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Abstract—Structural health monitoring (SHM) using wireless
sensor networks (WSNs) has gained research interest due to
its ability to reduce the costs associated with the installation
and maintenance of SHM systems. SHM systems have been
used to monitor critical infrastructure such as bridges, high-
rise buildings, and stadiums and has the potential to improve
structure lifespan and improve public safety. The high data col-
lection rate of WSNs for SHM pose unique network design
challenges. This paper presents a comprehensive survey of SHM
using WSNs outlining the algorithms used in damage detec-
tion and localization, outlining network design challenges, and
future research directions. Solutions to network design problems
such as scalability, time synchronization, sensor placement, and
data processing are compared and discussed. This survey also
provides an overview of testbeds and real-world deployments of
WSNs for SH.

Index Terms—Wireless sensor networks, structural health
monitoring, sensor placement, synchronization, clustering, scal-
ability, energy harvesting, damage detection, mobile phone
sensing.

I. INTRODUCTION

OVER the last decade Wireless Sensor Networks (WSNs)
have emerged as a powerful low-cost platform for con-

necting large networks of sensors. These networks have found
applications in commercial, health, military and industrial
settings. Structural Health Monitoring (SHM) is one such
application in which sensors distributed throughout a structure
are used to assess the structure’s health [1]–[3]. Historically,
SHM systems were designed using wired sensor networks;
however, the high reliability and low installation and mainte-
nance costs of WSNs have made them a compelling alternate
platform [4]–[7]. Due to their high installation costs, wired
sensor networks are generally only feasible for long-term SHM
applications where the structure’s health is of critical impor-
tance. The significant cost reductions of using WSNs for SHM
would enable their utilization in important public and private
infrastructure and increase the use of applications such as
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TABLE I
COMPARISON OF WIRED AND WIRELESS SENSOR NETWORKS

short-term structural monitoring. Such systems could extend
the lifespan of numerous structures by enabling earlier dam-
age detection, eliminate the cost of routine inspections and,
most critically of all, improve public safety. A summary of the
key differences between wired sensor networks and WSNs for
SHM is presented in Table I.

In WSNs for SHM sensors are deployed at various locations
throughout a structure. These sensors collect information about
their surrounding such as acceleration, ambient vibration, load
and stress at sampling frequencies upwards of 100 Hz [5].
Hence, the sensing and sampling rates and amount of col-
lected data are much higher than those in other applications
in WSNs; and as a result, WSNs for SHM introduce chal-
lenges in network design. Sensor nodes transmit the sensed
data to the sink either directly or by forwarding each other’s
packets. Data aggregation and processing is necessary for the
detection and localization of structural damage and can occur
in different locations (e.g., nodes, cluster-heads, and/or cen-
tral server) depending on the network topology. Typically,
damage detection requires the comparison of the structure’s
present modal features to those associated with the structure’s
undamaged state. Modal features of a structure are mainly
represented by the mode shapes – the natural vibration pat-
tern for a given structure. A diagram outlining the process of
SHM using WSNs is displayed in Fig. 1.
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Fig. 1. SHM using WSNs.

SHM has been deployed in critical structures such as
aerial vehicles, ships, high-rise buildings, dams, and bridges.
Primarily, these installations have been wired; however, an
increasing number are using WSNs. One of the first WSNs
for SHM was installed on the Golden Gate Bridge in
2007 by a research team at the University of California in
Berkeley [10]. Sensors in this network collect ambient vibra-
tions which are then routed from the origin sensor node to
a centralized base station. The base station then processes the
data and makes a decision relating to the structure’s overall
health. This system is one of the largest WSN-based SHM
systems to date – with a total of 64 sensor nodes deployed
on the bridge. Another WSN-based SHM system has been
recently deployed on the ZhengDian Bridge in China [3].
The sensors in this network collect ambient acceleration data
and use the Fast Fourier Transform (FFT) and the resultant
Power Spectral Density (PSD) to determine the structure’s
mode shape.

This paper presents a comprehensive survey of the state
of the art research in the application of WSNs to the field
of SHM. Existing surveys such as [4], [11], and [12] have
primarily focused on topics such as sensor hardware, node
hardware, network protocols, and software, and potential
applications. Summaries such as [8] have provided a general
overview of the challenges of WSNs for SHM but haven’t
highlighted future research directions. In addition, by present-
ing an overview of theoretical work, laboratory testbed-based
experimental work, and real-structure experimental work, this
paper provides a comprehensive description of existing chal-
lenges and future trends in the application of SHM to WSNs.
Lastly, this paper focuses more on the telecommunications
component of WSNs for SHM than existing surveys.

The organization of this paper is as follows: In Section II,
background information about SHM using WSNs is pro-
vided. Section III provides an overview of existing research
challenges: scalability, high synchronization requirements,
sensor placement optimization and distributed processing.
Section IV reviews experimental testbeds and current real-
structure deployments of SHM based systems. Section V sug-
gests future research directions. Finally, the paper is concluded
in Section VI.

II. STRUCTURAL HEALTH MONITORING USING

WIRELESS SENSOR NETWORKS

In general, SHM requires the installation of a large num-
ber of sensors throughout a structure capable of collecting
sensed data. The collected data is processed such that deci-
sions about the structure’s overall health can be made. This
section provides a comprehensive overview of the compo-
nents and processes involved in SHM using WSN. This section
begins with an overview of commonly sensed structural health
parameters and then an overview of the type of sensors used.
Next, common damage detection algorithms used in damage
detection systems are presented and discussed. The section
concludes with an overview of damage localization techniques.

A. Sensors and Parameters

One of the most important considerations when designing an
SHM system is the selection of sensors and sensed parameters.
Factors such as sensor power consumption and sensed param-
eters influence overall network design by influencing routing
protocol selection, damage detection algorithm selection, dam-
age localization algorithm selection, and network lifespan.

1) Sensor Parameters: Parameters commonly detected,
recorded and monitored in SHM systems can be broadly
classified as the following types [13]:

• Load - Loads are the forces applied to the structure.
Possible loads are environmental loads such as wind
speeds, and loads due to passing vehicles. Loads can be
static or dynamic. Typically, the response of the structure
to these loads can be measured by the SHM system.

• Global Load Response – Global loads responses are the
structure’s response to a given load that can be mea-
sured throughout the entire structure. Typically, measured
parameters are a structure’s acceleration and velocity.

• Local Load Response – Local load responses are the
structure’s response to a given load that can only be
measured in a specific part of the structure. Typically,
measured parameters are strain, crack and tension forces.

• Environmental Factors – Environmental factors are exter-
nal to the structure itself and relate to the structure’s
environment. Measured parameters include temperature,



NOEL et al.: SHM USING WSNs: COMPREHENSIVE SURVEY 1405

salinity, humidity, and atmospheric acidity. These param-
eters can be used in the estimation of environmental loads
such as winds.

To date, out of all of the above parameters, the most com-
monly measured are the structure’s acceleration and velocity.
One of the unique challenges posed by measuring global load
response variables such as acceleration and velocity is that due
to their global nature, it is difficult to detect the exact location
of the damage [13].

In order to correctly capture the response of a given struc-
ture, sensors need to be installed at various locations and
data should be collected at an appropriate sampling rate for
a sufficient period of time. The frequencies of dominant modes
are typically around 10 Hz; however, sampling frequencies can
be chosen at values that are upwards of 100 Hz [14]. Higher
sampling rates allows the inclusion of higher-frequency modes
which can be used in damage detection and localization. The
high sampling rate required for successful SHM significantly
increases the amount of collected data and, consequently, the
amount of data aggregated, processed and transmitted in the
overall network.

2) Sensor Types: The sensing and acquisition of the above
parameters requires the utilization of specific sensors. A sum-
mary of commonly used sensors in SHM systems are as
follows [13], [14]:

• Accelerometers: Accelerometers used for SHM are either
piezoelectric or spring-mass accelerometers. Piezoelectric
accelerometers are light, small, and operate over wide
acceleration and frequency ranges [15]. On the other
hand, spring-mass accelerometers are relatively bulky
and operate over a limited range of accelerations and
frequencies. However, they are very sensitive to small
accelerations and provide better resolution than the piezo-
electric accelerometers. The piezoelectric accelerometer
is made of a piezoelectric crystal element and an attached
mass that is coupled to a supporting base. When the sup-
porting base undergoes movement, the mass exerts an
inertia force on the piezoelectric crystal element. The
exerted force produces a proportional electric charge
on the crystal. Accelerometers can have sampling rates
upwards of 100 Hz [14].

• Strain Sensors: Strain sensors used for SHM can be
classified as piezoresistive or embedment strain gauge
based. Cement-based strain sensors are typically piezore-
sistive and are capable of measuring strain. These sen-
sors generate signals with an incredibly low frequency
(< 1 Hz) [16]. Embedment strain gauges can be used
for measuring strains inside concrete structures [17].
An embedment gauge consists of a long foil gauge
(about 100 mm) embedded in a polymer concrete block.
Embedment strain gauges are sensitive to environmental
conditions such as the weather and, consequently, must
be protected with enclosures.

• Corrosion Sensors: Corrosion sensors typically measure
the change in resistance introduced by the erosion of the
sensor corrosion wafer. These sensors typically measure
a structure’s overall corrosion [18], [19].

• Linear Voltage Differential Transducers (LVDT): LVDTs
are used for displacement measurement and consist of
a hollow metallic casing in which a core or shaft, moves
freely back and forth along the axis of measurement [20].
The core is made of a magnetically conductive material,
and a coil assembly surrounds the metallic shaft. No volt-
age appears at the secondary windings when the core is
equidistant between both secondary windings. However,
when a displacement occurs, the core moves, a differ-
ential voltage is induced at the secondary output. The
magnitude of the output voltage changes linearly with
the magnitude of the core’s displacement.

• Optical Fiber Sensors: The most common type of optical
fiber sensor is the fiber Bragg grating sensor [21], [22].
These sensors can be used to measure parameters such
as strain, temperature, pressure, and other quantities by
modifying a fiber so that the quantity to be measured
modulates the intensity, phase, polarization, and wave-
length or transit time of light in the fiber. Fiber-optic
sensors have been developed to measure temperature and
strain simultaneously with very high accuracy using fiber
Bragg gratings.

Out of the above sensor types, the most-commonly used are
piezoelectric accelerometers due to their low cost and ease
of use. As a result, most damage detection and localization
methods have been developed for these sensors.

B. Damage Detection and Localization

In WSNs for SHM, sensor nodes collect parameter data such
as acceleration, strain, velocity, and displacement. This raw
data must be processed such that features such as the struc-
ture’s modal parameters can be extracted. These features
are used by SHM based WSNs in both damage detection
and localization. The remainder of this section discusses the
commonly-used damage detection and localization techniques.

1) Damage Detection Methods: One of the primary goals
in SHM is the detection of structural damage. Typically, dam-
age detection requires the collection of sensor data that can
be used to extract parameters related to the structure’s over-
all health. The most common parameters used in damage
detection are modal parameters like the natural frequency and
mode shape. Modal parameter estimation can be performed in
both the time and frequency domain [23]. Once modal param-
eters are extracted, damage detection algorithms are used
to determine whether damage has occurred. A taxonomy of
damage-detection methods is illustrated in Fig. 2.

In time domain analysis, the time series data collected
from a sensor node is directly processed to extract modal
parameters. Common techniques used are the two-stage least
squares method (alternatively known as the auto-regressive
moving average (ARMA) model method), the Ibrahim time-
domain (ITD) method, the impulse response function (IRF)-
driven method [23], and the covariance matrix method [24].
One common advantage of time domain techniques is that they
provide stable results, however they work for slightly damped
systems since they require a significant number of time domain
samples to efficiently operate on highly damped systems [25].
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Fig. 2. Taxonomy of Damage Detection Methods.

The ARMA model method uses statistical modelling to rep-
resent the relationship between the excitation pattern and the
structural response under undamaged and damaged states. The
response of the structure at any instant of time is presented
in terms a number of stored observations and a number of
residual error terms [26].

There exist several variations of ARMA model based dam-
age detection, one of which is based on the sum of the squares
of the residuals [27]. In a different technique [28], [29]
ARMA models are fitted to an excitation pattern through
a two-stage method. First, the AR model is produced and the
residuals from the AR model used as an input for the second
stage. Next, depending on the excitation pattern, an AR or
ARX model is fitted to the residuals. The two-stage method,
unlike other ARMA methods, guarantees convergence. The
resultant model can be used in the extraction of modal param-
eters such as the damping ratio, natural frequency, mode shape
and damped natural frequency [28]. Typically, ARMA mod-
els are only applicable in systems with white noise excitation
patterns. If alternate excitation patterns are applied, the resul-
tant model is an autoregressive exogenous (ARX) model. The
same modal parameter extraction method can be used for ARX
models. One drawback of the technique presented in [27] is
that the data used to build the model was collected through
forced excitation experiments. Hence, this technique may not
be valid for structures subjected to other sources of excita-
tion. Although ARMA model techniques can detect damage
effectively, they fail to detect minor damages and they require
installation of a large number of sensors [30].

The ITD method uses the Inverse Fourier Transform (IFT) to
attain the IRF from the given sensor data [23]. The IRF can
then be used to estimate modal frequencies and then, using
those frequencies, the remaining modal parameters such as
mode shape and natural frequency. The IRF are first stacked
to form the Hankel matrix, which is then decomposed into
modal observability matrix and modal controllability matrix,
from which the modal parameters are obtained. Once the

modal parameters are obtained, they are compared to those
of undamaged structure to decide on the current state of the
structure. One common IRF-driven algorithm is the eigensys-
tem realization algorithm (ERA) [31], which was proposed
in 1985, however, a recent modification of ITD method was
proposed in [32] to address the main drawback of ITD related
to deficiency in identifying closely spaced structure modal
shapes and hence their modal parameters.

The covariance-driven subspace damage detection tech-
niques are based on the fact that a state-space model can be
used to represent a vibrating structure [10], [33]. The state-
space model representation of a vibrating structure comprises
the definitions of state transition matrix, input matrix and
output matrix. In the first step of covariance-driven method
is to estimate the covariance matrix of the collected time
domain measurements as well as the next state-output covari-
ance matrix. Using these two covariance matrices, the state
transition matrix is estimated. In the second step, an eigenvalue
decomposition operation is applied on the estimated state tran-
sition matrix. Using the resultant eigenvector matrix as well
as the input and output matrices, the modal participation and
mode shape matrices are estimated. In [24], the covariance
matrix method of damage detection is used on the acceler-
ation response covariance matrix. This method was shown
to be more effective than traditional damage detection tech-
niques such as the mode shape comparison method. On the
other hand, one drawback of subspace based damage detection
techniques is that they are affected by variations in unknown
ambient excitations, which leads to a false alarm of damage
detection [34].

Data-driven subspace identification techniques operate
directly on the collected time-domain measurements rather
than the estimated covariance matrix as in the covariance based
method presented above. This method was first presented by
the pioneering work of Van Overschee and De Moor [35].
In this method, the covariance estimation process is
replaced by a projection process between future and past
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outputs [36], [37]. In particular, the row space of the future
outputs is projected into the row space of the past outputs.
To perform this, a QR decomposition operation is applied.
One main advantage of data-driven subspace method is that
by avoiding estimation of covariance matrix, squaring both
error and noises is also avoided. However, the drawback of
this method is that no information is available regarding the
accuracy of the estimated modal parameters [38].

In frequency domain analysis, the collected time
series data is transformed from the time domain to the
frequency domain through transforms such as the Fast Fourier
Transform (FFT) and the Wavelet Transform (WT). In the lit-
erature, frequency domain -based damage detection methods
include the peak-picking (PP) method, the complex mode iden-
tification function method (CMIF), and the rational fraction
polynomial method (RFP) [23]. The advantage of frequency
domain methods over the time domain methods is that less
noise modes are obtained. However, the FFT operation has its
own drawbacks, one of which is leakage. Although the effect
of leakage can be reduced by using windowing functions, its
effect cannot be totally eliminated [25].

The PP method of modal parameter extraction is perhaps
the simplest modal parameter extraction method. The FFT
is applied to collected sensor data and the eigenfrequen-
cies are identified at the peaks of the frequency response
plot. The eigenfrequencies are used in the extraction of natu-
ral frequency, damping ratio and mode shape. This method,
although simple, is difficult to apply in cases where the
frequency response peaks are poorly defined and where the
damping ratio is not low [28].

The CMIF method, also known as the frequency domain
decomposition (FDD) method, is an alternate modal parameter
estimation method based off the PP method [39]. This method
uses singular value decomposition (SVD) to decompose the
output power spectrum into all the mode shapes for the given
structure. In addition to attaining all relevant mode shapes
this method also extracts all modal parameters for each mode
shape. The peaks generated through CMIF, which correspond
to modal frequencies, are proportional to the amplitude of the
frequency response, which can be thought of as an advantage
since it provides the examiner to get a feeling for the strength
and contribution of each mode. However, when a strong mode
exists, it can dominate the output and consequently cause close
by peaks to disappear [40].

The RFP method for modal parameter estimation which was
first presented in [41], parameterizes the frequency response
matrix as an RFP model [23]. Based on the RFP model, linear
regression can be applied and the matrix coefficients estimated.
Modal parameters can then be attained from the calculated
coefficients. The main advantage of FRF damage detection
method is its simplicity as well as its independency of acquir-
ing modal analysis of mode shapes [42]. However, it has
several drawbacks including deficiency in estimating severity
of damage as well as inability to detect small damages [43].

Once modal parameters have been derived for a given
structure, it becomes possible to assess the structure’s
overall health. Simple damage detection methods include
time series analysis, mode frequency comparison and mode

shape comparison. In time series analysis techniques, the
ARMA model for the given structure is compared to the
ARMA model for the undamaged structure. If the difference
between the two models is greater than a specified tolerance
the structure can be classified as damaged. Mode frequency
and mode shape based damage detection methods compare
the current mode and/or frequency shape to that of the undam-
aged structure. Once again, if the error becomes sufficiently
large, the structure is considered damaged. These techniques,
although simple, have found extensive use in SHM.

The Hilbert-Huang transform has found use in dam-
age detection [44]–[46]. The proposed algorithm combines
empirical modal decomposition (EMD), the random decre-
ment technique and the Hilbert-Huang transform to identify
the moment at which structural damage occurs. This technique
can be applied in situations where structures experience sig-
nificant noise and can detect both gradual and rapid changes
in structural damage, however, it cannot separate very close
frequencies [47], [48].

In [49], Lamb-wave-based damage identification approaches
for composite structures is presented. The authors enhance
the ability of the continuous wavelet transform in feature
extraction from vibration signals. Composite damage moni-
toring rises as the top priority problem of SHM. Lamb wave
method is very sensitive for small damages (crack or delam-
ination). In addition Lamb wave is able to be propagated for
a long distance without significant amplitude attenuation in
plate structures. However, the phenomenon of dispersion and
complicated transition, are hard to be analyzed and interpreted.
Lamb wave is unavoidably affected by interferences and strong
noise. It requires more precise and advanced signal pro-
cessing and feature extraction techniques to identify damage
information.

2) Damage Localization Methods: Once structural dam-
age has been detected, it is then necessary to determine the
damage’s location. This process is called damage localization,
which requires the installation of enough sensors such that suf-
ficient sensor coverage is provided to locate damage anywhere
in the structure. Insufficient sensor coverage can result in dam-
age detection without localization. Commonly used damage
localization techniques are frequency-based [50], mode shape–
based [50], flexibility matrix based [51], [52], stiffness matrix
based [53], and support vector machine based [54]. A taxon-
omy illustrating the different damage localization methods can
be seen in Fig. 3.

The usage of modal parameters such as frequency and mode
shape in damage localization is desirable due to the sim-
plicity in determining these modal parameters. In [50] both
frequency-based damage localization and mode-shape based
damage localization algorithms are proposed. The proposed
frequency-based damage detection algorithm uses changes in
measured mode shapes to localize damage and changes in
measured natural frequencies to estimate damage severity.
Similarly, a mode-shape based damage detection algorithm,
that uses changes in modal strain energy to localize dam-
age, was proposed. Experiments showed that the frequency-
based method localized damage with a small error while the
mode-based method localized damage with almost no errors.
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Fig. 3. Damage Localization Taxonomy.

Both algorithms could also estimate the severity of the dam-
age. On the other hand, the drawbacks of frequency based
damage localization include that variations such as in mass
structure or measurement temperature can lead to uncertainty
in the estimated frequency [50], [55]. In addition, exploiting
mode shapes for damage classification may be ineffective
since damage is local and may not affect the shapes of lower
modes [50], [56].

The flexibility approach for damage localization uses
a structure’s flexibility matrix to localize structural dam-
age. Damage localization typically requires the flexibility
matrix from the undamaged structure and an estimate of the
structure’s current flexibility matrix. In [51], the flexibility-
difference method of damage detection is proposed. Damage is
localized through computing the change in flexibility between
the undamaged structure and the current structure. This method
reliably localizes a structure’s damage and, in cases of poor
sensor coverage, will find the sensor node closest to the struc-
tural damage. A similar damage localization strategy is used
in [52] with the difference matrix computed from the esti-
mated flexibility matrix and undamaged flexibility matrix of
the structure. The main disadvantage of this technique is the
necessity of construct an accurate model for the undamaged
structure [57].

The stiffness approach to damage localization uses a struc-
ture’s stiffness matrix. The stiffness matrix and flexibility
matrix can be inverted from one another [58]. It is difficult to
directly estimate the stiffness matrix and, consequently, most
efforts have been in using statistical techniques to estimate
the stiffness matrix. In [53], a stiffness matrix based dam-
age localization method is used in which the detection of
the current stiffness matrix is viewed as a local optimization
problem. Evolutionary algorithms are used to produce the stiff-
ness matrix and the estimated stiffness matrix compared to that
of the undamaged structure to localize damage. This method
was shown to be effective in scenarios where damage slowly
spreads throughout the structure but would be ineffective in
localizing damage in an already damaged structure.

In [58], an approach for damage localization, using both
a structure’s flexibility and stiffness matrices, is proposed.
First, the modal parameters are identified and used in the
estimation of a flexibility matrix. The stiffness matrix is then

achieved through the inversion of the flexibility matrix. Both of
estimated matrices, the undamaged flexibility, and the undam-
aged stiffness matrix are used to localize structural damage.
This method is more reliable due to the usage of both flexibil-
ity and stiffness matrices. This approach was shown to work
well except in scenarios where sensor coverage is sparse.

The application of support vector machines (SVM) is a rel-
atively new phenomenon in SHM. In [54], SVMs are used
to classify structural damage patterns for SHM systems with
a minimal number of sensors. Through the use of a single
sensor on the roof of a building and a single sensor on the
bottom floor, damage was shown to be localizable to a spe-
cific floor in the building. Damage localization was shown in
simulations to scale to buildings up to 21 stories height. These
results show the promise of applying SVMs to damage local-
ization as they minimize the number of installed sensors while
having comparable damage localization accuracy.

III. CHALLENGES IN WSN FOR SHM

In comparison to typical WSNs those designed for SHM
face a number a unique challenges. In particular, WSNs for
SHM nodes collect, process, and transmit large amounts of
data, sensor node densities can be high, and the number of
hops from node to base station can be large. In the reviewed
literature, real-world deployments of SHM systems have had
sensor sampling rates ranging from 100 to 1000 Hz, node
densities up to 70 nodes, and the number of hops to traverse
the network ranging from 1 to 46 [5], [59]–[61]. In existing
SHM systems, delay requirements are low as very long delays
can be acceptable for SHM systems monitoring a structure’s
long-term health. For example, a nine hour delay to collect,
process and aggregate data at the base station can be accept-
able as long as data transmission is reliable. However, SHM
systems designed to monitor a structure’s health in the event
of an earthquake or other natural disaster could require a much
smaller delay. Although delay is generally not a concern, syn-
chronization of sensor nodes is particularly important in WSNs
for SHM. Maximum node time synchronization error must be
below 120 μs otherwise damage detection and localization
becomes impossible due to significant mode shape errors [62].
Lastly, the algorithms used in WSNs for SHM are more com-
plex than those used in other WSNs. SHM algorithms are
computationally complex, may require the incorporation of
data from other sensor nodes, and usually required centralized
processing.

Although the above characteristics are relatively unique
when compared to most WSNs, WSNs for SHM have similar
reliability and quality of service requirements. Data trans-
mission is expected to be reliable and lost packets must be
recovered through retransmission. Packet loss rates can be high
in monitored structures as transmission may require wireless
propagation through materials such as concrete and steel [9].
Sensor nodes deployed on structures such as bridges and wind
turbines must withstand harsh weather conditions such as rain
and snow. WSNs for SHM have similar quality of service
requirements to normal WSNs except, as discussed above,
network time synchronization errors must be minimized.
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The remainder of this section discusses the unique chal-
lenges associated with WSNs for SHM. Section III-A dis-
cusses the challenge of developing scalable WSNs for SHM
and outlines several techniques that have been used to improve
network scalability. Section III-B discusses how to mini-
mize or mitigate time synchronization errors in WSNs for
SHM such that damage detection and localization is possi-
ble. Section III-C introduces the sensor placement optimization
problem and discusses numerous algorithms and the network
parameters these algorithms optimize. Section III-D discusses
energy efficiency in WSNs for SHM and discusses tech-
niques. Section III-E discusses the usage of cluster-based and
distributed processing in WSNs for SHM highlighting the
advantages and disadvantages of the relevant techniques.

A. Network Scalability

Scalability is a network’s ability to grow in size while con-
tinuing to provide a quality of service that meets application
requirements with an acceptable complexity. Ensuring scala-
bility is particularly challenging in WSNs for SHM due to the
sheer quantity of data collection and transmission required for
effective damage detection and localization. As SHM systems
are applied to larger and larger structures the number of hops
and nodes needed to monitor the structure successfully will
continue to increase. Even in a SHM system for a fixed size
structure increasing node density, to a point, will improve the
system’s ability to detect and localize damage. These factors
makes the development of scalable WSNs for SHM a priority.
Factors such as data transmission rate, data storage avail-
ability, power consumption, time-synchronization error, and
processing algorithms all affect a network’s overall scalabil-
ity. In general, factors such as the chosen processing algorithm
and data storage affects data transmission rate and vice-versa.
As discussed above, a network can successfully scale as long
as the maximum network node time-synchronization remains
below 120 microseconds [62].

In [63], a WSN for SHM is proposed with one of the
objectives being the design of a scalable architecture. The
proposed architecture consists of a base station and several
nodes controlled by the base-station through a master-slave
relationship. This architecture improves scalability by ensuring
a minimal time-synchronization error and limiting data trans-
mission through the network. The time-synchronization error
of network nodes is minimized through the use of a wire-
less synchronization module based on IEEE 802.15.4. In this
module the server is responsible for ensuring that network
nodes have a minimal time synchronization error. In the
proposed system sensor data transmission is minimized by
only transmitting log files containing information about the
sensor data stored on a given network node. If the data is
required, it can be requested from the sensor node by the
base station using the information provided in the log file.
As a consequence of only transmitting log files, damage
detection and localization is not an ongoing process but one
that is performed when the base station deems it necessary.
In addition, network nodes require ample storage such that
sensed data is not discarded prior to requests from the base

station. A similar strategy to that used in [63] of delaying
data transmission is investigated in [7]. The authors propose
a distinction between WSNs for short-term (a few hours) SHM
and WSNs for long-term SHM. In WSNs for short-term SHM
it is proposed that the WSN should be focused on minimiz-
ing time-synchronization error between nodes and dedicate all
available wireless resources to this task. Instead of transmitting
sensed data, all collected sensor data is stored in the node’s
memory such that it can be retrieved later. Without having to
transmit data, sensor sampling rates can be greatly increased
improving damage detection and localization accuracy.

Network design decisions such as the distribution of pro-
cessing between network nodes can improve overall network
scalability by increasing communication efficiency. By per-
forming most or all of the processing in network as opposed
to at the base station, the amount of data transmitted through
the network is reduced. In [64], an algorithm called ACF-
CCF is proposed to detect and localize structural damage. The
autocorrelation function (ACF) component of this algorithm
computes the auto-correlation function locally and, if dam-
age is detected, transmits the result to a paired sensor node
which then calculates the cross-correlation function (CCF).
This method minimizes data transmission and power con-
sumption by performing most of the processing at the sensor
nodes and then only transmitting data to its paired node
if damage is detected. This technique is similar to cluster-
based processing except two nodes are paired together instead
of in a cluster-based processing system where one node is
responsible for collecting data from a number of other sensor
nodes. In [7] processing is distributed across multiple network
nodes through transforming the ERA algorithm from a cen-
tralized processing technique to a cluster-based processing
technique. It has been shown that local and cluster-based pro-
cessing techniques improves network scalability by reducing
data transmission [65], [66]. Additional details about the chal-
lenges of distributed processing and clustering is discussed in
Section III-E below.

The use of hierarchical network architectures improves
overall network scalability [67]. The proposed network
improves scalability by using a multi-level time synchro-
nization approach. By synchronizing the base station with
cluster-heads and then ensuring cluster-heads handle syn-
chronization of cluster sensor nodes, network scalability
is improved. Additional details about how to mitigate the
high time-synchronization error requirements are discussed
in Section III-B below. Compressions algorithms can also
improve overall scalability by reducing the amount of trans-
mitted data [68], [69] and, consequently, reducing the amount
of time consumed by data aggregation.

In conclusion, progress has been made in improving the
scalability of WSNs for SHM. Increasingly, WSNs for SHM
improve scalability by reducing data transmission. Data trans-
mission can be reduced by storing data until it is needed or by
reducing the amount of transmitted data through compression
and alternate processing techniques. Finally, improvements in
techniques that improve time synchronization of denser sen-
sor node networks ensures larger WSNs can still detect and
localize damage. Going forward, these techniques should be



1410 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 19, NO. 3, THIRD QUARTER 2017

Fig. 4. Classification of TSE Correction Techniques.

applied to denser WSNs deployed over larger structures such
that the limitations of existing techniques can be identified.

B. High Synchronization Requirements

In WSNs time synchronization has been considered an
important research area over the past decade [70]. In SHM
a lack of synchronization between sensor nodes introduces
errors in modal parameter estimation, damage detection
and damage localization. In particular, WSNs for SHM
need precise time synchronization due to extensive sensor
data sharing. In [71] factors affecting time synchronization
error (TSE) were identified as clock synchronization errors,
non-simultaneity in sensor start-up, differences in sampling
frequency and non-uniform sampling intervals. Overall, the
relationship between a sensor’s clock and a reference clock
can be mathematically described as [72]:

ti = (1 + α)t + δti (1)

where ti is the node clock, α is clock drift rate, δ is the initial
clock offset and t is the reference clock time. It was found
in [33] that the maximum measured clock drift was 50 μs and,
for short packets, the clock drift can be neglected simplifying
the above relationship to:

ti = t + δti (2)

The impact of TSE on modal parameter estimation using the
frequency domain decomposition (FDD) method was investi-
gated in [73]. For the FDD method it was shown that the
introduced mode shape error is proportional to:

eωti (3)

where ω is the structure’s modal frequency and ti is the
TSE. Conducted experiments showed that even for very
small TSEs the mode shape error was significant [73].
Existing research into meeting the high synchronization
requirements demanded by WSNs for SHM can be classi-
fied into two approaches: the development of TSE resilient
algorithms [71], [72] and the development of synchronization
algorithms [62], [63], [67], [74], [75]. Synchronization algo-
rithms can be further classified as hardware or software based.
The proposed classification taxonomy is presented in Fig. 4.
The remainder of this section will discuss existing literature
in relation to this taxonomy.

A TSE resilient algorithm is an algorithm that does not
attempt to synchronize all sensor nodes and instead attempts
modal parameter identification using non-synchronous data.

Fig. 5. Mode Shape Adjustment. a) before adjustment b) after sign
adjustment [72].

Such algorithms reduce network energy consumption by
eliminating or minimizing the use of time synchronization
protocols [72]. In [71], an algorithm for computing the PSD
using non-synchronous sensor data was proposed. By recog-
nizing that the TSE is a combination of constant time shifts
(due to sensor start-up differences) and linear time shifts (due
to clock synchronization errors) an algorithm is developed
for correcting the Fourier Transform (FT) for each collected
segment of sensor data. The corrected FT can then be used
in the calculation of the cross-spectral density (CSD) which
then allows the application of normal damage detection algo-
rithms. A shear structural model under white noise excitation
was simulated and the developed algorithm detected the struc-
ture’s mode shape with minimal error. A damage detection
algorithm using TSE distorted mode shapes (DMS) and abso-
lute mode shapes (AMS) is proposed in [72]. The AMS, as
shown in Fig. 5, was defined as the absolute value of the
DMS. Damage detection using DMSs is performed through
the application of the classical flexibility difference method
of damage detection. This damage detection method can be
applied because the parameters of the flexibility matrix are
the same regardless of the TSE. The classical flexibility dif-
ference method is inapplicable for AMS and instead the use of
the angle-between-string-and-horizon (ASH) flexibility-based
method is used. Using numerical simulations, it is shown that
the maximum sampling delay for a simple supported beam
was 43.4 ms and for a truss 173 ms. Real-world validation of
the results showed a maximum tolerable delay of 107 ms in
comparison to 14 ms for standard non-TSE resilient damage
detection techniques.

Synchronization algorithms aim to minimize the TSE for
all nodes in the sensor network. In [67], the Untethered
Time Transmission Mapping (UTTM) synchronization algo-
rithm is proposed for the usage in a football stadium based
SHM system. The network architecture uses clustering with
a coordinator mote (CM) governing each cluster-head (CH).
Synchronization of collected data requires the collection of
three time stamps: the timestamp for the first sample of
a packet, the timestamp when the packet was sent, and the
timestamp when the packet was received. These time stamps
are used to estimate the relationship between the CM clock and
the sensor node clock. Analysis of data collected from a foot-
ball game showed 95% percent of collected data for one of the
clusters had less than a 216 μs delay indicating the algorithm’s
suitability in modal analysis. A similar hierarchy-based time
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synchronization protocol was used in [75]. In this implemen-
tation each sensor node would attempt to synchronize with
the above node in the hierarchy through the collection of four
different timestamps.

Two other time-synchronization algorithms for SHM using
WSNs were proposed in [74]. The first algorithm – applica-
ble if a structure’s excitation pattern is known - uses an ARX
model to relate the input signal and measured output signal.
Based on the relationship between input and output signal
the time delay is attained and this delay used to synchro-
nize the given node. The second algorithm uses two output
signals and an ARMAV (autoregressive moving average vec-
tor) model to find the time delay between the two signals.
The offset can be deduced from the time delay improving
node synchronization. The UTTM synchronization algorithm,
ARX model-based algorithm and ARMAV model-based algo-
rithm can be used in environments without GPS making them
applicable for many SHM based WSNs.

Some SHM-based WSNs have considered the
use of advanced hardware to improve node
synchronization [62], [63]. GPS modules cannot be used at
each sensor node as the power consumption would greatly
reduce the overall network lifetime. In [62], a hierarchi-
cal network architecture for synchronizing sensor nodes
is proposed. As shown in Fig. 6, the goal of the design
is to develop a tightly coupled system in which all CHs
(alternatively called coordinator modes) are synchronized
with other CHs and each of the CHs ensures synchronization
with each node in the cluster. GPS modules are used to
ensure synchronization between each of the CHs while the
CHs ensure synchronization with each of the network nodes
through the use of a compare-and-capture module in the
microcontroller. Experimental results showed that the overall
time synchronization error of each node was within 23 μs.
The developed architecture is scalable and could be used
in large networks due to its distributed hierarchical nature.
An alternate hardware based approach is considered in [63].
The proposed system uses an IEEE 802.15.4 -based synchro-
nization module in which a master node in a server controls
synchronization of all slave sensor nodes. Synchronization
overhead is reduced by calling the physical layer directly
from the application layer. Each of the slave sensor nodes
are equipped with a feature that detects transmission in the
2.4 GHz band which is used whenever the master node
transmits a message. The slave sensor node stores the time
at which the message is pulsed. When the slave nodes send
information to the master node, these times are included and
can be used by the master node to adjust the synchronization
of the slave nodes in the future message transmissions.

In conclusion, significant progress has been made in
addressing the particularly high time synchronization require-
ments in WSNs for SHM. The effect of TSE on damage
detection have been investigated and, based on the investi-
gations, maximum TSEs have been identified. Research into
responding to the challenge of high time synchronization
requirements can be classified into TSE resilient detection
algorithms and synchronization algorithms. Synchronization
algorithms have either been purely implemented in software

Fig. 6. Hierarchical Sensor Synchronization.

(e.g., UTTM) or have used a combination of software and
hardware to improve synchronization between sensor nodes.

C. Sensor Placement Optimization

In structural health monitoring, sensor placement is an
important consideration in wireless sensor network design.
From a civil engineering (CE) perspective sensor placement
determines how effectively the sensors collect structural infor-
mation. If the chosen sensor locations are poor, the collected
information will limit the system’s ability to detect and localize
damage. From a network design perspective sensor placement
affects the network’s lifespan, overall connectivity, robustness
and routing protocol decisions. The primary challenge in sen-
sor placement in WSNs for SHM is balancing civil engineering
requirements and network design considerations.

The sensor placement optimization problem can be for-
mulated as having a set of N potential locations for sensor
placement and having a total of M sensors to be placed
in those locations (where M<N). Sensor placement should
then be selected such that a given set of criteria are opti-
mized. Existing systems have optimized parameters such as
the sensed information quality measured by the determinant
of the Fisher Information Matrix (FIM), energy consump-
tion, maximum sensing coverage, fault tolerance and network
connectivity [76]–[83]. A summary of the algorithms devel-
oped for sensor placement optimization in WSNs for SHM
is presented in Table II. The sensor placement optimiza-
tion problem given the constraints of data routing, energy
efficiency, and topology control has been shown to be NP-
hard [76] and has motivated researchers to apply search
heuristics when finding optimal sensor placements. Generally,
brute force is not an option as large structures can have hun-
dreds or even thousands degrees of freedom [83]. In [77],
genetic algorithms were applied to the sensor placement opti-
mization problem with the objective of optimizing energy con-
sumption and network coverage. The algorithm was applied
for a limited number of generations and results indicate
reduced energy consumption and increased network coverage.
Similarly, in [83] a search heuristic in the form a hybrid dis-
crete firefly algorithm is used. The proposed algorithm was
used to effectively optimize sensor placement along a bridge.

Optimization of the determinant of FIM is an excellent indi-
cator of a designed network’s ability to meet CE requirements.
In general, the FIM can be viewed as the amount of structural
information that a given sensor location contributes to the total
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TABLE II
SENSOR PLACEMENT ALGORITHMS IN WSNS FOR SHM

amount of structural information available for a given struc-
ture. If for M sensors and N locations the determinant of the
Fisher Information Matrix is said to be 100% if M is equal
to N.

This maximum value can then be used to normalize the
value of FIM determinants for cases where M is less than N.

A number of researchers have used the FIM in the opti-
mization of sensor node placement [76], [78]–[80]. Sensor
placement using EFI model (SPEM) was one of the first
sensor placement algorithms proposed specifically for SHM
and implemented two sensor placement methods: Effective
Independence (EFI) and Effective Independence Driving Point
Residue (EFI-DPR) [78]. This algorithm is capable of optimiz-
ing both civil engineering requirements (through the optimiza-
tion of the determinant of the FIM) and network requirements
such as connectivity and power consumption. A modified
version of SPEM called Power-aware SPEM (p-SPEM) was
introduced in [76]. p-SPEM optimizes first the placement of
sensors from a civil engineering perspective and subsequently
optimizes the energy consumption for efficient communica-
tion. Simulated results showed more than a doubling the
lifetime of traditional SPEM placements with additional loca-
tion quality. This formulation neglected to consider the energy
consumption of routing decisions due to such a consideration’s
added complexity. An iterative sub-optimal algorithm is used
that decouples the structural health monitoring requirements
from the network requirements. By using this technique, the
overall complexity was reduced from O(NM) to O(N4M).

The sensor placement optimization problem using FIM was
also investigated in [79]. A two-tier hierarchy was proposed
with low-end nodes that are resource-poor and high-end nodes
that are resource rich. Redundant low-end nodes were also
added to the network to improve the network’s reliability.
Sensor placement was optimized with respect to the FIM deter-
minant and network lifespan. The proposed sensor placement
algorithm was called Three-Phase Sensor Placement (TPSP)
and placed sensors in three phases with the first phase
optimally placing high-end nodes, the second phase opti-
mally placing low-end nodes and the last phase optimally
placing redundant low-end nodes. Simulations using data col-
lected from a real building and an implementation in a local
tower confirmed that the TPSP matched p-SPEM in overall
information quality while achieving a longer lifespan.

In [80], a sensor placement optimization technique called
Fault Tolerance in Structural Health Monitoring (FTSHM)
was proposed. The objective of FTSHM is to optimize the
network’s robustness while meeting civil engineering require-
ments. This is accomplished by identifying repairing points
- a point where it is predicted the network will fail in the
future – and adding nodes near those points that meet civil
engineering requirements. Three different types of repairing
points were identified: separable points (a sensor which is the
only connecting node for a number of nodes in a cluster),
critical middle points (given two nodes A and B, the crit-
ical middle point is the node located at the middle of the
longest path between these two points in the cluster) and iso-
lated points (a point connected to only one other point in the
cluster). Conducted simulations and experiments showed that
this method is resilient against node failures while others such
as SPEM are not.

The use of network coding in data packet routing and
its relationship with sensor placement has been explored
in [81] and [82]. In [81], a methodology for optimal placing
sensor nodes along linear network topologies such as bridges
was considered. This methodology aimed to maximize link
connectivity and network lifetime. Both simple packet relay
and network coding were considered for the routing of the
collected data packets. Through mathematical analysis it was
shown that the proposed methodology leads to significant
reductions in energy consumption. Likewise, in [82] network
coding lead to a significant reduction in power consump-
tion; however, the coding gain varied with sensor placement.
A number of different sensor placements were considered
demonstrating that sensor placement directly affects network
coding gain however, at this time, formal algorithms for opti-
mizing sensor placement in relation to network coding and
civil engineering requirements have not been developed.

D. Energy Efficiency

A common constraint faced by all WSNs is a maximum
network lifespan due to the limited energy storage available
for each sensor node. Complicating the above, in WSNs for
SHM it is often not feasible to replace depleted batteries as
sensor nodes are often placed in difficult to access locations
throughout a structure. In addition, SHM applications require
high sampling rates and, consequently, an increase in on-node
data processing and transmission. Lastly, in comparison to
typical WSN algorithms, SHM algorithms are complex, can
require incorporation of data from other sensor nodes, and
are generally designed to be processed at a centralized loca-
tion. These three factors make energy efficiency an essential
consideration in WSNs for SHM.

Generally, energy efficiency can be improved in sev-
eral ways. Radio optimization, data reduction, sleep/wakeup
schemes, energy-efficient routing and battery repletion have
all been identified as techniques that can be used to extend
the lifespan of WSNs [84]. Out of the identified techniques,
data reduction is particularly important in WSNs for SHM
due to the high volume of data collected and transmitted.
Consequently, most research in improving energy efficiency
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has been focused in this area. Although less researched,
sleep/wakeup schemes and the usage of battery repletion
techniques have also been investigated in the literature.

In WSNs for SHM significant data reduction can be
achieved by distributing processing throughout the network
as opposed to centralizing processing at the base station.
Although this increases node processor utilization as more
cycles must be dedicated to complex computations, signif-
icant reductions in the amount of data transmitted makes
distributed processing schemes very energy efficient. A com-
parison between a centralized processing scheme and two
distributed processing schemes demonstrated a significant
reduction in the amount of data transmitted [61]. In the cen-
tralized processing scheme 667 bytes of traffic per second of
network operation was transmitted while in the two distributed
processing schemes 300 and 28 bytes of traffic per second of
network operation were transmitted. These significant reduc-
tions are achieved despite increases in the sampling rate of
the two cluster-based processing techniques. In the central-
ized scheme the sampling rate was only in 100 Hz while in
the two cluster-based schemes sampling was 560 and 1000 Hz
respectively. Additional details about how distributed process-
ing techniques improve energy efficiency and how they affect
network layout can be found in Section III-E below.

In [85] an event-based wakeup scheme for monitoring a rail-
way bridge is proposed and implemented. The choice of an
event-based wakeup scheme was selected as trains infrequently
crossed the bridge and, as a result, the sensor nodes would
waste power collecting data from an unexcited structure. In
the proposed system there would exist two master nodes
and a number of child nodes. These master nodes would be
equipped with accelerometers and would wake-up in the event
that the measured vibration signal exceeds a specified thresh-
old. These nodes then wake-up the child nodes in the network
such that the bridge’s structural health could be assessed. In
the proposed scheme one challenge is that the time between
event detection and child node wakeup must be less than the
time it takes for the train to arrive after detection – otherwise
data will be missed and the system’s efficacy limited. The
proposed system is also resilient against false alarms such as
humans or cattle crossing the bridge. This is accomplished by
having the sensor node only wake-up when the moving aver-
age of the vibration signal exceeded the wake-up threshold –
preventing a small number of measurements from waking up
the network. This resiliency is further increased by spacing the
master nodes apart from one another and requiring both mas-
ter nodes to detect vibrations prior to waking up the rest of the
network. One of the challenges of purely event-based wakeup
schemes is ensuring synchronicity between sensor nodes [8].

A wakeup scheme combing elements of schedule and event-
based wakeup schemes was used in a SHM system for the
Jindo Bridge in South Korea [59]. In this wakeup scheme
one sensor node is configured as the gateway node, a num-
ber are configured as sentry nodes, and the rest are configured
as normal sensor nodes. The gateway node has a dedicated
power supply while the other nodes are battery powered. In
the network, sentry nodes wake up on a preconfigured sched-
ule and measure wind or accelerometer data for a period of

time. If the measured data exceeds a specified threshold then
the sentry node communicates with the gateway node which
proceed to wake up other network nodes. Once all the network
nodes are awake they are synchronized and data may be col-
lected. An advantage of this approach is that synchronicity
can be more easily maintained as sentry nodes remain syn-
chronized between sleep cycles. This ensures that the overall
time-synchronization error in the network meets application
requirements. A disadvantage of this scheme over a pure
wakeup scheme is the increased energy consumption of the
sentry nodes.

The use of coverage-preserving scheduling has been shown
to be an effective technique to improve node energy efficiency
and, consequently, the network lifespan in WSNs. In coverage-
preserving scheduling each node is said to have a coverage
area and, at any given time, the combined coverage area of
all active nodes must span the network. With this criteria ful-
filled, it becomes possible to turn network nodes on and off
maximizing their lifespan as the entire network’s coverage is
maintained. Guo et al. [86] discuss how such an approach
is not suitable in WSNs for SHM and propose a modified
coverage-preserving scheduling scheme. Damage localization
requires the cooperation of all of the sensor nodes in the
damaged part of the structure and consequently it becomes
impossible to define coverage areas for sensor nodes as it is the
cooperation of sensor nodes that makes damage localization
possible. To rectify this problem, the authors use a two-step
strategy for damage detection and localization. Prior to begin-
ning damage detection and localization, the sensor nodes are
divided into SHM cover sets and these cover sets are activated
and deactivated one after the other. These cover sets are cho-
sen such that it is possible to detect damage in the structure
however these cover sets are insufficient to localize damage.
The process of detecting damage using these cover sets is the
first step of the proposed two-step strategy. The second step
of the strategy is that once damage has been detected all sen-
sor network nodes are woke up and data is collected such
that damage can be localized. One of the challenges in using
this technique is the process of selecting the SHM cover sets.
The authors show that the problem of selecting SHM cover
sets such that network lifespan is maximized is NP hard. The
effectiveness of two methods for selecting SHM cover sets is
evaluated: the bounded multi-dimensional knapsack (BMKP)
method and a genetic algorithm based solution. The genetic
algorithm based solution is shown to be capable of producing
results similar to the BMKP solution while taking significantly
less time. This technique, although improving the energy effi-
ciency of the network, would still suffer from the problems that
typically occur in schedule-based wakeup schemes in WSNs
for SHM in that processor cycles are wasted when the structure
is unexcited.

Overall, event-based wakeup schemes are well suited to
improve the energy efficiency of WSNs for SHM. This suit-
ability stems from the fact that WSNs for SHM only need to
collect data during structural excitation. Event-based wakeup
schemes perfectly meet these requirements as they the wakeup
event can be structural excitation. It is possible for particu-
larly large structures that pure event-based wakeup schemes
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are unsuitable as the time to wake-up the entire network and
time required to synchronize network nodes would be too high
such that data can be collected in response to structural exci-
tation. In such a case a wakeup scheme combining elements
of schedule and event-based wakeup schemes will be ideal.

Lastly, the usage of battery repletion techniques has recently
become a popular research area in WSNs for SHM. Energy
harvesting techniques have the potential to greatly improve
network lifespan and could allow the lifespan of WSNs for
SHM to approach the lifespan of wired sensor networks. The
usage of energy harvesting has been identified as an open
research issue in WSNs for SHM and is discussed further in
Section V-B.

E. Clustering and Distributed Processing

A commonly used technique in WSN design is clustering. In
clustering, sensors nodes are grouped into clusters and each
cluster has a node designated as the cluster-head (CH). In
a given cluster, all nodes, except for the CH, can only commu-
nicate with the CH. The CH can communicate with all nodes
in its cluster and nearby CHs. Clustering improves scalability,
simplifies routing, extends the network lifespan and conserves
bandwidth [87].

An important consideration in WSNs for SHM is where
in the network data processing is performed. In central-
ized data processing data is transmitted from the sensor
nodes to a specified base station (BS) [10], [69]. The BS
processes the data and, based on the results, can assess the
structure’s overall health. In local processing the data is pro-
cessed locally, a decision about the structure’s health is made
locally, and the decision is transmitted from the SN to the
BS [65]. In clustered WSNs, cluster-based processing can be
used. In clustered WSNs, cluster-based processing can be
used. In cluster-based processing, some of the processing is
done locally, further processing at the CH, and the decision
made at CH or at the BS [66], [80], [88]–[92]. The overall
network data flow for centralized, localized and cluster-based
processing is illustrated in Fig. 7.

1) Centralized Processing: Centralized processing is the
data processing technique typically used in WSNs for
SHM. This technique is simple to implement and minimizes
the processing done at each of the sensor nodes. This technique
was used in the design of a WSN based SHM system for the
main span and south tower of the Golden Gate Bridge [10].
The system uses a total of 64 sensor nodes, had a total lifetime
of 10 weeks and takes a total of 9 hours to complete a sin-
gle round of data collection transmitting a total of 20 MB
of data. The high latency, large amount of transmitted data
and short lifespan demonstrates the problems with centralized
processing in WSNs for SHM.

The use of centralized processing in SHM was also investi-
gated in [69]. Sensor data was stored in flash memory until all
memory was occupied after which data was transmitted from
the sensing node to the base station where processing is com-
pleted. This system was deployed on a model test structure
and results indicated that even with a small number of sensor
nodes the data aggregation time was infeasible. The use of data

Fig. 7. Network Data Flow for a) Centralized b) Local c) Cluster-based
Processing.

compression to reduce the data aggregation time and the use of
local processing to reduce the amount of data transmitted were
two methods proposed to reduce overall data aggregation time.

Overall, centralized processing is the least complex pro-
cessing technique and the easiest to implement. By only
collecting data at each network node and routing it through the
network on-node processing can be reduced potentially extend-
ing the lifespan of each individual node and, consequently, the
network. For larger networks and for networks with poor link
quality the energy reduction of on-node processing is reduced
as nodes must spend a large number of cycles collecting and
routing data which could be avoided by performing some of
the end-processing prior to transmission. Centralized process-
ing permits the use of all damage detection and localization
algorithms and, consequently, can avail of those that are most
accurate for a given SHM application. The major disadvantage
of centralized processing is an incredibly high delay associated
with an incredibly long data-aggregation time. If delay is an
issue, such as in application that monitors a structure’s health
in response to earthquakes, centralized processing should be
avoided. If delay isn’t an issue centralized processing can be
used however the scalability of systems and structures larger
than the Golden Gate Bridge needs to be evaluated.

2) Local Processing: One of the challenging characteristics
of SHM based WSNs is the large amount of data gen-
erated by network sensor nodes. This challenge motivated
research into local processing techniques to reduce overall
network traffic while maintaining a simple design. Due to
a lack of a reference output signal, local processing ren-
ders common damage detection methods such as the Natural
Excitation Technique - Eigen-System Realization Algorithm
(NExT-ERA) method inapplicable [65].

One damage detection algorithm that has been investigated
in the literature is the autoregressive-autoregressive exogenous
(AR-ARX) method [65]. This method uses pattern recognition
to match the structure’s current data with the data collected
at the beginning of the structure’s lifetime. Through this com-
parison, each sensor calculates a damage sensitivity coefficient
which is then used to detect, localize and quantify structural
damage. The viability of this algorithm was tested in the
simulation of a steel frame structure and it was found that
the damage detection and localization method was effective.
An advantage of this method over cluster-based processing is
that it improves network robustness. By completely localizing
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processing, the network is made resilient against cases where
an important node, such as a CH, fails and results in the loss
of connectivity for that entire cluster.

Overall, local processing moves the complexity of damage
detection and localization from the base station to the node
itself. This improves network resiliency and greatly reduces
the amount of transmitted data. An increase in on-node pro-
cessing that can possibly lead to a reduction in node lifespan.
The major disadvantage of local processing is that the damage
detection and localization techniques that can be used without
input from other nodes is limited and these techniques, such
as AR-ARX, tend to be less accurate then techniques such as
NExT-ERA [8].

3) Cluster-Based Processing: Cluster-based processing
combines elements of centralized and local processing to
improve overall network performance. By distributing the pro-
cessing between each sensor node and the CH, the amount of
data transmitted through the network is reduced in compar-
ison to centralized processing and the amount of processing
done at each of the SNs reduced in comparison to distributed
processing. In general, the primary goal of using cluster-based
processing is to reduce the overall energy network energy con-
sumption and improve the scalability. Cluster-based processing
permits the usage of damage detection methods that cannot be
used in local processing.

The AR-ARX method has been applied in cluster-based
processing systems, in addition to the distributed process-
ing systems as discussed above. In [66], a WSN-based SHM
system was proposed. This system supplements the AR-ARX
method with the random decrement (RD) method [93] and the
principle component analysis method [94] to reduce overall
energy consumption. The random decrement method com-
presses the data received at the sensor node by averaging
a large number of time segments together into a small aver-
age time segment. The compressed data is then transferred
from each of the sensor node to the CH. Prior to AR-ARX
processing, principal component analysis (PCA) is applied to
the combined data set from each of the cluster nodes [94].
PCA extracts only the principle components from the input
data set by sorting the eigenvalues of the covariance matrix
and then selecting the largest eigenvalues until a specified
threshold is reached. At this threshold, it is assumed that the
included eigenvalues sufficiently describe the overall dataset.
The AR-ARX method is then applied to the post-processed
dataset and a decision about the structure’s overall health is
made. Fig. 8 displays the full algorithm and where in the
network the different processing loads are completed. One
of the drawbacks of using the PCA method is that it can
increase overall energy consumption if the sensor placements
within the network and cluster are not properly optimized.
Consequently, genetic algorithms were used to converge on
a near-optimal solution such that total energy consumption
was minimized using this technique. The modified AR-ARX
method was then applied in the monitoring of a plate struc-
ture and results attained showing an overall reduction in energy
consumption.

Another algorithm that has found use in cluster-
based processing systems is the Eigen-System Realization

Fig. 8. AR-ARX Method for Cluster-based Data Processing.

Algorithm (ERA). Typically, a centralized processing algo-
rithm, a distributed version of the algorithm with a compa-
rable accuracy to the centralized version has been proposed
in [88] and [89]. Instead of aggregating data at the BS, sensor
nodes using this algorithm broadcast their data only along the
path of the minimum connect dominating set. In the resultant
system sensor nodes in a given cluster distribute data to a CH
where the CH calculates the power-spectral density (PSD)
and cross-spectral density (CSD). The inverse Fourier trans-
form (IFT) is then used to determine the cross-correlation
functions and auto-correlation function. ERA then uses these
results to determine the overall mode shape. Experimental
results for this system were conducted by deploying the sen-
sors nodes in a building. The results showed a 40% reduction
in energy consumption and a reduction in system delay in
comparison to the centralized processing systems.

Out of all of the techniques used in cluster-based pro-
cessing systems, the most common is the Fast Fourier
Transform (FFT) [80], [90]–[92]. The FFT is used in con-
junction with other post-processing algorithms such as the
peak-picking (PP) method [80], [90] or power-spectral den-
sity (PSD) combined with cross-spectral density (CSD) and
SVD [91], [92] to determine the cluster’s mode shape and,
consequently, whether damage has been detected. The peak-
picking method allows extraction of the mode shape at the
sensor itself while the use of the PSD combined with the
CSD and SVD requires processing to occur at the cluster-head.
As seen in Fig. 9, FFT-based systems combine overlapping
mode shapes at the CH and then forward these results to the
BS. The results from mode shape combination are displayed in
Fig. 10. Cluster-based processing can reduce energy consump-
tion through the use of algorithms that turn cluster nodes on
and off based on whether damage was detected in the CH [91].
In addition to improving energy consumption, such algorithms
can also improve the network’s ability to localize structural
damage.

One of the typical drawbacks of using cluster-based pro-
cessing techniques is the degradation of network robust-
ness. In [80] and [90], a technique called Fault-Tolerance in
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Fig. 9. CH Mode Shape Combination a) Uncombined b) Combined.

Fig. 10. Computation of Mode Shapes from Clusters [88].

SHM (FTSHM) is proposed. This algorithm detects fault-
prone and weakly connected clusters during sensor placement
optimization and places backup sensors such that a certain
level of fault tolerance is guaranteed. This level of fault tol-
erance allows the failure of up to a specified number of
sensors after which the cluster will fail. FTSHM improves
the robustness of the network and, consequently, the network
lifetime.

To date, most damage detection and localization algorithms
have been developed for wired sensor networks and, conse-
quently, assume that the algorithm will require sensor data to
be processed in a centralized location. In [7] the challenge of
transforming a centralized processing algorithm to one that can
be used in WSNs for SHM is discussed. Unlike most algo-
rithms employed in WSNs, those used in SHM require low
level data fusion and, thus, data must be collected from all
network nodes before a decision can be made. The authors
propose that the development of efficient WSN based SHM

algorithms must minimize the amount of raw data transmit-
ted, be implementable on a sensor node, and must match
the accuracy of fully centralized SHM algorithms. Based on
this, two methods that can be used to try and convert a cen-
tralized SHM algorithm to a decentralized SHM algorithm
are suggested. The first of these methods, called the divide
and conquer approach, generally requires the use of cluster-
ing and uses different data aggregation functions depending
on the type of sensor node. For example, a sensor node in
a cluster would transmit raw data to the cluster-head which
would then process the raw data to derive mode shapes. The
cluster-heads then combine the derived mode shapes to assess
a structure’s health. The second method suggests that a given
centralized SHM algorithm be modified such that the process-
ing can be done incrementally. In such an algorithm data is
collected incrementally and the result updated as new data is
collected. The authors suggest that it is easier to develop SHM
algorithms for WSNs using the divide and conquer approach
however these algorithms are typically less accurate than incre-
mental SHM algorithms. The main drawback of incremental
SHM algorithms for WSNs is that they are difficult to develop.
These proposed methods should be applied to existing dam-
age detection and localization algorithms such that new SHM
algorithms for WSNs can be developed.

Overall, significant progress has been made in the devel-
opment of cluster-based processing techniques that reduce
energy consumption in comparison to both centralized and dis-
tributed processing techniques and reduce data transmission
in comparison to centralized processing techniques. Cluster-
based processing techniques, through data incorporation from
multiple sensors, can more reliably detect and localize struc-
tural damage then local processing and are similar to cen-
tralized processing techniques in their reliability [8]. These
benefits come at the expense of overall network robustness
since a failure of a CH means a loss of the ability to assess
structural damage in an entire region of the network. In addi-
tion, cluster-based networks are significantly more complex
than both centralized and localized processing networks.

IV. TESTBEDS AND EXPERIMENTAL WORK

This section surveys the experimental work conducted by
some research teams on WSN for SHM. The surveyed work is
divided into laboratory testbed results and experimental results
from real structures. The first subsection surveys laboratory
testbeds used in WSN-based SHM system. The second section
surveys real-world deployment of WSN-based SHM systems
and summarizes the overall results.

A. Laboratory Testbeds

Although cheaper and easier to deploy compared to typ-
ical wired sensor networks, WSN-based SHM systems are
typically tested in a laboratory setting prior to deployment.
Consequently, to maximize the efficacy of in-lab testing,
testbeds for evaluating proposed WSN-based SHM systems
have been developed.

The development of emulation frameworks permits design
validation before real-world deployment. In [95], an emulation
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framework called WiSeREmulator is proposed. This frame-
work allows emulation of both the testing environment and
proposed WSN protocols. The emulation framework uses the
COMSOL multi-physics software package in the emulation
of piezo-electric transducers and wave propagation in con-
crete structures such that the testing environment can be as
closely emulated as possible. Users can configure digital-to-
analog converters, set-up networks of up to 25 nodes, and
a base station. This framework permits users to synthesize their
own data using a data synthesis module and permits signal
processing through a signal processing module. A graphical-
user-interface (GUI) has been developed to simplify simulation
setup. Experiments conducted on a simple beam structure
matched the results produced from this framework.

An alternative to emulation is installation of sensor networks
on laboratory test structures such as trusses [60], beams [60],
and model buildings [69]. Typically, excitation is applied to
these structures through the use of shaking tables or simi-
lar equipment such that the structure’s natural frequency can
be measured [69], [96]. The use of laboratory test structures
allows verification of the SHM system prior to real-world
deployment however they cannot be used to model real-world
deployment as they cannot emulate real-world electromagnetic
interference and are typically quite small in size.

An alternate method for testing WSN-based SHM would
be the development of a real-world environment for the test
deployment of designed systems. In [97], the shortcomings
of brief real-world deployments are discussed. The short
deployment time, although providing valuable data, is gener-
ally insufficient in evaluating in the long-term performance
of a network design. The idea of an over-provisioned
testbed is proposed in which sensing nodes are provided
a direct power supply (while emulating SHM behavior) and
wired communication channels are available for application
debugging.

B. Experimental Work With Real Structures

To date, most real-world systems have been designed and
implemented on bridges around the world. These systems have
had varying designs and objectives but have shown the efficacy
of SHM using WSNs [10], [59], [98]. Aside from bridges,
a number of other structures including football stadiums, build-
ings, and wind turbines have had WSN-based SHM systems
designed and deployed on them [9], [67], [75], [99].

1) Structural Health Monitoring of Bridges: A large num-
ber of WSNs for the structural health monitoring of bridges
have been designed and experimentally deployed. Bridge-
based SHM systems have been deployed in locations such
as Golden Gate Bridge [10], the Jindo Bridge [59], Caihong
Bridge [98], and Jinzhou Bridge [98].

In [98], a system for SHM using WSNs called Wireless
Multi-Radio-Frequency Channels Inspection (WMCIS) is
proposed. The network architecture consists of eight wire-
less modules each equipped with eight wireless channels.
The wireless modules have a modular design and they are
equipped with piezo-electric sensors for acceleration measure-
ment, a sensor interface in the form of an analog-to-digital

converter (ADC), a microprocessor and a ZigBee based trans-
mission unit. Each wireless module can be programmed and
configured over the air and handles tasks such as local data col-
lection. Each of these wireless modules communicates with
a wireless controller using the ZigBee protocol. The wire-
less controller is responsible for coordinating communication
wireless modules and managing data collection, storage and
analysis. The wireless controller sends structural damage deci-
sions to a PC over a serial connection. This system was
deployed on both the Caihong and Jinzhou Bridge in China.
The number of nodes in a given deployment can be scaled
up or down based on the application requirements. Based on
the experimental results it was concluded that the existing
system is not suitable for long-term SHM but could be used
for temporary SHM deployments.

In [10], a WSN for SHM is deployed on part of the Golden
Gate Bridge in California. The overall network architecture
consists of sensor nodes and a base station. Each sensor node
is composed of a mote and sensor board. The sensor nodes
use TinyOS as the operating system for running all processes
relating to information dissemination, routing, synchroniza-
tion, and information collection. A total of 64 sensor nodes
were deployed on the bridge and a laptop was used for the cen-
tral processing unit. The deployment of this system, although
effective, demonstrated a number of challenges that must be
met by SHM based WSNs. The proposed routing and time
synchronization protocols performed as expected in a labo-
ratory setting; however, it experienced difficulties during the
real-world deployment. When first deployed, heavy network
traffic initially caused interference with the software’s routing
protocol. The exact cause of this breakdown was unknown at
the time but was resolved by freezing the routing tree dur-
ing data collection. The system’s lifespan was 10 weeks and
data collection experienced a 9 hour delay. Despite difficul-
ties, this deployment was particularly important due to the
long length of the Golden Gate Bridge (2.7 km).

In [59] a SHM system using WSNs was deployed on the
Jindo Bridge in South Korea. This bridge also hosts a wired
SHM system that was used for verification. A total of 70 sensor
nodes were deployed and solar panel based energy-harvesting
systems installed on a small subset of them. The bridge length
was 484 meters making single hop communication between
nodes and the base station possible. The WSN based system’s
results were in agreement with those from the wired system
validating the proposed design. The system lifespan when
using three D-cell batteries was estimated to be about two
months and the energy-harvesting system found to extend the
sensor lifespan for most of the sensors in which the system
was installed.

2) Structural Health Monitoring of a Football Stadium:
A WSN-based SHM system for usage in a football stadium
was designed in [67]. The proposed network architecture is
a single-hop two-level WSN with each cluster containing 8 to
10 sensor nodes. Each sensor node transmits data packets to
the cluster heads which, as needed, communicate with the base
station. The proposed system was installed in a football sta-
dium and could estimate whether a structure was experiencing
torsion. The proposed system was capable of maintaining high
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time synchronization and accuracy; however, details such as
network lifespan were not provided.

3) Structural Health Monitoring of Buildings: In [9],
a SHM system using WSNs was designed and tested on two
real world structures: a seismic test structure and an abandoned
office building in Los Angeles. The designed system, called
Wisden, was designed with ease of deployment as the pri-
mary goal with each experimental deployment taking around
30 minutes. Deployment results showed that real-structures are
heavily damped and, consequently, have a structural response
lasting about 1 second. The short structural response dura-
tion suggests that high sampling rates are needed for SHM
systems where excitation is sudden and infrequent. The first
deployment, in the seismic test structure, encountered no dif-
ficulties however the deployment in the abandoned office
building encountered high packet loss rates on some of the
sensor node links. These results indicate the importance of
real-world deployment of SHM systems in validating system
performance.

WSNs for SHM have also been applied to the monitor-
ing of heritage buildings [75]. Torre Aquila is a 31 meter
tall medieval tower in Italy and the structure is of his-
torical significance. The proposed system used a total of
17 sensor nodes (16 monitoring nodes and a sink node) with
each node equipped with a 32 Kbyte FRAM chip and run-
ning TeenyLime, a WSN middleware, on top of TinyOS.
FRAM chips were used instead of flash memory due to
the chip’s low latency and low energy consumption. Sensor
nodes either measured the acceleration, environmental con-
ditions such as temperature, or the structure’s deformation.
TeenyLime allowed code reuse between the three different
sensor types and simplified application development. The
system was deployed in Torre Aquila and results indicated
that the system was reliable with a loss rate below 0.01%
and had a lifespan of 3.2 months before the first node
failed.

4) Structural Health Monitoring of Wind Turbines: The
application of WSNs for the SHM of wind turbines is dis-
cussed in [99]. Three different SHM systems using WSNs
were installed: two on Vestas wind turbines and one on
a Micon wind turbine. The sensor network nodes were dis-
tributed vertically along the structure and data was commu-
nicated to a server at the turbine’s base. The deployments
verified the applicability of WSNs for the SHM of wind tur-
bines demonstrating that the electromagnetic interference of
the turbine’s electrical equipment was minimal and that the
structure’s modal frequencies could be identified at the base
station.

V. OPEN RESEARCH ISSUES

Through confronting the previously identified challenges
WSN-based SHM have demonstrated their potential as an
alternate platform for SHM systems. Existing solutions
have begun to meet application requirements and further
real-world deployments should provide valuable information
such that existing systems can be improved. A number of
research opportunities have the potential to radically change

Fig. 11. Structural Damage Prediction Process.

WSN-based SHM. The main open research issues are dis-
cussed below.

A. Damage Prediction

Existing WSNs for SHM can assess a structure’s current
health such that once damage is detected corrective actions can
be undertaken to prevent structural failure. Damage prediction,
alternatively known as damage prognosis, is a concept that
describes SHM systems in which the time of a structure’s
failure is forecasted such that corrective action can be planned
ahead of time [100].

In [100] the damage prognosis problem and the require-
ments for an SHM monitoring system are discussed in detail.
A successful damage prediction model, illustrated in Fig. 11,
would require the assessment of the structure’s current health,
a forecast of the structure’s load, and a physics model for the
given structure. The structure’s health and associated physics
model would be developed through systems similar to the
structural health monitoring systems that exist today. The
development of a load forecast would require the collec-
tion of environmental information such as the types of wear
experienced by the system and the frequency of such events.

Such an SHM system would pose additional challenges
when deployed over WSNs. The assessment of a structure’s
environment and, consequently, the development of a pre-
dictive loading model for that structure would likely require
the sensing of additional data and consequently additional
data collection, aggregation and processing. The predictive
model itself would further increase networking and data pro-
cessing requirements.

B. Energy Harvesting (EH)

WSNs have been historically powered by batteries and,
as a result, the limiting factor in their overall lifespan has
always been the battery lifetime. It was shown in [4] and [76]
that the battery lifetime in WSNs for SHM can be extended
up to 6 - 18 months depending on the energy management
techniques and the battery types, while the hardware can
last for several years. Therefore, energy harvesting techniques
are needed to extend the WSN lifetime to several years.
Consequently, research has been concentrated on maximizing
battery lifetime through optimizing routing, sensor placement
and scheduling. Cost reductions in EH systems has moti-
vated research into the use of such systems in WSNs [101].
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Therefore, EH enabled WSNs for SHM could greatly improve
network lifespan [102].

Wireless sensor networks can be classified according to
their power sources into three categories: fully battery pow-
ered WSNs (FBP-WSNs), partial energy harvesting WSNs
(PEH-WSNs), and full energy harvesting WSNs (FEH-WSNs).
FBP-WSNs have lifespans limited by their battery lives and,
as a result, the primary method to extend network lifespan is
through minimization of power consumed during node tasks
such as scheduling, processing and routing. PEH-WSNs have
lifetimes that are still limited by their battery lives; however
the EH system can extend network lifespan. Finally, FEH-
WSNs have sufficient energy storage such that the network
lifespan is no longer limited by battery life but instead by
hardware lifespan. In all of the identified categories of WSNs,
the key challenge is the development of network architectures
that maximize resource utilization. The remainder of this sec-
tion will discuss maximization of resources for each of the
proposed categories and then discuss the application of EH
systems to existing WSNs for SHM.

1) FBP-WSNs: Most existing WSN-based SHM systems
fall in the category of FBP-WSNs. FBP-WSNs maximize the
network lifespan through the minimization of energy consump-
tion. This is accomplished through energy efficient routing
protocols, minimization of data transmission, minimization of
data processing and sleep cycling. The minimization of energy
consumption can conflict with other network objectives such
as low TSE, robustness and scalability.

2) PEH-WSNs: The use of energy-harvesting in WSNs can
extend overall network lifespan. Such networks introduce the
energy recharge rate as an additional parameter that should
be considered in network design. Network architectures could
choose to neglect energy recharge rate and just use existing
network designs with the energy-harvesting solely extending
network lifetime. Alternatively, network architectures could
choose to consider energy-harvesting as an additional parame-
ter in the development of routing protocols, data transmission
and scheduling.

3) FEH-WSNs: Once the energy harvesting rate is suffi-
ciently high and the energy storage capacity is large enough
that nodes can be powered solely from the EH system,
a network can be considered a FEH-WSNs. These networks
open up the possibility of using routing techniques that attempt
to optimize for other Quality of Service parameters than
energy consumption. In addition, due to variable network of
EH systems, it is possible for sensor nodes to be dynamically
added and removed from the network once they have sufficient
energy for communication.

4) SHM Using EH-WSNs: To date only a small number of
WSNs for SHM have employed EH systems to extend network
lifespan and optimize network design. Most WSNs for SHM
are FBP-WSNs. In [98], a WSN for SHM was deployed on
two bridges and experimental results suggested that the over-
all network architecture was suitable for short-term monitoring
but not for long-term monitoring. The network’s short lifes-
pan was primarily due to the short battery life. Similarly,
in [59], an SHM system using WSNs was deployed on Jindo
Bridge, South Korea with the overall bridge lifespan estimated

to be only two months. A small number of sensor nodes were
equipped with solar-panel based EH systems and recharge-
able batteries and it was estimated that the usage of such
EH systems could expand the network lifespan to one year.
These results indicate the potential for EH systems in WSNs
for SHM.

In [103] an EH system for the SHM of highway bridges
is proposed. The proposed system uses traffic vibrations as
an energy source and the system aims to be a FEH-WSN, at
least in the short term. A week long deployment was com-
pleted showing that the energy source is sufficient to power
SHM based WSNs. The performance of the system in regards
to damage detection and localization is not discussed. In [104]
self-powered sensors for SHM bridge monitoring were devel-
oped and tested. The developed sensors converted ambient
vibrations into electromagnetic energy. A field test was com-
pleted in which the self-powered sensors on a rural highway.
The sensors were shown to be self-powering even during
periods of low traffic.

The introduction of EH in WSNs for SHM will require
re-addressing many of the design considerations discussed in
Section III. Many important factors in EH WSNs for SHM
such as optimal sensor placement, optimal routing protocols,
and data processing location have not been investigated in
experimental work.

C. Mobile Phone Sensing (MPS) for SHM

MPS is a new sensing paradigm for information collec-
tion through mobile devices and smart phones. Most mobile
devices and smart phones are equipped with several sen-
sors such as accelerometers, global positioning system (GPS),
cameras, microphones, and proximity sensors. While mobile
devices move around, they can sense and detect different
physical parameters and phenomena, which can have many
applications such as vehicular traffic monitoring, environmen-
tal monitoring, wireless signal coverage, and event/incident
coverage. In SHM, while people cross a bridge or exist inside
a building, mobile apps downloaded in their mobile devices
and smart phones report the sensed data (mainly about struc-
ture vibration and acceleration) to a central processing unit.
The central unit performs further processing to evaluate the
structure conditions.

Although MPS has high potential and brings many oppor-
tunities as mentioned above, MPS comes with several
challenges [105], [106]. The first challenge facing MPS is the
large-scale of MPS resulting in a huge amount of data traffic,
which may overwhelm the network resources. Therefore, some
techniques must be employed to reduce the amount of traffic.
This can be achieved by local data aggregation and process-
ing at mobile devices and smart phones. The second challenge
is the data accuracy. Mobile devices and smart phones are
equipped with different types of sensors from different manu-
facturers; hence, sensors vary significantly in their sensitivity
and noise. Thus, there is a need to improve the data accu-
racy by identifying devices that are likely to produce accurate
sensed data, performing global centralized data aggregation,
and taking into consideration the spatio-temporal mobility
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patterns of the users of the mobile devices and smart phones.
The third challenge is the availability of adequate number
of participants for the required application. Hence, incen-
tive strategies, such as monetary or credit rewards, can be
employed to increase the user penetration in [106].

MPS can utilize the large number of mobile devices and
smart phones equipped with different types of sensors (e.g.,
accelerometers) and existing/moving in/on almost all buildings
and structures. The advantage of using MPS for SHM is the
low cost and minimum effort needed to collect information
about hundreds of thousands of structures and buildings.

Experimental work has been conducted and reported
in [107]–[109] for using mobile phones as sensors for
SHM. The accelerometers in these phones are used to moni-
tor the bridge vibrations. Mobile apps are used to sense and
record the vibration signals. Then, the vibration signals are
analyzed using damage detection techniques described earlier.
However, these studies used a fixed mobile phone (by attach-
ing the phones to the bridge). Thus, many important factors
such as phone mobility, spatial and temporal correlation of
the vibration signal, and undesired vibration sources have not
been investigated in these experimental works.

D. Large-Scale WSNs for SHM

As mentioned above, WSNs for SHM can generate huge
amount of data, especially when they are used to monitor
large structures. This creates challenges in collecting, analyz-
ing and storing data from thousands of sensors deployed on
the large structure [110]. It becomes even more challenging
when WSNs and MPS are used for SHM across a city, which
might be needed for instance, after natural disasters such as
earthquakes, floods, and Tsunamis.

Conventional data gathering, aggregation, fusion, compres-
sion, storage, and feature extraction are shown to be inefficient
and too expensive to handle huge amounts of data from large-
scale WSNs [110], [111]. Therefore, new technologies such as
Big Data and Cloud Computing are good candidates for large
scale WSNs and MPS for SHM. Big Data techniques such
as Big Tables, Hadoop and MapReduce [112] can be used to
facilitate the data processing and storage of large-scale WSNs
for SHM.

Cloud computing is a good candidate for data collection,
processing and storage in large-scale WSNs and MPS for
SHM. On the other hand, mobile sinks and unmanned aeronau-
tical vehicles (UAV) represent good candidates for collecting
data from large-scale WSNs [113] as in large structures or
large number of structures across a city.

VI. CONCLUSION

This paper presented a comprehensive review of WSN
based SHM systems. Background information relating to struc-
tural health monitoring such as common sensors, commonly
measured parameters and damage detection and localization
algorithms were discussed. The main challenges of scalabil-
ity, time synchronization, sensor placement optimization and
data processing were presented and solutions to these prob-
lems discussed and compared. Experimental work performed

in the lab and on real-world structures was presented and dis-
cussed. Finally, future research directions for SHM systems
using WSNs were presented.
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