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Abstract

Detection of relative changes in circulating blood volume is important to guide resuscitation and manage a

variety of medical conditions including sepsis, trauma, dialysis and congestive heart failure. Recent studies have

shown that estimates of circulating blood volume can be obtained from the cross-sectional area (CSA) of the internal

jugular vein (IJV) from ultrasound images. However, accurate segmentation and tracking of the IJV in ultrasound

imaging is a challenging task and is significantly influenced by a number of parameters such as the image quality,

shape, and temporal variation. In this paper, we propose a novel adaptive polar active contour (Ad-PAC) algorithm

for the segmentation and tracking of the IJV in ultrasound videos. In the proposed algorithm, the parameters of the

Ad-PAC algorithm are adapted based on the results of segmentation in previous frames. The Ad-PAC algorithm

is applied to 65 ultrasound videos captured from 13 healthy subjects, with each video containing 450 frames.

The results show that spatial and temporal adaptation of the energy function significantly improves segmentation

performance when compared to current state-of-the-art active contour algorithms.
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Index terms— Circulating blood volume, internal jugular vein (IJV), ultrasound imaging, image seg-

mentation, active contours.

I. INTRODUCTION

Determination of relative changes in circulating blood volume is important for a variety of acute and

chronic medical conditions including hemorrhage from trauma, septic shock, dialysis and volume overload

pertaining to congestive heart failure [1]–[5]. The estimation of absolute blood volume, while ideal, remains

a significant challenge [6]. Recent studies suggest that non-invasive measures such as transverse ultrasound

(cross-section area, CSA) of the internal jugular vein (IJV) can be used to detect and monitor relative

changes in blood volume [7], [8]. As shown in Fig 1, the CSA of the IJV is dynamic with spatial and

temporal variations that can correlate with relative changes in volume status. Short-term variability reflects

a variety of factors including blood volume, proximity to the carotid artery, cardiac contractility, respiratory

effort and local anatomy. Changes in parameters over the long-term can reflect relative changes in blood

volume. Demonstration of short- and long-term CSA variability of a healthy patient sitting at different

angles of inclination to simulate relative changes in circulating blood volume is shown in Fig. 2. Accurate

segmentation and tracking of the rapidly changing IJV is fundamental to the use of ultrasound to estimate

relative changes in blood volume.

Portable ultrasound, the technology typically used to image the IJV in the acute care setting, does have

its limitations. Ultrasound videos are generated at the point of care by clinicians with a broad range of

skills which can result in significant variation in image quality. Furthermore, manual segmentation of IJV

is a time-consuming task and inappropriate for real-time blood-volume monitoring applications.

Fully automatic segmentation algorithms are an ideal objective; however, they tend to require prior

information about the images [9]–[11]. More recently, semi-automated segmentation algorithms requiring

operator input have become popular in medical image processing [12]–[15]. For example, combinatorial

graph-cut based algorithms perform the segmentation task by minimizing an energy function to find

the minimal energy paths through the vertices that are manually selected by an operator [16]–[18].



Fig. 1. Sample images for IJV images with (a) low brightness, (b) high brightness, (c) fully collapsed, (d) partially missing contour (broken
edge), (e) sharp contour (triangular) shape, and (f) non-convex contour shape.

Unfortunately, graph-cut algorithms suffer from high computational complexity, making them inefficient

for real-time frame-by-frame segmentation, and their results are sensitive to variations in image quality -

a significant problem in ultrasound imaging.

Similar to graph-cut algorithms, active contours (ACs) segment images via minimization of an en-

ergy function; however, their energy function is more flexible than graph-cut based algorithms. This is

demonstrated in their ability to adapt to complex shapes and track temporal deformations, making them

suitable for real-time monitoring applications in medicine. An additional advantage is that the minimization
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Fig. 2. Temporal variations of IJV csa obtained from manual segmentation of two IJV videos with different CSA variability.

is performed over a continuous surface, improving the computational complexity over graph-cut based

techniques [19]–[23]. Unfortunately, these algorithms suffer from the fact that their performance is highly

sensitive to the parameters of the energy function and the initial contour, resulting in a limited ability to

track topological changes. This limitation was addressed in the geometric deformable AC models based

on curve or surface evolution [24]–[26]. In these models, the evolution is independent of the parameter

selection and topological variations, which makes them more suitable for object tracking; however, they

are still unable to detect shape split or merge due to the low quality of ultrasound images.

In general, the performance of AC algorithms also depends on the initial segmentation, and therefore,

can be combined with other segmentation algorithms in a coarse-to-fine strategy. The coarse initial

segmentation, obtained from another algorithm, provides a rough segmentation which is subsequently

refined with an AC algorithm [27], [28]. In [29], the combination of speckle tracking [30] and AC



was proposed for the segmentation and tracking of the IJV in which the coarse segmentation obtained

from speckle tracking was smoothed with an AC. Unfortunately, speckle tracking fails when the IJV

undergoes fast variations, unless the ultrasound machine has a sufficiently high frame rate. This problem

was addressed by cascading region growing [31] and AC (RGAC) [32]. Unfortunately, all of these methods

continue to fail when the image quality is poor or when a part of the vessel wall is obscured by artifact.

In the case of broken edges, active contours fail to resolve the contours of intersecting objects resulting

in leakage. An active shape model (ASM) using a statistical shape model can be used to address the above

mentioned problem [33], [34]. Unfortunately, as per Fig. 1, the IJV assumes many different shapes and

therefore, ASM is not applicable for the IJV segmentation. Other common approaches, such as Kalman

filers, have been proposed for real-time vessel tracking in ultrasound imagery; however, similar to ASM,

they require the geometry of the vessel [35].

Segmentation can be viewed and solved as a spatio-temporal three dimensional (3D) segmentation

problem with the time (frame index) defined as the 3rd dimension. 3D segmentation algorithms work

on frame-by-frame basis using the similarity between regions [36]–[39] or by attempting to minimize a

3D AC model [40]–[44]. The former methods again require imaging machines with high frame rates so

that deformation from one frame to the next one is insignificant. The latter algorithms suffer from (1)

significant computational complexity, (2) lower accuracy associated with minimization of a 3D energy

function which involves more parameters, and (3) the entire video prior to initiation of segmentation

eliminating the possibility of real-time monitoring.

Polar representation of the contour is a useful technique in a variety of medical image processing

applications, particularly vessel segmentation, in which the shape of the object is generally convex [45]–

[48]. Polar contours sample the object boundary at certain angles, reducing the degree of freedom for each

contour point to one. In other words, the contour is evolved only radially, enabling the energy function

to be minimized faster and more efficiently than conventional ACs. Several examples include [45] in

which polar edge detection is combined with AC for segmentation of tongue images; [49] incorporated



a polar active contour algorithm based on a classic energy function definition for segmentation of intra-

vascular ultrasound images; [46] used a polar active contour defined with the external force derived from

an energy term based on the area inside the contour; and [50], a variational polar active contour was

proposed to inherit the robustness to local minima from Sobolev active contours. Unfortunately, all above

mentioned polar AC algorithms are sensitive to image quality and object shape, with each working for

a specific subset of image qualities and shapes. These algorithms fail to accurately segment clips across

this spectrum, hence the need for an adaptive AC algorithm that accounts for these large variations.

In this paper, a novel adaptive polar AC algorithm (Ad-PAC) is proposed for semi-automatic segmenta-

tion and tracking of the IJV videos. This algorithm involves the initial frame being manually segmented by

an operator and subsequently serving as the reference for the initial energy function parameters selection.

The parameters are then adapted from one frame to the next based on the segmentation results of previous

frames. Section II introduces two related state-of-the-art polar AC algorithms; Section III describes the

proposed algorithm; Section IV presents the results with comparisons to manual segmentation, traditional

AC algorithms, and the two polar AC algorithms of Section II; and the conclusions are presented in

Section V.

II. RELATED WORK

Polar AC Algorithms

Polar representation of the contours reduce the degrees of freedom for each contour point such that the

contour can only evolve radially. Each polar contour is sampled at certain angles, as shown in Fig. 3 as

a contour with N = 8 points. In general, polar AC algorithms minimize the following energy function:

Et = Eint + Eext, (1)



Fig. 3. An example of polar contour with eight contour points.

where Eint is the internal energy of the contour including forces from the contour shape parameters such

as curvature (Ecurv) and continuity (Econt) defined as

Eint = αEcurv + βEcont, (2)

where α, β are positive real constants. In [51], the curvature and continuity energies at angle θ are defined

as

Ecurv,θ = (rθ − 2rθ+1 + rθ+2)
2, (3)



Econt,θ = (rθ − rθ+1)
2, (4)

where rθ is the radial distance at angle θ. Furthermore, according to [51], Eext,θ is the external Hibernian

energy at angle θ and defined as

Eext,θ = γ

(
1− |f̂(rθ)|

max(|f̂(rθ)|)

)
, (5)

where γ is a positive real constant and f̂(r(θ)) is the Hilbert transform of f(r(θ)).

To overcome the problem of having shape-dependent constants, variational polar AC models have been

proposed in the past [47], [50]. In these models, the energy function has been defined as [50]:

E(c) =

ˆ
int(c)

fdx+ α

ˆ L

0

gds, (6)

where int(c) in the first integral that denotes the area which is bounded by the contour c, L is the length

of c, f and g indicate the intensity and gradient functions, respectively, and α is the weight given to

boundary information. The L2-gradient flow of E(c) is calculated as [50]:

∇L2E(c) = Lfn + αL(∇g · n− gκ)n, (7)

where n denotes the normal of the contour c and κ represents its curvature.

III. THE PROPOSED ALGORITHM: ADAPTIVE POLAR AC (AD-PAC)

The proposed algorithm (Ad-PAC) can be categorized as a polar 2D AC where the parameters of the

energy function are dynamically and automatically changed according to image quality as well as spatial

and temporal variations of the object. Ad-PAC performs the segmentation task on a frame-by-frame basis

creating the possibility for real-time applications. The novelties include:

• Modified energy function: Ad-PAC enables researchers to incorporate many features followed by

subsequent removal of weaker features depending on the application. An example of this is the



continuity energy functional described in Section III-A - a weak feature for IJV segmentation which

was subsequently removed. In this paper, we use six energy terms and derive their gradients in polar

coordinates. Furthermore, we modified the energy terms proposed in existing polar ACs. For instance,

from (3) one can see that the curvature energy proposed in [51] is not applicable, as in the case of

a circular contour because it will result in an energy term equal to zero. This obviously cannot be

correct as theoretically the curvature of a circle is the reciprocal of its radius and the curvature of a

straight line is zero.

• Automatic adaptation of the energy function: Ad-PAC automatically adapts the parameters based on

the spatial and temporal features of the object as follows:

1. Spatial parameter adaptation: The parameters of the energy function are selected such that each

energy term is optimized and adapted based on local features of objects such as shape and intensity.

This makes the proposed algorithm more robust to image artifacts such as shadowing.

2. Temporal parameter adaptation: In the proposed algorithm, the parameters of the energy function

are adapted to temporal variations of the object, such as variations in shape, intensity, and the object

area, on a per-frame basis. In conventional ACs, to achieve the best performance, parameters must

be optimized for individual frames, a task requiring significant operator intervention. Except for the

initialization, Ad-PAC automatically calculates optimized parameters drastically reducing the need

for human intervention.

In the following subsections, we discuss these novelties in detail.

A. The Energy Function

In the proposed algorithm, we define the energy function as

E = αEcurv + βEcont + γEedge

+ κEvar + ζEintensity + νEcontr,

(8)



where α, β, γ, κ, ζ , and ν are real positive numbers, and Ecurv, Econt, Eedge, Evar, Eintensity, and

Econtr are, respectively, the energy function corresponding to the information in the object curvature,

continuity, boundary, variation of the intensity in and out of the contour, intensity on the object contour,

and contraction energy.

Ecurv is the energy term used to control the contour curvature. From (3), one can see that the curvature

energy proposed in [51] does not provide a correct result as it takes its minimum value for a circle, where

rθ = constant, i.e., it cannot segment the boundaries with less curvature than a circle (e.g., a straight line).

In this paper, we extend the curvature energy defined in the Cartesian coordinates, which is applicable to

contours with any value of curvature, to polar coordinates as:

Ecurv =
N−1∑
n=0

|pn+1 − 2pn + pn−1|2. (9)

where N is the number of contour points, |.| is the vector absolute value, and pn is the nth point vector

defined as

[xc + ρn cos(nφ0), yc + ρn sin(nφ0)] , (10)

with xc and yc being the coordinates of the center of the object in previous frame, respectively, φ0 = 2π
N

.

Econt is the energy term used to control the distance between contour points and is defined as

Econt =
N−1∑
n=0

|pn+1 − pn|2. (11)

This definition is also similar to the continuity energy term used in Cartesian ACs and is different from

the simple continuity energy term used in [51].

Eedge represents the edge energy in the object boundary though this term has limited value in scenarios

with indistinct edges as is often the case in ultrasound imaging. This energy term is defined as

Eedge = −
N−1∑
n=0

|∇I (pn) |2, (12)



where |∇I| is the gradient magnitude of the image and I (pn) is the image intensity at the current frame.

Evar is similar to the variational energy term defined in either variational Cartesian or polar ACs and is

defined as

Evar = −(u− v)2, (13)

where u and v are the mean intensities inside and outside of the contour, respectively.

Eintensity is a proposed energy term which is defined to exploit the information in spatial illumination

levels at the object boundary.

Eintensity =
N−1∑
n=0

|I (pn)− I0 (pn) |2, (14)

where I0 (pn) is the reference intensity of the contour obtained from the previous segmented frame

Econtr is the energy term that controls the area of the object and is defined as

Econtr = −
N−1∑
n=0

ρn, (15)

B. Local Parameterization of the Energy Function

1) Overview: A major shortcoming in existing AC algorithms is that they define similar energy terms

for all contour points, despite the fact that intensity and shape vary across the region of interest. To

overcome this problem, the proposed algorithm weights the energy terms locally. For example, if part

of the IJV contour is obscured by shadow then the algorithm assigns smaller weights to the external

energy of the points in the shadowed region such that increased emphasis is on the internal energy terms.

Similarly, if a part of the contour has a sharp curvature, the algorithm gives a smaller weight to the

curvature energy term for points in areas with sharp edges. These small, non-zero weights enable the

contour points to have larger curvatures while still contributing to the total energy. Furthermore, regional

variations in intensity are incorporated by subdividing the region of interest (ROI) into multiple sectors

with each sector containing one contour point and values of u and v calculated locally as shown in Fig.
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Fig. 4. Adaptive polar structure.

(4). After splitting the contour into N sectors, the energy function is modified by giving spatial weights

to equations (9-14) as:

Ecurv =
N−1∑
n=0

αn|pn+1 − 2pn + pn+1|2, (16)

Econt =
N−1∑
n=0

βn|pn+1 − pn|2, (17)

Eedge = −
N−1∑
n=0

γn|∇I (pn) |2, (18)

Evar = −
N−1∑
n=0

κn(un − vn)2, (19)

Eintensity = −
N−1∑
n=0

ζn|I (pn)− I0 (pn) |2, (20)



where αn, βn, γn, κn, and ζn are the weights given to the energy terms of the nth region. Note that Econtr

is the only remaining energy term which is not spatially adapted.

2) Energy Functions in Polar Coordinates: Polar representation is used to derive the energy function

in the following sections.

The curvature energy: By substitution of (10) in (16), the curvature energy function is rewritten as

Ecurv =
N−1∑
n=0

αn[4ρ2n + ρ2n−1 + ρ2n+1 − 4ρn(ρn−1 + ρn+1)

× cos(φ0) + 2ρn−1ρn+1 cos(2φ0)], (21)

and its gradient with respect to ρ is obtained as

∂Ecurv
∂ρ

= Acρ, (22)

where Ac is an N ×N penta-diagonal matrix with its elements defined as

ac(i, j) =

2αi−1 cos(2φ0), if mod(i− j,N) = 2,

−4(αi−1 + αi) cos(φ0), if mod(i− j,N) = 1,

2(αi−1 + 4αn + αn+1), if i = j,

−4(αi + αi+1 cos(φ0), if mod(j − i, N) = 1,

2αi cos(2φ0), if mod(j − i, N) = 2,

0, otherwise.

(23)

where i, j = 0, 1, ..., N − 1 are the indices of the matrix.

The continuity energy: Similarly, by substitution of (10) in (17), the continuity energy function is rewritten



as

Econt =
N∑
n=0

(
ρ2n − 2ρnρn+1 cos(φ0) + ρ2n+1

)
, (24)

and its gradient with respect to ρ is computed as

∂Econt
∂ρ

= Bcρ, (25)

where Bc is an N ×N tridiagonal matrix with its elements defined as

bc(i, j) = (26)

−2βi−1 cos(φ0), if mod(i− j,N) = 1,

2(βi + βi−1), if i = j,

−2βi cos(φ0), if mod(j − i, N) = 1,

0, otherwise.

The edge energy: From (18), the gradient of the edge energy with respect to ρ is an N × 1 vector

G = [g0, g1, ..., gN−1]
T where

gi = (27)

− γi
[
∂|∇I (pi) |2

∂x
cos(iφ0) +

∂|∇I (pi) |2

∂y
sin(iφ0)

]
.

The variational energy: In (19), un and vn can be computed as,

un =
Sn
An

, (28)

vn =
S
(c)
n

A
(c)
n

, (29)



where Sn and S(c)
n are total intensities inside Cn and C(c)

n , respectively, and are obtained as

Sn =

ˆ
Cn

IdA, (30)

S(c)
n =

ˆ
C

(c)
n

IdA, (31)

with Cn and C
(c)
n as the areas inside and outside the nth sector, respectively, and An and A

(c)
n are their

corresponding areas which can be computed as follows,

An ≈
1

4
sin

(
φ0

2

)
ρn (ρn+1 + 2ρn + ρn−1) , (32)

A(c)
n =

1

2
φ0R

2 − An, (33)

where R is the maximum radius of the search area. In this paper, R is set to be 50 percent larger than

the maximum contour radius, ρn, estimated in previous frame.

From (28) and (29), the gradient of un and vn with respect to ρi is computed as,

∂un
∂ρi

=
(In − un)

An

∂An
∂ρi

, (34)

∂vn
∂ρi

= −(In − vn)

An

∂An
∂ρi

, (35)

From (13), (34), (35), (32), and (33), one can find the gradient of Eintensity with respect to ρn as

∂Evar
∂ρ

= Uρ, (36)



where U is an N ×N bi-diagonal matrix defined as follows,

U(i, j) =



ι(i) + ι(i− 1) if mod(i− j,N) = 1,

4ι(i) if i = j,

ι(i) + ι(i+ 1) if mod(j − 1, N) = 1,

0, otherwise,

(37)

with ι(i) defined as

ι(i) = (38)

− 1

2
κi sin(

φ0

2
)(ui − vi)

(
Ii − ui
Ai

− Ii − vi
1
2
φ0R2 − Ai

)
.

The intensity energy: the gradient of the intensity energy with respect to ρ is an N ×1 vector χ, in which

its elements are defined as

χi =ζi (I (pi)− I0 (pi)) (39)

×
(
∂I (pi)

∂x
cos(iφ0) +

∂I (pi)

∂y
sin(iφ0)

)
.

In this paper, simple iterative gradient descent technique is used to minimize the defined energy function,

although due to single-dimentionality of the energy function, faster techniques are also applicable [52].

From equations (22), (25), (27), (36), and (39) the gradient of the total energy function is obtained as

∂Ec
∂ρ

= (αAc + βBc + κU)ρ+ γG+ ζχ+ ν1N×1. (40)

where 1N×1 is N × 1 all-ones vector. Using (40), the energy function can be iteratively minimized as

ρ(i) =ρ(i−1) − µ1(1 + µ2ρ(i−1)) (41)

� [(αAc + βBc + κU)ρ+ γG+ ζχ+ ν1N×1] ,



where ρ(i) is the estimation of ρ at the kth iteration, � is the Hadamard vector product, and µ1 and µ2

are two step size parameters that let the algorithm to converge faster to the equilibrium when the contour

point is farther from the center point.

C. Parameter Adaptation

The parameters are adapted to the shape and size of the object and to the local intensities around the

contour points of previous frames.

Adaptation of the number of contour points N : The first parameter adapted is the number of contour

points, N , whose optimal value depends on the object size. Adaptation of N is important due to large

size variations in the contour. For example, when the contour shrinks, the elements of ρ(i) become very

small such that some terms can become negative during energy minimization using (41). On the contrary,

when the contour expands, the distance between adjacent contour points increases resulting in an inaccurate

rough contour. In this paper, we select the number of contour points such that the average spacing between

contour points is a constant value Λ while later demonstrating the influence of Λ on the segmentation

accuracy. After segmenting each frame, the perimeter of the contour (P ) is computed and used to calculate

the number of contour points using

Nk =

⌈∑Nk−1−1
n=0

∣∣pk−1
n+1 − pk−1

n

∣∣
Λ

⌉
, (42)

where dxe denotes the smallest integer greater than or equal to x, and superscript k denotes the frame

index. After updating the number of contour points, the contour is re-sampled at angles

φn = nφk0, (43)

where n = 0, 1, ..., Nk − 1 and φk0 = 2π
Nk .

Parameter selection for the curvature energy: If the object boundary around a contour point is sharp, then

the gradient of the curvature energy of that contour point is relaxed such that at the equilibrium (total



energy minimized) it can approach a value with larger absolute value compared to the points on more

smooth parts of the contour. Therefore, in the proposed algorithm, we select the parameters αkn of the kth

frame, such that at the equilibrium condition for the reference frame (previous frame), all contour points

have similar gradient of curvature as ∣∣∣∣∂Ecurv,k,k−1

∂ρk−1
n

∣∣∣∣ = 1, (44)

where Ecurv,k,k−1 is defined as the curvature energy of the (k − 1)th frame with the weights αkn and is

computed by substituting αn = αkn and ρn = ρk−1
n in (21). Using (22) and (23), (44) can be rewritten as

∣∣Acρ
k−1
∣∣ = 1N×1. (45)

where the elements of Ac
k are calculated using equation (23) for the kth frame. Note that equation (45)

is NP-hard, but we can find an approximate closed form solution as follows. The nth row of the matrix

equation in (45) is

|2αn−2ρ
k−1
n−2 cos(2φ0)− 4(αn−1 + αn)ρk−1

n−1 cos(φ0)

+ 2(αn−1 + 4αn + αn+1)ρ
k−1
n − 4(αn

+ αn+1)ρ
k−1
n+1 cos(φ0) + 2αn+2ρ

k−1
n+2 cos(2φ0)|

= 1. (46)

By assuming that the local parameters αn do not rapidly change, i.e., αn−2 ≈ αn−1 ≈ αn ≈ αn+1 ≈ αn+2,

(46) is simply as

αkn =
(
ε+

∣∣12ρn
k−1 − 8(ρn−1

k−1 + ρn+1
k−1) cos(φk0)

+2(ρn−2

k−1 + ρn+2

k−1) cos(2φk0)
∣∣)−1

, (47)

where ε is a very small number to avoid zero at the denominator. Note that with this parameter selection,



(44) is approximately satisfied.

Parameter selection for the continuity energy: Similarly, the weights of continuity energy are adapted

using the segmentation result from the previous frame such that

∣∣∣∣∂Econt,k,k−1

∂ρk−1
n

∣∣∣∣ = 1, (48)

where Econt,k,k−1 is the continuity energy of the (k− 1)th frame with the weights βkn and is computed by

substituting βn = βkn and ρn = ρk−1
n in (24). Using (25) and (26), (48) can be rewritten as

∣∣Bc
kρk−1

∣∣ = 1N×1, (49)

Similar to (45), (49) is NP-Hard but has an approximate solution as

βkn =
(
ε+ |4ρn

k−1 − 2(ρn−1
k−1 + ρn+1

k−1) cos(φk0)|
)−1

. (50)

Parameter selection for the edge energy: Adaptation of the parameters γn in the edge energy function

(see eq. 12)) is crucial. Lack of adaption would result in the edge energy forcing the AC to continue to

expand in areas of broken edges or shadow resulting in leakage outside the actual object boundary. The

weighting for the edge energy is selected such that

∣∣∣∣∂Eedge,k,k−1

∂ρk−1
n

∣∣∣∣ = 1, (51)

where Eedge,k,k−1 is |∇I1 (pn) |2 of the (k − 1)th frame. Consequently, the weights γkn are obtained as

γkn =

(
ε+

∣∣∣∣∣∂|∇Ik−1

(
pk−1
n

)
|2

∂x
cos(nφk0)

+
∂|∇Ik−1

(
pk−1
n

)
|2

∂y
sin(nφk0)

∣∣∣∣∣
)−1

. (52)

Parameter selection for the variational energy: Similar to the previous energy terms, the weights κn in



the variational energy function (see equation (13)) are selected such that

∣∣∣∣∂Evar,k,k−1

∂ρk−1
n

∣∣∣∣ = 1, (53)

where κ is a constant value and Evar,k,k−1 is the variational energy of the (k−1)th frame with the weights

κkn and is computed by substituting κn = κkn and ρn = ρk−1
n in (13). Consequently, using (36), (37), and

(53), the weights κkn can be approximately obtained as

κkn =
(
ε+

∣∣(ιk−1(n) + ι(n− 1)
)
ρk−1
n−1 + 4ιk−1(n)ρk−1

n

+
(
ιk−1(n) + ιk−1(n+ 1)

)
ρk−1
n+1

∣∣)−1
. (54)

Parameter selection for the intensity energy: The intensity energy and its gradient at the previous frame

are both equal to zero (see eq. (14)) and hence, the weights cannot be based on the information from

previous frame. In this paper, the weights ζkn are heuristically set as

ζkn =
∣∣(I (pk−1

i

))∣∣2 , (55)

From (55), one can see that in the case of broken edge where the intensity is almost zero, the intensity

energy is automatically set to zero which is a reasonable outcome.

Parameter Adaptation with Forgetting Factor: Since the parameters of the AC are not expected to change

rapidly, the parameters obtained from previous frames can always be used to improve segmentation

accuracy and avoid misleading results due to the poor segmentation of any one individual frame. The



forgetting factor, ξ, is defined as

αkn = ξαkn,0 + (1− ξ)αk−1
n , (56)

βkn = ξβkn,0 + (1− ξ)βk−1
n , (57)

γkn = ξγkn,0 + (1− ξ)γk−1
n , (58)

κkn = ξκkn,0 + (1− ξ)κk−1
n , (59)

ζkn = ξζkn,0 + (1− ξ)ζk−1
n , (60)

where αkn,0, βkn,0, γ
k
n,0, and κkn,0 are the value of the parameters obtained from (47), (50), (52), and (54),

respectively. Note that since the first frame is segmented manually, its results are assumed to be accurate

and therefore, the forgetting factor ξ is applied to weights obtained from the segmentation results of

subsequent frames. Also note that, since it is assumed that at equilibrium, the overall gradient of energy

is zero, then

α + β ≈ γ + κ. (61)

IV. IMPLEMENTATION OF THE AD-PAC ALGORITHM

The Ad-PAC algorithm is initialized from a manually generated segmentation of the first frame. This

manual segmentation is adjusted and smoothed using Ad-PAC (without parameter adaptation), reducing

the error associated with initial manual segmentation. This makes the initial segmentation insensitive to

small operator errors as large as 5 pixels. For larger operator errors, this smoothing process may shift

the initial manual segmentation to a different local minima (such as the boundary of an adjacent object).

Next, the number of contour points is updated using (42). Third, the centroid is calculated as

xkc = xk−1
c +

1

Nk

Nk−1−1∑
n=0

ρk−1
n cos(φkn), (62)

ykc = yk−1
c +

1

Nk

Nk−1−1∑
n=0

ρk−1
n sin(φkn), (63)



followed by the contour being re-sampled at angles obtained from (43) using a cubic spline interpolation

algorithm [53]. Next, the weights of the energy function are obtained using (47), (50), (52), (54), and

(55). Then, the value of ρ(k) is iteratively updated using (41), until the equilibrium stop condition is met.

In this paper, the algorithm is assumed to be at equilibrium if maxi |ρ(k)i − ρ
(k−1)
i | < 10−4, where max(.)

is element-wise maximum. Finally, the algorithm returns to the first step to repeat the procedure for the

next frame. A summary of the Ad-PAC algorithm is shown in table 1.

Table 1. Ad-PAC algorithm
Input: A video, p(1)n , with n = 0, 1, ..., N − 1 as manual segmentation of the first frame, where N is
the initial number of contour points, and parameters α, β, γ, κ, ζ , and Λ.
- Read one frame from the input video.
- Update the number of contour points using (42).
- Find the center of the contour and re-sample the contour at the angles φ = 2nπ

N
.

- Update the weights of the energy function using (47), (50), (52), and (54), (55), (56), (57), (58), and
(59), and (60).
- Update the value of ρ iteratively, using (41).
- Repeat the previous step until the algorithm reaches to the equilibrium condition. The equilibrium
condition is defined as the condition when the maximum absolute value of change in ρ at the previous
step is less than 10−4 pixels.
- Return to the first step for the next frame.

Computational complexity: The computational complexity of the Ad-PAC algorithm is estimated using

the number of floating point operations (flops) [54]. From 22, 23, 25, 26, 27, 36, 37, 39 and 41, one can see

that the total number of flops required for each iteration of the algorithm is 70N . From (47), (50), (52), and

(54), (55), (56), (57), (58), and (59), and (60), one can further see that the total number of flops required to

parameter adaptation is 61N plus an additional 30N flops required for cubic re-sampling [55], and 10N+2

flops to update the center of the contour. Additionally, to compute the Sobel gradients of a 380 by 365

frame, NG = 832200 flops are required. Consequently, assuming Niter as the number of iterations required

to minimize the energy function, the total number of Nflops ≈ 70NiterN + 101N + NG + 2 is required

for segmentation of each frame with Ad-PAC algorithm. Note that since parameter adaption is performed

only once per frame, it does not significantly affect the processing time. Assuming Niter = 5000, N = 64,

and 25 percent extra processing power required for the software overhead, with an average Intel Core



i750 the segmentation of each 380 by 365 frame requires only 3× 10−3 sec, which makes the algorithm

suitable for real time segmentation and tracking purpose. Note that the running time can be significantly

reduced by using faster minimization techniques such as the dynamic programming approach described

in [52].

V. RESULTS

The experimental data was collected from 13 healthy subjects and with head of the bed elevated at

0, 30, 45, 60, and 90 degrees to simulate relative changes in blood volume. The IJV was imaged in the

transverse plane using a portable ultrasound (M-Turbe, Sonosite-FujiFilm) with a linear-array probe (6-15

Mhz). Each video has a frame rate of 30 fps, scan depth of 4cm, and a duration of 15 seconds (450

frames/clip). The study protocol was reviewed and approved by the Health Research Ethics Authority.

Ad-PAC performance was compared to expert manual segmentation, Ad-PAC without parameters adapta-

tion, Ad-PAC without temporal adaptation, and two current state-of-the-art polar AC algorithms introduced

in Section II [50], [51]. Additionally, it is also compared to region growing (RG) [31] and its combination

with AC (RGAC) [32], Speckle tracking driven AC (STAC) [29], and two classic AC algorithms - Chan-

Vese [56] and Geodesic [57]. For each of these algorithms, parameter optimization was accomplished

using a small subset of videos with variable image quality. For each video, the first frame was manually

segmented by an operator with subsequent frames segmented automatically.

Initial efforts involved noise filtration using a variety of median and bilateral filters; however, no

performance improvement was noted on any of the algorithms. This is mainly due to the fact that speckle

noise includes useful information as it is random but deterministic that can improve the performance of

AC algorithms. Hence, pre-processing techniques were not employed throughout this research.

The average contour point spacing was defined to be 10 pixels for the Ad-PAC and the other four

algorithms N = 64. Image intensities were normalized to between 0 and 1. The parameters of Ad-PAC

algorithm were empirically set to be α = 1, β = 0, γ = 0.05, κ = 0.8, ζ = 150, ν = 0.0012, µ1 = 10−4,



µ2 = 1, and ε = 10−4. After segmentation of each frame, the maximum range R was readjusted to be

1.5ρmax, where ρmax was the largest element of ρ obtained from the previous frame.

A. Evaluation of Extraction

Before we define the validation metrics, we need to define the following terms:

True positive (TP): The number of pixels correctly segmented as foreground (manual segmentation

overlapping with algorithm segmentation) is True Positive (TP) and defined as

TP = |A ∩M|, (64)

where A and M are the set of pixels inside the contour obtained from the algorithms and manual

segmentation, respectively, |A∩M| the intersection of the area between them, and |.| denotes the cardinality

of the set.

False positive (FP): False positive (FP) is the number of pixels that are falsely segmented as foreground

and is represented as

FP = |A ∩Mc|, (65)

where superscript c denotes set complement, i.e., set of the pixels outside the contour.

True negative (TN): True negative (TN) is the number of pixels correctly labeled as background and

defined as

TN = |Ac ∩Mc|, (66)

False negative (FN) is the number of pixels falsely detected as background and defined as

FN = |Ac ∩M|, (67)



Using these terms, sensitivity and specificity which are also known as true positive and false positive rates,

respectively, are obtained as

Sensitivity =
TP

TP + FN
, (68)

Specificity =
FP

FP + TN
. (69)

The DICE factor (DF), also known as Sorensen, is the most common metric used to determine the

correlation between algorithm and manual segmentation results [58]. The DICE coefficient, DF , is defined

as:

DF =
2|A ∩M|
|A|+ |M|

, (70)

and can be obtained from the above metric as

DF =
2TP

2TP + FP + FN
. (71)

B. Influence of Initial Parameter Selection on the Performance of Ad-PAC

This section demonstrates the robustness of the algorithm for each parameter along with the relative

importance of each parameter on the overall performance. This enables the identification and potential

removal of weak features from the energy function in order to improve computational efficiency. For

this study, the average DICE factor, sensitivity, and specificity of three different clips versus the initial

parameters α, β, γ, κ, and ν are shown in Figs. 5-10. In the all of these figures, one can easily see that

the specificity is always very close to one indicating a relatively small rate of FP .

The three test videos suggest setting α to one supports optimal segmentation as shown in Fig. 5. Large

values of α result in excessive contour shrinking while small values reduce contour smoothness.

The parameter β demonstrates optimal performance near zero as per Fig. 6. This strongly suggests that

the continuity energy term is a weak feature and hence, can be removed from the energy function.
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Fig. 5. The validation rates in terms of DF, sensitivity, and specificity versus the parameter α.

In Fig. 7, all three videos provide their best performance at a γ between 0.04 and 0.08, hence, γ is set

at 0.06. In two of the three test videos, the edge energy does not significantly improve the segmentation

performance as the curves appear flat around γ = 0 likely resulting from indistinct edges and consequently,

providing limited information to improve segmentation results.

Fig. 8 highlights that different videos demonstrate considerable variance in sensitivities versus κ.

Sensitivity was relatively stable for κ ranging between 0.4 and 0.9, hence κ was set to 0.8.

For the parameter ζ , the best performance was established between 125 - 175 as shown in Fig. 9.

Hence, ζ equal to 150 seems to be an appropriate selection.

Finally Fig. 10 shows that the best performance is obtained when ν is between 0.0009 and 0.0015

resulting in ν = .0012 as an appropriate selection.
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Fig. 6. The validation rates in terms of DF, sensitivity, and specificity versus the parameter β.

C. Influence of Contour Points Spacing

Here, we study the effect of contour points spacing on the accuracy of the Ad-PAC algorithm. In this

study, after segmentation of each frame, the contour is re-sampled and the new value of N is chosen to

be P/Λ, where P is the perimeter of the segmented contour, and Λ is the contour points spacing. Fig. 11

presents the average DICE factor obtained from all videos for different values of Λ. From this figure, one

can see that the average DICE factor degrades quickly when the contour spacing is large and it improves

when the contour spacing decreases but it nears saturation at Λ = 5 pixels.

D. Tracking Performance

This Section compares the tracking performance of the proposed Ad-PAC algorithm with the manual

segmentation and other algorithms as per section V for two sample video as shown in Figs. 12 and 13,

respectively. From both figures, it is evident that the proposed Ad-PAC algorithm outperforms the existing



0 0.1 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

V
al

id
at

io
n 

ra
te

1st video

DICE Factor
Sensitivity
Specificity

0 0.1 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
2nd video

DICE Factor
Sensitivity
Specificity

0 0.1 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
3rd video

DICE Factor
Sensitivity
Specificity

Fig. 7. The validation rates in terms of DF, sensitivity, and specificity versus the parameter γ.

algorithms and produces results very close to the manual segmentation. Further supporting evidence that

parameter adaption significantly improves the performance is evident in rows 3 and 4 row of Figs. 12

and 13. The segmented contour is not smooth without parameter adaptation (which is observed as spikes)

suggesting that the weight given to the curvature energy term was not sufficiently large enough to compete

with the other energy terms and consequently, dominated by them. Fig. 14 presents the DICE factors

obtained from each algorithm, averaged across all 65 videos irrespective of IJV shape, intensity, speed

of variation and quality. From this figure, it is clear that the proposed Ad-PAC algorithm outperforms

all existing algorithms with its corresponding DICE factor greater than 0.64. Other algorithms perform

significantly worse. In the following sub-sections, more detailed results are presented.
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Fig. 8. The validation rates in terms of DF, sensitivity, and specificity versus the parameter κ.

E. Influence of Image Quality

For this study, all videos were categorized, as good, average, and poor quality videos based on the

blinded expert opinion. Fig. 15 illustrates the DICE results. In good quality ultrasound videos, as per Fig.

15-(a), the proposed Ad-PAC algorithm performs very close to the manual segmentation with a DICE

factor consistently above 0.95. The minimum value of DICE factors for the other algorithms range from

0.91 down to 0.37 for the Geodesic algorithm [57].

In average quality videos, as shown in Fig. 15-(b), the performance of Ad-PAC algorithm drops as

low as 0.65, however, it still outperforms the other AC algorithms. Poor quality videos (Fig. 15-(c))

demonstrate the minimum DICE factor as being 0.55, still above other algorithms.
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Fig. 9. The validation rates in terms of DF, sensitivity, and specificity versus the parameter ζ.

F. Influence of IJV Shape

The IJV shape also impacts the segmentation results. Oval objects tend to be more suitable for

polar representation whereas collapsed vessels tend to be much more challenging. The IJV represents

a deformable model influenced by a number of factors including local anatomy, blood volume and blood

flow. For this study, IJV videos are categorized into three categories being oval, 1+ apices, and fully

collapsed. Fig. 16 presents the average DICE factor for the videos from each category. In Fig. 16-(a), it

is evident that Ad-PAC performs close to manual segmentation when the IJV has an oval shape with a

DICE coefficient greater than 0.90. The second best performance belongs to the proposed energy function

without temporal adaptation having an average DICE coefficient larger than 0.83. Fig. 16-(b) shows that

the IJV with 1+ apices result in the Ad-PAC performance as low as 0.50 but above other algorithms.

Again, the proposed energy function without temporal adaptation is the second best algorithm with a
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Fig. 10. The validation rates in terms of DF, sensitivity, and specificity versus the parameter ν.

minimum DICE factor as low as 0.48. Is is only when the IJV is fully collapsed does the Ad-PAC

algorithm under-perform the algorithm without adaptation and in the worst case, the DICE factor drops

to 0.19. This is a limitation of the polar contour model for fully collapsed objects such as the empty IJV.

G. Influence of IJV Variation

The CSA of the IJV undergoes a wide range of variation that typically present a challenge for AC models

as they are relatively sensitive to this parameter. This often results in a failure to track and converge to the

edges of the object. To study the influence of variation, the ultrasound videos were categorized into three

groups i) less than 10 percent, ii) between 10 and 90 percent and iii) more than 90 percent variations.

Note that, in the case of more than 90 percent variation, the IJV shape deforms from oval or 1+ apical

shape to fully collapsed, resulting in this category resembling the one in Fig. 16-(c). The numerical results

based on this categorization are shown in Fig. 17. As one can see from Fig. 16-(a), when the CSA of
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the IJV undergoes small variations, the average DICE factor is always greater than 0.94. In Fig. 16-(b)

with the variation between 10 to 90 percent, the Ad-PAC algorithm still performs well with an average

DICE factor of 0.64 and still outperforms the other algorithms. Finally from Fig. 16-(c), it is observed

that when the IJV undergoes large variations, all algorithms gradually lose tracking. Ad-PAC algorithm

does not always outperform Ad-PAC without adaptation in these scenarios.

VI. CONCLUSION AND FUTURE WORK

In this paper, a novel adaptive polar active contour model (Ad-PAC) is developed for the segmentation

and tracking of the internal jugular vein (IJV) in ultrasound imagery. In the proposed algorithm, the

parameters of energy function are initialized and locally adapted to the contour features extracted in

previous frames. We demonstrate that the extra processing required for parameter adaptation is negligible



Fig. 12. Tracking of the IJV in a good quality video for manual segmentation, Ad-PAC and eight other algorithms.

and that the proposed Ad-PAC algorithm performs well compared with manual segmentation while

outperforming multiple existing algorithms across a broad range of image features including image quality,



Fig. 13. Tracking of the IJV in a poor quality video for manual segmentation, Ad-PAC and eight other algorithms.



intensity, and temporal variation.

Although the proposed Ad-PAC algorithm still outperforms existing AC algorithms, the authors intend

to address the cases of poor image quality or fully-collapsed IJV by incorporating additional information

into its energy function. Furthermore, the focus of this paper centered on the energy function and

parameter adaptation with future work being directed at improving the speed and accuracy of the functional

minimization through developing more efficient techniques. Currently, the research team is evaluating

the ability of the Ad-PAC algorithm to detect relative changes in circulating blood volume with the intent

of predicting when patients with congestive heart failure are at risk of clinical deterioration and subsequent

hospitalization.
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Fig. 14. The mean level of agreement between algorithm and manual segmentation versus frame index.
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Fig. 15. The average level of agreement with manual segmentation versus frame index for ultrasound videos with (a) good, (b) average,
and (c) poor qualities.
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Fig. 16. The average level of agreement with manual segmentation versus frame index for (a) oval shape, (b) 1+ apices shape, (c) fully
collapsed videos.
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Fig. 17. The average level of agreement with manual segmentation for IJV videos with (a) less than 10% variation, (b) 10-90% variation,
(c) greater than 90% variation.
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