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Abstract—Detection of relative changes in circulating blood
volume is important to guide resuscitation and manage variety
of medical conditions including sepsis, trauma, dialysis and
congestive heart failure. Recent studies have shown that estimates
of circulating blood volume can be obtained from ultrasound
imagery of the of the internal jugular vein (IJV). However,
segmentation and tracking of the IJV is significantly influenced
by speckle noise and shadowing which introduce uncertainty in
the boundaries of the vessel. In this paper, we investigate the use
of optical flow algorithms for segmentation and tracking of the
IJV and show that the classical Lucas-Kanade (LK) algorithm
provides the best performance among well-known flow tracking
algorithms.

I. INTRODUCTION

Detection and monitoring relative changes in circulating
blood volume is important for a variety of medical condi-
tions including hemorrhage from trauma and volume overload
pertaining to congestive heart failure [1]–[3]. Recent studies
suggest that the cross-sectional area (CSA) of the internal
jugular vein (IJV) can be used to detect and monitor relative
changes in blood volume [4], [5]. Manual segmentation of IJV
from hundreds of ultrasound frames is a time-consuming task
making it inappropriate for real-time blood-volume monitoring
application. In [6], the combination of speckle tracking [7] and
active contour (STAC) was proposed for the segmentation and
tracking of the IJV in which the coarse segmentation obtained
from speckle tracking is smoothed with an active contour.
Unfortunately, speckle tracking fails when the IJV undergoes
fast variations requiring an ultrasound machine with a high
frame rate. This problem was later addressed by cascading
region growing with active contour (RGAC) [8]with the main
problem being leakage when a section of the vessel wall
was obscured as shown in Fig. 1. Both STAC and RGAC
algorithms are based on active contours which deals with IJV
contours as a set of points, while the boundaries of the IJV
are fuzzy. In this paper, we investigate the utility of several
optical flow algorithms including Lucas-Kanade (LK) [9],
Horn-Schunck (HS) [10], and Farneback (FB) [11] in tracking
and segmenting the IJV in ultrasound video.

The paper is organized so that section II introduces three
popular optical flow algorithms, investigated in this paper; sec-
tion III demonstrates the results of segmentation and tracking
as applied to the IJV with results compared to [8] and [6];
Section IV summaries the findings.

Fig. 1. The result of region growing in the case of broken edge (the red point
is the initial seed point).

II. OPTICAL FLOW

Optical flow is defined as a vector field that relates each
frame to the next frame. Assuming that the intensity levels
between two frames is preserved, we can write,

I(x, y, t) = I(x+ dx, y + dy, t), (1)

where I(x, y) is the intensity of tth frame at pixel (x, y). If

the displacement (dx, dy) is very small, then using the taylor
series approximation, (1) can be rewritten as

Ixu+ Iyv + It = 0, (2)

where u = dx, v = dy, Ix = ∂I(x,y,t)
∂x , Iy = ∂I(x,y,t)

∂y , and

It = I(x, y, t + 1) − I(x, y, t). The approximation in (2) is
valid only if displacement from one frame to the next frame
is very small. For relatively large displacements, optical flow
algorithms are generally implemented as coarse-to-fine using
a pyramid structure. In this paper, we assume three layer
pyramid structures for each of the investigated optical flow
algorithms.
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A. Lucas-Kanade (LK) Algorithm

The LK algorithm is the most popular optical flow algorithm
which has found many applications in computer vision and
image processing [9], [12]–[14]. The LK algorithm solves the
optical flow constraint (2) by dividing the image into smaller
blocks and assumes that the displacement of pixels in each
block is constant [9]. Therefore, the constraint (2) is solved
by minimizing the following energy function:

E(u, v) =
∑

x,y∈Ω

W (Ixu+ Iyv + It)
2, (3)

where Ω is the block around the pixel and W is the weights

given to the elements such that more emphasis is placed
on pixels near the center of each block. The solution for
minimizing (3) is obtained as[ ∑

WI2
x

∑
WIxIy∑

WIxIy
∑
WI2

y

] [
u
v

]
= −

[ ∑
WIxIt∑
WIyIt

]
.

(4)

B. Horn-Schunck (HS) Algorithm

The HS algorithm [10] computes an estimate of the dis-
placement vector [uv]T by assuming that the flow vector field
is smooth over the entire image [10], [15]. Therefore, the
energy function is modified as

E(u, v) =

∫ ∫
(Ixu+ Iyv + It)

2dxdy

+ α

∫ ∫ {
(
∂u

∂x
)2 + (

∂u

∂y
)2 + (

∂v

∂x
)2 + (

∂v

∂y
)2

}
dxdy,

(5)

where α is an scale factor for the last term forcing the al-

gorithm to provide smooth displacement over the image. This
minimization is obtained by the following iterative equations:

um+1
x,y = ūmx,y −

I2
xū

m
x,y + IxIy v̄

m
x,y + IxIt

α2 + I2
x + I2

y

, (6)

vm+1
x,y = v̄mx,y −

IxIyū
m
x,y + I2

y v̄
m
x,y + IyIt

α2 + I2
x + I2

y

, (7)

where umx,y and vm+1
x,y are horizontal and vertical displacement

of pixel (x, y) estimated at mth iteration, respectively, and ūmx,y
and v̄m+1

x,y are their corresponding neighborhood average.

C. Farneback (FB) Algorithm

Both LK and HS optical flow algorithm assume that the first
order Taylor approximation is sufficient for motion tracking.
The idea of the FB algorithm is based on approximating the
neighborhood of the pixel x of the ith frame with a quadratic
polynomial as follows [11]

fi(x) = xTAix + bT
i x + ci, (8)

where x is a 2 × 1 vector corresponding to the pixel

coordination, Ai is a 2 × 2 symmetric matrix, bi is a 2 × 1

vector, ci is an scalar, and superscript T denotes a transpose
operation. A displacement d is estimated as

f2(x) = f1(x− d). (9)

By substitution of (9) in (8), d is estimated as

d = −1

2
A−11 (b2 − b1). (10)

III. RESULTS

Experimental ultrasound video clips of the IJV were col-
lected from 14 healthy subjects at a variety of inclinations
with the head of the bed elevated at 0, 30, 45, 60, and
90 degrees designed to simulate relative changes in blood
volume. The IJV was imaged in the transverse plane using
a portable ultrasound machine (M-Turbo, Sonosite-FujiFilm)
and a linear-array probe (6-15 Mhz). Each video had a frame
rate of 30 fps, scan depth of 6cm, and a duration of 15 seconds
(450 frames/clip). The three optical flow algorithms were
compared with expert manual segmentation, region-growing-
based-active-contour (RGAC) [8] and speckle-tracking-based-
active-contour (STAC) algorithms [6]. The number of contour
points is assumed to be N = 32 in all algorithms. The
number of pyramid layers and window length in the optical
flow algorithms was set at 3 and 20 pixels, respectively. The
maximum length for RGAC algorithm was set to 70 pixels. For
the HS algorithm, the smoothing factor, α, was set to one and
the algorithm run for 250 iterations. The DICE coefficient, also
known as Sorensen index, was used to determine the level of
agreement between each algorithm and manual segmentation
results [16], [17]. The DICE factor S is defined as:

S =
2|A ∩M |
|A|+ |M |

, (11)

where |A| and |M | are the CSA of the IJV estimated from
the algorithms and the manual segmentation, respectively, and
|A ∩M | the intersection of the area between them.

We define a failure as having a DICE co-efficient below 0.7
during IJV segmentation and tracking. By this definition, the
number of cases (among 70 videos), where RGAC, STAC, LK,
HS, and FB algorithms successfully track and segment the IJV
are 4, 9, 31, 21, and 26 videos, respectively. This demonstrates
the ability of optical flow algorithms to successfully segment
and track the IJV and highlights their success rate when
compared to RGAC and STAC algorithms.

Figs. 2 and 3 detail the tracking performance of the al-
gorithms compared with manual segmentation on a good and
poor quality video, respectively. It is evident from Fig. 2, both
STAC and HS algorithms gradually lose track while the other
three algorithms maintain tracking over time. In 3, one can
see that the RGAC algorithm loses track as a result of leaking
through the obscured part of the vessel wall. Both LK and FB
algorithms present acceptable performance in this scenario.

Figs. 4 and 5 highlight the algorithms performance for the
two videos considered in Figs. 2 and 3. In both scenarios, it can



Fig. 2. Segmentation and tracking Performance of all five algorithms on a
good quality video.

Fig. 3. Segmentation and tracking Performance of all five algorithms on a
poor quality video (with partially missing boundaries).

be seen that the LK method provides the highest DICE factor
while the FB algorithm provides the second best performance.

Fig. 6 shows the mean level of agreement of the three
investigated optical flow algorithms across all 70 IJV videos.
Note that each algorithm has failed to properly segment
and track the IJV in some of these scenarios resulting in a
lower mean level of agreement - particularly evident with HS
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Fig. 4. The level of agreement between manual segmentation and algorithms
versus frame index on a good quality video.
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Fig. 5. The level of agreement between manual segmentation and algorithms
versus frame index on a poor quality video.

algorithm. Still, it is evident that the LK algorithm continues to
outperform the other optical flow techniques. Fig. 7 illustrates
much better results when the DICE coefficient is averaged
over the 21 videos in which the HS algorithm demonstrates
successful tracking. In this figure, the LK algorithm continues
to provide the best performance.

IV. CONCLUSION AND FUTURE WORK

In this paper, the utility of optical flow algorithms in
tracking and segmenting the internal jugular vein (IJV) in
ultrasound videos is investigated. Three optical flow algo-
rithms, namely Lucas-Kanade (LK), Horn-Schunck (HS), and
Farneback (FB), were applied to track N = 32 contour points
on the IJV. These algorithms were compared with expert
manual segmentation and two existing active-contour-based
algorithms previously proposed. The DICE coefficient was
used to demonstrate that the optical flow-based algorithms
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Fig. 6. The mean level of agreement between manual segmentation and
algorithms across all 70 video clips.

50 100 150 200 250 300 350 400 450

Frame index

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
IC

E
 F

ac
to

r

LK
HS
FB

Fig. 7. The mean level of agreement between manual segmentation and optical
flow algorithms for videos (21) in which good tracking has been demonstrated.

provide good level of agreement with manual segmentation
and lower failure rates when compared to previously proposed
algorithms.
Although the optical flow algorithms outperform the pre-
viously published techniques, regular failures to track and

[2] M. Yashiro, Y. Hamada, H. Matsushima, and E. Muso, “Estimation of
filtration coefficients and circulating plasma volume by continuously
monitoring hematocrit during hemodialysis,” Blood Purif Blood Purifi-
cation, vol. 20, no. 6, p. 569576, 2003.

segment are present when the boundaries of the IJV are
obscured.
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