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Abstract: Acutely ill patients presenting with conditions such as sepsis, trauma, and congestive
heart failure require judicious resuscitation in order to achieve and maintain optimal circulating
blood volume. Increasingly, emergency and critical care physicians are using portable ultrasound
to approximate the temporal changes of the anterior–posterior (AP)-diameter of the inferior vena
cava (IVC) in order to guide fluid administration or removal. This paper proposes semi-automatic
active ellipse and rectangle algorithms capable of improved and quantified measurement of the
AP-diameter. The proposed algorithms are compared to manual measurement and a previously
published active circle model. Results demonstrate that the rectangle model outperforms both active
circle and ellipse irrespective of IVC shape and closely approximates tedious expert assessment.

Keywords: inferior vena cava (IVC); ultrasound imaging; anterior posterior (AP) diameter; active
ellipse; active rectangle; volume status

1. Introduction

Acutely ill patients presenting with conditions such as sepsis, trauma, and congestive heart failure
require judicious resuscitation in order to achieve and maintain optimal circulating blood volume
while avoiding increased morbidity and mortality [1–4]. Increasingly, emergency and critical care
physicians visually approximate the AP-diameter of the IVC using portable ultrasound in order to
guide fluid management on these patients [5–7]. Unfortunately, ultrasound image quality is highly
operator dependant, images contain considerable noise, and image artifacts frequently impede accurate
manual or computerized segmentation [8,9].

Speckle noise present in ultrasound imagery is theoretically considered to be a Rayleigh
distributed multiplicative noise [10] as the envelop of the ultrasound wave reflected from each tissue
has a Rayleigh distribution. Hence, Rayleigh mixture models have been proposed as a solution
for ultrasound image segmentation [11,12]. However, it has been shown that due to the scattering
population and signal processing, the speckle distribution deviates from Rayleigh [13]. In [14], authors
proposed a fast algorithm based on optical flow for tracking of the speckles in ultrasound images.
This approach fails when the speckle structure is rapidly deformed.

Active contours (ACs) are widely used for segmentation of ultrasound images [15–20].
ACs convert the problem of image segmentation into a minimization of an energy functional with their
performance frequently dependent on a manually defined initialization contour. In order to avoid
local minima, the initiating contour needs to be as close as possible to the actual contour. ACs can
be combined with other segmentation algorithms as a coarse-to-fine strategy to reduce the impact of
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the initial contour on segmentation error [21,22]. Researchers have addressed the challenge of IVC
segmentation using this strategy by using template matching method as the coarse segmentation
and AC as the fine-tuning (TMAC) [23]. Unfortunately, this approach fails when the IVC undergoes
large frame-to-frame variations commonly present on portable machines with lower frame rates
(e.g., 30 frames-per-second). Additionally, ACs continue to perform poorly in the context of fuzzy or
unclear boundaries as is commonly the case for the IVC.

Given that the cross-section of the IVC is largely convex, the IVC contour can be represented
in polar coordinates and consequently, polar active contours appear as a promising solution for IVC
segmentation [24]. In [25], a polar AC model based on the third centralized moment (M3) was proposed
for segmentation of IVC images. Unfortunately, M3 algorithm roughly estimates the cross-sectional
area (CSA) of the IVC and fails with poor quality images. In [26], adaptive polar AC algorithms were
proposed for segmentation of ultrasound images, where the parameters of the AC models are locally
and temporally adapted as frame by frame basis. This approach fails with poor quality IVC images [27].

Accurate segmentation algorithms such as the one proposed in this manuscript have the
potential to expand understanding into non-invasive volume status monitoring. Clinical research has
demonstrated that the true angle of collapse is actually 25 degrees off vertical rather than the simple
AP-diameter [28].

In [26], the off-axis collapse was appropriately modeled using the diameter of a circle fitted
inside the IVC with good results; however, tools capable of measuring the CSA, AP-diameter, and
off-axis collapse are needed. In this paper, we propose two algorithms based on ellipse and rectangle
models. The height of a thin rectangle fitted inside the IVC can efficiently model its clinically measured
AP-diameter. We also develop another algorithm based on ellipse fitting just for comparison purpose.

The remainder of this paper is organized as follows: Section 2 discusses the background and
related work. The proposed active rectangle and active ellipse algorithms are presented in Section 3
while experimental results are in Section 4, the results are discussed in Section 5 and the paper is
concluded in Section 6.

2. Background and Related Work

In [26], authors showed that the AP-diameter of the IVC can be accurately modeled with the
diameter of a circle fitted inside the IVC. The active circle algorithm proposed in [26] is based on the
following evolution functional:

E = α(u− v)(2I − u− v), (1)

where u and v are the mean of the intensities for the pixels inside and outside the contour, respectively,
and I is the intensity of the pixels on the contour. This functional is used to evolve the parameters of
the circle, i.e., R as the circle radius and (xc, yc) as its center coordinates. For this, the circle is sampled
at K points with polar angles θk =

2kπ
N , k = 0, 1, ..., K− 1, where the normal vector and the Cartesian

coordinates corresponding to the kth sampled point are denoted as

~nk = [cos(θk), sin(θk)]
T , (2)

and
[xk, yk]

T = [xc, yc]
T + R~nk, (3)

respectively. The evolutional functional generates forces fk along the normal vectors as

fk = α(u− v)(2Ik − u− v). (4)

These forces move the contour points to their new positions as

[x̃k, x̃k] = [xc, yc]
T + (R + fk)~nk, (5)
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where fk is the value of the evolution functional at kth contour point. It is shown that the average
evolution functional approaches zero when the contour points are on the IVC boundary. In active
circle algorithm, the center of the circle is evolved as

[x̃c, ỹc] = [xc, yc] +
1
K

K−1

∑
k=0

fk~nk, (6)

where [xc, yc] and [x̃c, ỹc] are the center coordinates of the circle before and after evolution, respectively,
and fk is the evolution force for the kth contour points obtained from 1, and ~nk is its corresponding
normal vector that can be obtained as

~nk = [cos(θk), sin(θk)]
T , (7)

Equation (6) indicates that the circle center point is simply translated by the average of the force
vectors fk~nk. The center of the circle is evolved as

R̃ = R +
1
K

K−1

∑
k=0

fk. (8)

where R and R̃ is the radius of the circle before and after evolution, respectively. This indicates that the
circle radius is evolved with the average of the force magnitudes fk.

3. Proposed Algorithms

In this section, we develop active ellipse and rectangle models based on the evolution functional
proposed in [26].

3.1. Active Ellipse Model

In [26], authors showed that the active circle algorithm estimates the IVC AP-diameter much more
accurate than the Star–Kalman algorithm in [29] which is based on ellipse fitting, but does this indicate
that a circular model can estimate the AP-diameter more accurate than an elliptical model? To answer
this question, we develop an active ellipse algorithm based on the same evolutional functional as the
one employed in the active circle algorithm.

In general case, during the evolution, the kth contour point is evolved as

[x̃k, x̃k] = [xk, yk]
T + fk~nk. (9)

The next step is to evolve the ellipse parameters using the evolved contour points. Unlike the
circular model, the evolved ellipse parameters are not linearly related to evolved contour points.
This non-linearity may result in convergence to local minima. To avoid this, at each iteration, we fit
a new ellipse using the following conic equation. Note that since the algorithm still operates iteratively,
the ellipse parameters are gradually evolving and hence, we call this algorithm active ellipse algorithm.

ax2 + bxy + cy2 + dx + ey = 1, (10)

where x and y are the coordinates of the points on the conic, a, b, c, d, and e are the conic parameters.
Note that with an elliptical model, the values of a and b must be positive. With K points with
coordinates [x̃k, x̃k], the best ellipse is fitted by minimizing the following cost function:

C =
K

∑
k=1

(ax̃2
k + bx̃k ỹk + cỹ2

k + dx̃k + eỹk − 1)2. (11)
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Equation (11) can be rewritten in matrix form

C(A) = ATXTXA + 21T
KXA + K, (12)

where the vector of conic parameters defined as A = [a, b, c, d, e]T , X is a matrix with
[x̃2

k , x̃k, ỹk, ỹ2
k , x̃k, ỹk] as its kth row, 1K is K× 1 all-one vector, and superscript T is the transpose operator.

After setting the gradient C(A) to zero, the vector A is obtained as

Â = −1T
KX(XTX)−1. (13)

Figure 1 presents the flowchart for the proposed active ellipse algorithm. As shown in the
flowchart, only for the first frame, an operator needs to manually select a point inside the IVC and
the rest of the algorithm works automatic. For each frame, the ellipse parameters are iteratively
updated using Equations (4) and (13) until a convergence is reached. We assume that the algorithm
has reached the convergence when the maximum change in the elements of the A is less than 10−4, i.e.,
when max(|Ân − Ân−1|) < 10−4, where max is the element-wise maximum, and Ân is the vector A
estimated at nth iteration. After convergence, the algorithm proceeds with the next frame.

Read one frame
from the input video.

Is this the
first frame?

Select one point
inside the IVC

by a mouse click.

Set initial radius
R = 8 pixels.

Compute the forces
for the points
on the ellipse

using Equation (4).

Find the center of
the previous frame

Update the ellipse
parameters using

Equation (13).

Is the stop
condition

met?

yes

no

no
yes

Figure 1. Flowchart for the proposed active ellipse algorithm for estimation and tracking of the IVC
AP-diameter from ultrasound videos.
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Figure 2 shows the ellipse evolution versus the number of iterations for a sample IVC frame.

[H]

Figure 2. The rectangle evolution versus number of iterations.

3.2. Active Rectangle Model

The intuition to use a rectangular model is that the AP-diameter is clinically defined as the
largest vertical diameter of the IVC contour which may practically deviate from the actual diameter of
an circle or even an ellipse. The AP-diameter can be modeled as the height of a vertical thin rectangle.
As a starting point, we assume that the fitted rectangle has a fix width w = 3 pixels and the only
parameters that have to be modified are the center and the height of the rectangle. With the forces
defined as Equation (4), either of the upper and lower sides of the rectangle move with the average of
the forces applied on that side. Hence, the center of the rectangle is shifted as

x̃c = xc +
1
Kl

∑ p ∈ Pl fp −
1

Kr
∑ p ∈ Pr fp, (14)

ỹc = yc +
1

Ku
∑ p ∈ Pu fp −

1
Kb

∑ p ∈ Pb fp, (15)

where Pl , Pr, Pu, and Pb are the subsets of the contour points on the left, right, upper, and lower sides
of the rectangle, respectively, and Kl , Kr, Ku, and Kb are the number of points in each of these sets.
Similarly, the height of the rectangle is evolved as

h̃ = h +
1

Ku
∑ p ∈ Pu fp +

1
Kb

∑ p ∈ Pb fp. (16)

Although a thin rectangle accurately models the clinically measured AP-diameter, it might be lost
if parts of the IVC boundaries are missing as the IVC edges are not detected and hence, the algorithm
may diverge. To combat this problem, we modify the active rectangle algorithm by starting with
a rectangle with a much larger width as w = 15 pixels. This rectangle is gradually narrowed to its
final width, i.e., w = 3 pixels which is narrow enough to model the AP-diameter. The active rectangle
algorithm is summarized as the flowchart in Figure 3. As shown in Figure 3, similar to the active circle
and ellipse algorithms, an operator has to manually select a point inside the IVC and the rest of the
algorithm is automatic and does not need further manual intervene. The active rectangle algorithm
converges much faster than active circle and ellipse algorithms as the results show that in all cases,
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no more than Ni = 200 iterations are required to reach a convergence, while with other two algorithms,
typically up to Ni = 5000 iterations are required to reach a convergence. Therefore, there is no need to
set a stop condition for the active rectangle algorithm.

Read one frame
from the input video.

Is this the
first frame?

Create a rectangle
with initial width

w = 15 and
height h = 4 pixels.

Compute the forces
for the points on each
side of the rectangle
using Equation (4).

Find the center of
the previous frame

Update the height
and center of the

IVC using Equations
(14), (15), and (16)

and gradually
shrink the rectangle.

Is the stop
condition

met?

yes

no

no
yes

Figure 3. Flowchart for the proposed active rectangle algorithm for estimation and tracking of the IVC
AP-diameter from ultrasound videos.

Figure 4 shows the rectangle evolution versus number of iterations for the IVC image as in
Figure 2. By comparison of Figures 2 and 4, one can see the active rectangle algorithm not only
converges faster but also more accurately estimates the AP-diameter than the active ellipse algorithm.
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Figure 4. The rectangle evolution versus number of iterations.

4. Results

Ultrasound videos from eight healthy subjects (The data was actually collected from twenty
subjects, but only for eight cases, the manual measurement seemed reliable to be used as the ground
truth). were collected with the IVC imaged in the transverse plane using a portable ultrasound
(M-Turbo, Sonosite-FujiFilm) and a phased-array probe (1–5 MHz). Each video has a frame rate of
30 fps, scan depth of 19 cm, and a duration of 15 s (450 frames/clip). Figure 5 depicts the first frame of
all eight subjects. In Figure 5, one can see that an IVC image can have different shapes and qualities.
For instance, in the clip no. (1), although part of the image is shadowed, but the IVC edges are almost
visible. The IVC videos for the clips nos. (3) and (8) show the lowest quality as the IVC is almost
collapsed in the former one and it vanishes after the initial frames in the latter one (this is not seen in
this image as it is only the first frame of the video).

Figure 5. The first frame of all eight IVC videos.
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Tracking Performance

Figures 6–8 present the AP-diameter manually measured by Dr. Andrew Smith as a point-of-care
ultrasound expert and the ones that are semi-automatically estimated by the three shape-based
algorithms for the first three sample videos depicted as subjects (1)–(3) in Figure 5. From Figure 6,
one can see that with the first IVC clip which has a good quality, both active circle and active rectangle
algorithms efficiently track the manual measurement, although the active ellipse algorithm roughly
tracks the manual measurement and performs poorer than the other two methods.

Figure 7 presents the tracking results for the second clip where one can easily see that all three
algorithms perform less accurate than the case in Figure 6. This is mainly due to the fact that although
the second clip seems to have a better quality than the first one, it has a more fuzzy contour, making the
algorithms less accurate than the first clip. Similar to the first clip, we can see that the active rectangle
algorithms performs better than the other two methods.

50 100 150 200 250 300 350 400 450

Frame index

0

0.5

1

1.5

2

2.5

3

Manual measurement

Circle model

Ellipse model

Rectangle model

Figure 6. AP-diameter for the first video depicted in Figure 5, as measured by the manual measurement
(red line), active circle algorithm (black line), active ellipse algorithm (green line) and active rectangle
algorithm (blue line).

Figure 8 presents the tracking results for the third video depicted in Figure 5 where the IVC
is almost collapsed and therefore, a smaller AP-diameter is expected. In this case, the active circle
algorithm loses the tracking after 337 frames, while both active ellipse and active rectangle algorithms
efficiently track the result obtained from the manual measurement.
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Manual measurement

Circle model

Ellipse model

Rectangle model

Figure 7. AP-diameter for the second video depicted in Figure 5, as measured by the manual
measurement (red line), active circle algorithm (black line), active ellipse algorithm (green line) and
active rectangle algorithm (blue line).
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Frame index

0

0.5
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2.5

3

Manual measurement

Circle model

Ellipse model

Rectangle model

Figure 8. AP-diameter for the third sample video depicted in Figure 5, as measured by the manual
measurement (red line), active circle algorithm (black line), active ellipse algorithm (green line) and
active rectangle algorithm (blue line).

Figures 9–11 present the probability distribution function (PDF) of the AP-diameter estimation
error for the three videos depicted as subjects (1)–(3) in Figure 5. Here, error is defined as the difference
between the AP-diameter estimated by each of the three shape-based algorithms and the one measured
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by the expert. From Figures 9–11, one can see that for all three investigated scenarios, the active
circle algorithm provides a biased measurement. This confirms the similar result reported in [26].
Furthermore, for all three cases the PDF of the error obtained from the active rectangle algorithm is
more concentrated around zero than the other two algorithms, indicating the best performance among
the three shape-based algorithms.
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Ellipse model

Rectangle model

Figure 9. PDF of the AP-diameter estimation error w.r.t. manual measurement for the first sample
video depicted in Figure 5, as measured by active circle algorithm (black line), active ellipse algorithm
(red line) and active rectangle algorithm (green line).
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Figure 10. PDF of the AP-diameter estimation error w.r.t. manual measurement for the second sample
video depicted in Figure 5, as measured by active circle algorithm (black line), active ellipse algorithm
(red line) and active rectangle algorithm (green line).
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Figure 11. PDF of the AP-diameter estimation error w.r.t. manual measurement for the third sample
video depicted in Figure 5, as measured by active circle algorithm (black line), active ellipse algorithm
(red line) and active rectangle algorithm (green line).

Figures 6–11 show that in all three investigated clips, the active rectangle algorithm outperforms
the other two methods. To have a better insight about the results, we present numerical results in
Tables 1 and 2. Table 1 presents the room mean square (RMS) of the AP-diameter estimation error
for the three shape-based algorithms for the all eight clips depicted in Figure 5. Note that the error is
defined as the difference between the AP-diameter estimated by each of the algorithms and the one
manually measured by the expert. Except with subject no. (8), where manual segmentation is reliable
for only the first 150 frames (see [26]), for the other seven subjects, the RMS of error is calculated over
all 450 frames. From this table, one can see that in all eight investigated cases, the active rectangle
algorithm outperforms the other two methods, while in five out of the eight cases, the active circle
algorithm performs more accurate than the active ellipse algorithm.

Table 2 presents the maximum absolute value of error obtained for the three algorithms for all
eight clips depicted in Figure 5. This tables confirms the results obtained in Table 1, i.e., the active
rectangle algorithms always outperform the other two methods.

Table 1. RMS of the AP-diameter estimation error.
```````````Method

Subject No. (1) (2) (3) (4) (5) (6) (7) (8) Ave.

Circle model 0.10 0.16 0.16 0.25 0.25 0.10 0.11 0.26 0.17
Ellipse model 0.21 0.19 0.14 0.26 0.18 0.11 0.11 0.20 0.35

Rectangle model 0.08 0.11 0.12 0.23 0.14 0.10 0.10 0.18 0.12

Table 2. Maximum absolute value of AP-diameter estimation error.
```````````Method

Subject No. (1) (2) (3) (4) (5) (6) (7) (8)

Circle model 0.06 0.29 0.48 0.57 0.75 0.41 0.44 0.43
Ellipse model 0.11 0.32 0.35 0.59 0.48 0.54 0.47 0.38

Rectangle model 0.05 0.18 0.19 0.42 0.28 0.37 0.39 0.29

Table 3 present the correlation between the AP-diameter estimated by each of the three
shape-based algorithms and the one measured by the expert. This table confirms the results obtained
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in Tables 1 and 2 as in all eight cases, the proposed active rectangle algorithm outperforms the other
two algorithms and provides the highest correlation with the manual measurement.

Table 4 present the average position error for each of the three shape-based algorithm versus
the one measured by the expert. In this table, the distance position error is defined as the Euclidean
distance (in cm) between the center of the fitted shape (circle, ellipse, or rectangle) and the center of
the AP-line manually located by the expert. This also confirms the previous results as in all eight
investigated cases the center of the fitted rectangle is closer to the manual measurement than the
centers of the fitted circle and ellipse.

Table 3. Correlation between the AP-diameters estimated by the three shape-based algorithms and
manual measurement.
```````````Method

Subject No. (1) (2) (3) (4) (5) (6) (7) (8)

Circle model 0.9987 0.9987 0.9652 0.7971 0.9985 0.9986 0.9988 0.9958
Ellipse model 0.9974 0.9985 0.9945 0.9981 0.9986 0.9985 0.9991 0.9850

Rectangle model 0.9993 0.9994 0.9949 0.9991 0.9992 0.9991 0.9994 0.9985

Table 4. The average position error for the three shape-based algorithms w.r.t. the manual measurement.
```````````Method

Subject No. (1) (2) (3) (4) (5) (6) (7) (8) Ave.

Circle model 0.41 0.39 0.63 0.65 0.36 0.49 0.55 0.64 0.51
Ellipse model 0.42 0.43 0.31 0.47 0.44 0.49 0.54 0.56 0.45

Rectangle model 0.37 0.33 0.27 0.28 0.29 0.47 0.54 0.55 0.39

5. Discussion

5.1. The Performance of the Proposed Algorithms

As it was described earlier in the Results section, for all eight investigated clips, the active
rectangle algorithm performs closer to the manual measurement than the other two methods. This is
due to the fact the AP-diameter is clinically defined as the largest vertical diameter inside the IVC.
The active circle algorithm finds the largest circle inside the IVC and assumes that the diameter of
this circle can efficiently model the AP-diameter. This is technically correct if the IVC is horizontally
aligned, but based on the angle of the ultrasound prob, the IVC in the ultrasound clip can be rotated
along the horizontal axis and this makes the results somewhat different from the clinically measured
AP-diameter.

In five out of the eight cases, the active circle algorithm performed better than the active ellipse
algorithm. This is mainly due to the fact that a circle has less degree of freedom than an ellipse
and therefore, circle evolution can be performed more accurate than ellipse evolution. Furthermore,
from Figure 5, one can see that in most cases, the IVC does not appear to have an elliptical shape
making the ellipse fitting process inaccurate.

5.2. Complexity Comparison

In this section, we analyze the computational complexity of the proposed algorithms in terms of
the number of floating points operations (flops) required to estimate the AP-diameter for each frame.
Assume Ni as the maximum number of iterations required to reach a convergence, K as the number of
contour points, and Amax as the maximum number of pixels inside the fitted shape. The maximum
required flops per frame for active circle algorithm is Ncir

f lops ≈ (2Amax + 3K)Ni. From Equations (4),
(13)–(16), one can see that the maximum required flops per frame for active ellipse and rectangle
algorithms are Nell

f lops ≈ (2Amax + 5K)Ni and Nrec
f lops ≈ (2Amax + 2K)Ni, respectively. Note that the

rectangular model converges much faster than circular and elliptical models as the active circle and



J. Imaging 2019, 5, 12 13 of 14

ellipse algorithms need up to Ni = 5000 iterations to reach a convergence, while the active rectangle
algorithm converges in no more than Ni = 200 iterations.

6. Conclusions

In this paper, two novel algorithms based on elliptical and rectangular models were proposed
for semi-automatic estimation of AP-diameter of the IVC in ultrasound videos. The proposed
algorithms were compared with the active circle algorithm and was shown that although IVC usually
has an elliptical CSA, both circular and rectangular models provide a more accurate AP-diameter
measurement, while the rectangular model outperforms the other two models. This is due that fact
that the AP-diameter is clinically measured as the maximum vertical diameter of the IVC which can
be modeled better as the vertical side of a rectangle than the diameter of a circle or even the largest
vertical diameter of an ellipse.

Author Contributions: A.S. provided the data and performed the manual measurement, E.K. designed the
algorithms, performed the experiments, and wrote the paper, and M.S. and A.S. edited the paper.
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Abbreviations

The following abbreviations are used in this manuscript:

AP Anterior–posterior
IVC Inferior vena cava
CSA Cross sectional area.
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