule of R1 is

enforced and prevents R2 from being able to reach its next state which is ‘‘Doors opened’’

416 M. Shehata et al. / Computer Networks 51 (2007) 398–425
A.3. Details of main interaction category ‘‘A system axiom interacting with a resource’’4

A.3.1. Interaction subcategories

The subcategories of interactions derived from main interaction category are shown in Fig. 8 and
described in the following:

S9: Rule–Availability interactions: This subcategory contains all the interactions between a system axiom and
a resource because the Rule attribute of the system axiom interacts with the Availability attribute of the
resource.

S10: Rule–Performance interactions: This subcategory contains all the interactions between a system axiom
and a resource because the Rule attribute of the system axiom interacts with the Performance attribute
of the resource.

S11: Rule–Interface interactions: This subcategory contains all the interactions between a system axiom and a
resource because the Rule attribute of the system axiom interacts with the Interface attribute of the
resource.
A.3.2. Interaction types

t17: Failure of resource: Consider R1 to be a system axiom and R2 to be a resource. If the Rule attribute of
the system axiom causes the resource to fail such that it violates the Availability attribute of R2, then this
is considered an interaction.
4 The examples of interaction scenarios in this category are taken from the web e-commerce system which is a representative of the web
domain.

Fig. 8. Details of the main interaction category .

M. Shehata et al. / Computer Networks 51 (2007) 398–425 417
t18: Taking over resource: If the Rule attribute of the system axiom R1 takes over the resource and does not
allow any other usage of it by other requirements in a manner that violates the Availability attribute of
R2, then this is considered to be an interaction between R1 and R2.

t19: Performance degradation: In this interaction type, the Rule attribute of the system axiom causes degra-
dation of the performance of the resource such that it violates the Performance attribute of R2. This is
considered as interaction between R1 and R2.

t20: Unexpected input key behaviour: This interaction type addresses situations in which the Rule attribute
of R1 causes the user to use the input interface in a manner that violates the Interface attribute of
R2.

t21: Unexpected output key behaviour: This interaction type addresses situations in which the Rule attribute
of R1 causes the display of output data to the user in a manner that would violate the Interface attribute
of R2.

A.3.3. Interaction scenarios
Scenario ID SCR17

Type of
interaction

SystemAxiomInteractingWithResource! Rule–
AvailabilityInteractions! FailureOfResource

Detection
guideline

IF {(R1.Rule violates Resource.Availability) AND (R1.Rule LEADS_TO_FAILURE
Resource.Availability)} THEN {R1 interacts with Resource under t17 interaction type}

Example • R1 ‘‘The website shall be able to handle a maximum of (50 hits/s)’’
• Resource.Availability: ‘‘The Application server must be able to process at least 99.9% of

all requests made during a week’’
• Interaction: If the website receives a heavy load, say 100 hits/s, this might cause the appli-

cation server to fail. This is because the website was not designed to handle such an
amount of requests. If this occurred frequently then the rule of R1 caused the failure rate
of the application server to exceed the constraint stated in resource availability

Scenario ID SCR18

Type of
interaction

SystemAxiomInteractingWithResource! Rule–
AvailabilityInteractions! TakingOverResource

Detection
guideline

IF {(R1.Rule violates Resource.Availability) AND (R1.Rule
LEADS_TO_TAKING_OVER Resource.Availability)} THEN {R1 interacts with
Resource under t18 interaction type}

Example • R1: ‘‘The system shall use X database server to store and retrieve data’’
• Resource.Availability ‘‘The database server must be able to process at least 99.9% of all

requests made during a week’’
• Interaction: If the database server used is an old database server, then it might only be

able to handle few requests simultaneously. Every time an application server sends a
few requests to the database server, the database server gets busy and cannot handle
new requests. If there are many application servers accessing this database server then
it is unavailable for other application servers

Scenario ID SCR19

Type of
interaction

SystemAxiomInteractingWithResource! Rule–
PerformanceInteractions! PerformanceDegradation

Detection
guideline

IF {(R1.Rule violates Resource.Performance) AND (R1.Rule
LEADS_TO_PERFORMANCE_DEGRADATION Resource.Performance)} THEN {R1
interacts with Resource under t19 interaction type}

Example • R1: ‘‘The system shall use X techniques for the encryption of transmitted financial data’’
• Resource.Performance ‘‘The response time of the application server is less than 3 s’’
• Interaction: Assume that X is a very complex encryption algorithm. Every time a user

tries to submit financial data, the server must encrypt the data using X and since X is very
complex its performance is degraded for other requests. This might cause the response
time of the application sever to exceed the 3 seconds limit required

Scenario ID SCR20

Type of
interaction

SystemAxiomInteractingWithResource! Rule–
InterfaceInteractions! UnexpectedInputKeysBehaviour

Detection
guideline

IF {(R1.Rule violates Resource.Interface) AND (R1.Rule
LEADS_TO_UNEXPECTED_INPUT_ BEHAVIOUR Resource.Interface)} THEN {R1
interacts with Resource under t20 interaction type}

Example • R1: ‘‘The user can accept incoming calls on the net phone using (pressing number nine
key) technique’’

• Resource.Interface ‘‘A standard input interface is provided as the net phone interface’’
• Interaction: If there is an incoming call and the user is not familiar with this technique,

the user might press the regular keys to accept new calls but it will not work so he might
try different keys which might result in unexpected termination of the incoming call

418 M. Shehata et al. / Computer Networks 51 (2007) 398–425

Scenario ID SCR21

Type of
interaction

SystemAxiomInteractingWithResource! Rule–
InterfaceInteractions! UnexpectedOutputDisplayBehabvior

Detection
guideline

IF {(R1.Rule violates Resource.Interface) AND (R1.Rule LEADS_TO_
UNEXPECTED_OUTPUT_ DISPLAY Resource.Interface)} THEN {R1 interacts with
Resource under t21 interaction type}

Example • R1: ‘‘The user is notified by incoming calls on his computer screen using (switch the focus
to the net phone incoming message interface and keeps the user there until he provides a
response) technique’’

• Resource.Interface ‘‘A standard output interface is provided as the net phone interface’’
• Interaction: If the user is playing a game on the screen and there is an incoming call then

the focus is switched automatically to the net phone and the user loses the game he is
playing (which sometimes might be more important for the user than the incoming call)
which results in unexpected display behaviour

M. Shehata et al. / Computer Networks 51 (2007) 398–425 419
A.4. Details of main interaction category ‘‘A dynamic behaviour requirement interacting with a resource’’5

A.4.1. Interaction subcategories

The subcategories of interactions that are derived from the main interaction category are shown in Fig. 9
and are described in the following:

S12: Action–Availability interactions: This subcategory contains all the interactions between a dynamic
requirement and a resource because the Action attribute of the dynamic requirement interacts with
the Availability attribute of the resource.

S13: Action–Performance interactions: This subcategory contains all interactions between a dynamic require-
ment and a resource because the Action attribute of the dynamic requirement interacts with Performance
attribute of the resource.

S14: Action–Interface interactions: This subcategory contains all the interactions between a dynamic require-
ment and a resource because the Action attribute of the dynamic requirement interacts with the Interface
attribute of the resource.
A.4.2. Interaction types

t22: Failure of resource: Consider R1 to be a Dynamic Behaviour Requirement and R2 to be a resource. If the
Action attribute of the dynamic requirement causes failure to the resource such that it violates the Avail-
ability attribute of R2, then this is considered to be an interaction according to t22.

t23: Taking over resource: If the Action attribute of the dynamic requirement R1 takes over the resource and
does not allow any other usage of it by other requirements in a manner that violates the Availability
attribute of R2, then this is considered to be an interaction between R1 and R2.

t24: Performance degradation: In this interaction type, the Action attribute of the dynamic requirement
causes degradation to the performance of the resource such that it violates the Performance attribute
of R2. This is considered an interaction between R1 and R2.

t25: Unexpected input key behaviour: This interaction type addresses the situations when the Action attribute
of R1 can cause the user to use the input interface in a manner that would violate the Interface attribute
of R2.

t26: Unexpected output key behaviour: This interaction type addresses the situations when the Action attri-
bute of R1 causes the display of output data to the user through a manner that would violate the Inter-
face attribute of R2.
5 The examples of interaction scenarios in this category are taken from smart home system which is a representative of the policy domain.

Fig. 9. Details of the main interaction category .

420 M. Shehata et al. / Computer Networks 51 (2007) 398–425
A.4.3. Interaction scenarios
Scenario ID SCR22

Type of
interaction

DynamicBehaviourRequirementInteractingWithResource! Action–
AvailabilityInteractions! FailureOfResource

Detection
guideline

IF {(R1.Action violates Resource.Availability) AND (R1.Action LEADS_TO_FAILURE
Resource.Availability)} THEN {R1 interacts with Resource under t22 interaction type}

Example • R1 ‘‘When the electricity consumption exceeds X kW/h, start shutting down devices A,
then B, then C, then D in this order until consumption reaches Y kW/h’’

• Resource.Availability ‘‘The boiler shall be available more than 99.9% during each week’’
• Interaction: Assume that the boiler is device C in R1. If X is set to a small number then

the system will likely shutdown the boiler several times in order to maintain the consump-
tion rate. This will violate the resource availability constraint

Scenario ID SCR23

Type of
interaction

DynamicBehaviourRequirementInteractingWithResource! Action–
AvailabilityInteractions! TakingOverResource

Detection
guideline

IF {(R1.Action violates Resource.Availability) AND (R1.Action
LEADS_TO_TAKING_OVER Resource.Availability)} THEN {R1 interacts with
Resource under t23 interaction type}

Example • R1: ‘‘During vacation, the vacation control system shall imitate the sound of occupants
between times A and B using the TV’’

• Resource.Availability ‘‘The A/V devices are available during daytime for personal use’’
• Interaction: R1 causes the unavailability of TV between A and B and this violates the

resource availability constraint on having the TV available during daytime for personal
use such as recording a show while away. In this case the TV is unavailable as it cannot
do the two things at the same time

Scenario ID SCR24

Type of
interaction

DynamicBehaviourRequirementInteractingWithResource! Action–
PerformanceInteractions! PerformanceDegradation

Detection
guideline

IF {(R1.Action violates Resource.Interface) AND (R1.Action
LEADS_TO_DEGRADATION Resource.Performance)} THEN {R1 interacts with
Resource under t24 interaction type}

Example • R1 ‘‘The user can set the CD player to play stream audio tracks from the internet
between times A and B using (Dialup) connection’’

• Resource.Performance ‘‘Audio/Video devices perform using high definition quality
standards’’

• Interaction: The dialup connection does not provide a reliable, high-speed connection.
Hence, in this case the action of R1 shall affect the performance of the CD player and
violates the resource performance constraints

Scenario ID SCR25

Type of
interaction

DynamicBehaviourRequirementInteractingWithResource! Action-
InterfaceInteractions! UnexpectedInputKeysBehabvior

Detection
guideline

IF {(R1.Action violates Resource.Interface) AND (R1.Action LEADS_TO_
UNEXPECTED_INPUT_ BEHAVIOUR Resource.Interface)} THEN {R1 interacts with
Resource under t25 interaction type}

Example • R1 ‘‘To dial a voice activated number, user must pick the handset, press key (number key,
which is an unusual input key in this case) and say the voice sample of the desired
number’’

• Resource.Interface ‘‘Standard input interface is provided for the smart home phone
interface’’

• Interaction: ‘‘Assume a user picks up the handset and presses this key number, the tele-
phone will not know if this number is part of a dialled number or if it should activate the
voice dialing system and hence this input might result in unexpected behaviour’’

Scenario ID SCR26

Type of
interaction

DynamicBehaviourRequirementInteractingWithResource! Action–
InterfaceInteractions! UnexpectedOutputDisplayBehabvior

Detection
guideline

IF {(R1.Action violates Resource.Interface) AND (R1.Action LEADS_TO_
UNEXPECTED_OUTPUT_ DISPLAY Resource.Interface)} THEN {R1 interacts with
Resource under t26 interaction type}

Example • R1 ‘‘When the user is talking on the phone, Alert him 5 s before the end of every minute
using (displaying a warning on the screen of the telephone set) technique’’

• Resource.Interface ‘‘A standard output interface is provided for the smart home phone
interface’’

• Interaction: Consider a user who is storing a phone number while talking with someone
on the phone. When the minute is about to finish (55 s), the system alerts the user and
causes him to lose all his data because of the unexpected display behaviour which
switches the normal screen to display the call time

M. Shehata et al. / Computer Networks 51 (2007) 398–425 421

Fig. 10. Details of the main interaction category .

422 M. Shehata et al. / Computer Networks 51 (2007) 398–425
A.5. Details of the main interaction category ‘‘Two interacting resources’’6

A.5.1. Interaction subcategories

Fig. 10 shows how the sixth main interaction category from the first layer of the taxonomy is decomposed
into interaction subcategories in the second layer. After analyzing the possible pairs of attributes that can form
interaction categories, only the following pairs were found to really represent interactions subcategories:

S15: Availability–Availability interactions: This subcategory contains all the interactions between two
resources because the Availability attribute of the first resource interacts with the Availability attribute
of the second resource.

S16: Performance–Performance interactions: This subcategory contains all the interactions between two
resources because the Performance attribute of the first resource interacts with the Performance attribute
of the second resource.

S17: Interface–Interface interactions: This subcategory contains all the interactions between two resources
because the Interface attribute of the first resource interacts with the Interface attribute of the second
resource.

A.5.2. Interaction types

t27: Dependability: Suppose R1 and R2 to be resources. If the Availability of R2 depends on the availability
of R1 in such a manner that the failure of the resource R1 will cause the failure of the second resource
R2, then the two system resources R1 and R2 interact.

t28: Performance degradation: If the performance attribute of resource R1 is linked with the performance
attribute of R2 such that the performance of R1 can affect and degrade the performance of R2, then
the two resources R1 and R2 interact.

t29: Incompatibility: If the interface attribute of R1 is incompatible with the interface attribute of R2 and the
two resource requirements are related to two resources that communicate between each other, then the
two requirements R1 and R2 interact.
6 The examples of interaction scenarios in this category are taken from smart home system which is a representative of the policy domain.

M. Shehata et al. / Computer Networks 51 (2007) 398–425 423
A.5.3. Interaction scenarios
Scenario ID SCR27

Type of
interaction

TwoInteractingResources! Availability–AvailabilityInteractions! Dependability

Detection
guideline

IF {(Resource1.Availability DEPENDS_ON Resource2.Availability)} THEN {Resource1
interacts with Resource2 under t27 interaction type}

Example • Resource1:Availability ‘‘The natural gas boiler shall be available more then 99.9% every
year’’

• R2: ‘‘The natural gas regulator shall be available 100% every year’’
• Interaction: If the natural gas regulator fails, i.e., becomes unavailable, for any reason

and the natural gas is being blocked then the boiler is not working and hence becomes
also unavailable
Scenario ID SCR29

Type of
interaction

TwoInteractingResources! Interface–InterfaceInteractions! Incompatibility

Detection
guideline

IF {(Resource1.Interface INCOMPATIBLE_WITH Resource2.Interface)} THEN
{Resource1 interacts with Resource2 under t29 interaction type}

Example • Resource1.Interface ‘‘The TV has a interface compatible with the smart home commu-
nication protocol’’

• R2: ‘‘The VCR has KONNEX, which is a smart home communication protocol, compat-
ible interface’’

• Interaction: Obviously the two resources have incompatible interfaces and they cannot
communicate directly with each other

Scenario ID SCR28

Type of
interaction

TwoInteractingResources! Performance–
PerformanceInteractions! PerformanceDegradation

Detection
guideline

IF {(Resource1.Performance LEADS_TO_DEGRADATION Resource2.Performance)}
THEN {Resource1 interacts with Resource2 under t28 interaction type}

Example • Resource1:Performance ‘‘The (X = T1) Network Card used to connect to the internet
provides best performance for connection speed’’

• Resource2:Performance ‘‘Audio/devices performs using high definition quality
standards’’

• Interaction: The performance of a CD player, which plays stream audio from the inter-
net, is related to the performance of the T1 card. If the T1 card performance is degraded
for any reason (e.g., lost connection, paths congestion) then the CD performance is also
degraded
References

[1] M. Shehata, L. Jiang, A. Eberlein, A requirements interaction detection process guide, presented at Canadian Conference on
Electrical and Computer Engineering 2004, 2–5 May 2004, Niagara Falls, Ont., Canada, 2004.

424 M. Shehata et al. / Computer Networks 51 (2007) 398–425
[2] W. Robinson, S. Pawlowski, V. Volkov, Requirements Interaction Management, GSU CIS Working Paper 99–7, Georgia State
University, Atlanta, GA, August 1999.

[3] A. Finkelstein, J. Kramer, B. Nuseibeh, L. Finkelstein, M. Goedicke, Viewpoints: a framework for integrating multiple perspectives in
system development, International Journal of Software Engineering and Knowledge Engineering 2 (1992) 31–58.

[4] E. Cameron, A feature interaction benchmark for IN and beyond, A Feature Interaction Benchmark for IN and Beyond, in: E.J.
Cameron (Ed.), Feature Interactions in Telecommunications Systems, IOS Press, 1994, pp. 1–23.

[5] P. Gibson, G. Hamilton, D. Mery, A Taxonomy for Triggered Interactions using Fair Object Semantics, in: M. Calder, E. Magill
(Eds.), Feature Interactions in Telecommunications and Software Systems, IOS Press, 2000, pp. 193–209.

[6] S. Reiff-Marganiec, K.J. Turner, Feature interaction in policies, Computer Networks 45 (2004) 569–584.
[7] N. Gorse, The Feature Interaction Problem: Automated filtering of Incoherences and Generation of Validatation Test suites at the

Design Stage, University of Ottawa, Ottawa, Ont., Canada, 2001.
[8] M. Kolberg, E.H. Magill, M. Wilson, Compatibility issues between services supporting networked appliances, IEEE Communications

Magazine 41 (2003) 136–147.
[9] M. Frappier, A. Mili, J. Desharnais, Defining and detecting feature interactions, in: Algorithmic Languages and Calculi, 1997.

[10] M. Shehata, A. Eberlein, A.O. Fapojuwo, Feature Interactions between Networked Smart Home Appliances, in: QSSE, 4th ASERC
Workshop on Quantitative and Soft Computing Based Software Engineering, Banff, Alberta, Canada, February 16–17, 2004.

[11] M. Shehata, A. Eberlein, Requirements interaction detection using semi-formal methods, in: Proceedings of the 10th IEEE International
Conference and Workshop on the Engineering of Computer-Based Systems. ECBS 2003, Huntsville, AL, USA, April 7–10, 2003.

[12] M. Shehata, A. Eberlein, A. Fapojuwo, IRIS: a semi-formal approach for detecting requirements interactions, in: Proceedings of the
11th IEEE International Conference and Workshop on the Engineering of Computer-Based Systems, Brno, Czech Republic, May 24–
27, 2004.

[13] D. Briere, P. Hurley, Smart Homes for Dummies, Hungry Minds, Inc., New York, 1999.
[14] M. Shehata, A. Eberlein, A. Fapojuwo, C. Guerrero, C. Juiz, R. Puigjaner, Using IRIS to Detect Interactions in The Web Domain: A

case study in the TPC-W Benchmark, Technical Report, RE Group, Department of Electrical and Computer Engineering, University
of Calgary, Calgary, November, 2003.

[15] M. Shehata, A. Eberlein, A. Fapojuwo, The use of semi-formal methods for detecting requirements interactions, in: SE 2004, The
IASTED International Conference on Software Engineering, Innsbruck, Austria, February 17–19, 2004.

[16] M. Shehata, A. Eberlein, A. Fapojuwo, Using Semi-Formal Methods For Detecting Interactions Among Smart Homes Policies,
International Journal of Science of Computer Programming, in press.

[17] E.J. Cameron, N.D. Griffeth, Y.-J. Ling, M.E. Nilson, W.K. Schnure, H. Velthuijsen, A feature interaction benchmark for IN and
beyond, in: Proceedings of 2nd International Workshop on Feature Interactions in Telecommunications Software Systems,
Amsterdam, Netherlands, 1994.

Mohamed Shehata received his Ph.D. from the Department of Electrical and Computer Engineering, University of
Calgary, Canada. Currently, he is an assistant professor at the Department of Electrical and Computer Engi-
neering, Shoubra Faculty of Engineering, Benha University, Egypt. He previously worked as a Post-Doctor
Fellow at LIVS, the University of Calgary directing a project funded by the City of Calgary, Alberta Infra-
structure and Transportation, and Transport Canada. He received B.Sc. and M.Sc. from Zagazig University,
Egypt in 1996 and 2001, respectively. During the period from 1997 until 2001, he was an instructor in the
Department of Electrical Engineering—Shoubra Faculty of Engineering—Zagazig University. Also he worked
during that time as a part time software engineer at the Egyptian Company of Technology where he lead and
participated in developing several software systems.
Armin Eberlein received the Dipl-Ing (FH) degree in telecommunications engineering at the Mannheim University
of Applied Sciences in Germany, the M.Sc. degree in communications systems, and the Ph.D. degree in software
engineering from the University of Wales, Swansea, UK. He is an Associate Professor and is currently on leave
from the Department of Electrical and Computer Engineering at the University of Calgary, Canada, where he
served as a codirector of the Alberta Software Engineering Research Consortium (ASERC) and as the director of
the Software Engineering Program. He spends his leave in the Computer Engineering Department of the
American University of Sharjah in the United Arab Emirates. His research interests focus on the improvement of
requirements engineering practices and techniques. He has worked previously as a hardware and software
developer at Siemens in Munich, Germany, and has consulted for various companies in Germany, the UK, and
Canada.

Abraham O. Fapojuwo received the B.Eng. degree (first class honors) from the University of Nigeria, Nsukka, in
1980 and the M.Sc. and Ph.D. degrees in electrical engineering from the University of Calgary, Calgary, AB,

Canada, in 1986 and 1989, respectively. From 1990 to 1992, he was a Research Engineer with NovAtel Com-
munications Ltd., where he performed numerous exploratory studies on the architectural definition and perfor-
mance modeling of digital cellular systems and personal communications systems. From 1992 to 2001, he was with
Nortel Networks, where he conducted, led and directed system-level performance modeling and analysis of
wireless communication networks and systems. In January 2002, he joined the Department of Electrical and
Computer Engineering, University of Calgary, as an Associate Professor. He is also an Adjunct Scientist at
TRLabs, Calgary. His current research interests include protocol design and analysis for future generation
wireless communication networks and systems, and best practices in software reliability engineering and
requirements engineering. Dr. Fapojuwo is a registered Professional Engineer in the Province of Alberta, Canada.

M. Shehata et al. / Computer Networks 51 (2007) 398–425 425

	A taxonomy for identifying requirement interactions in software systems
	Introduction
	System decomposition
	The proposed interaction taxonomy
	General architecture
	First layer: main interaction categories
	Second layer: interaction subcategories
	General description
	Interaction subcategories derived from the main interaction category

	Third layer: interaction types
	General description
	Interaction types derived from the main interaction category

	Fourth layer: interaction scenarios
	General description
	Interaction scenarios under main interaction category ldquo Two interacting dynamic requirements rdquo {\rm 1

	Comparison of the proposed taxonomy to already existing taxonomies
	Comparison results
	Discussion

	Conclusions
	Appendix A
	Details of the main interaction category ldquo Two interacting system axioms rdquo {\rm 2}
	Interaction subcategories
	Interaction types
	Interaction scenarios

	Details of main interaction category ldquo A system axiom interacting with a dynamic requirement rdquo {\rm 3}
	Interaction subcategories
	Interaction types
	Interaction scenarios

	Details of main interaction category ldquo A system axiom interacting with a resource rdquo {\rm 4}
	Interaction subcategories
	Interaction types
	Interaction scenarios

	Details of main interaction category ldquo A dynamic behaviour requirement interacting with a resource rdquo {\rm 5}
	Interaction subcategories
	Interaction types
	Interaction scenarios

	Details of the main interaction category ldquo Two interacting resources rdquo {\rm 6}
	Interaction subcategories
	Interaction types
	Interaction scenarios

	References

