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Abstract: Human eye movement is one of the most important functions for understanding our
surroundings. When a human eye processes a scene, it quickly focuses on dominant parts of the
scene, commonly known as a visual saliency detection or visual attention prediction. Recently,
neural networks have been used to predict visual saliency. This paper proposes a deep learning
encoder-decoder architecture, based on a transfer learning technique, to predict visual saliency. In the
proposed model, visual features are extracted through convolutional layers from raw images to predict
visual saliency. In addition, the proposed model uses the VGG-16 network for semantic segmentation,
which uses a pixel classification layer to predict the categorical label for every pixel in an input image.
The proposed model is applied to several datasets, including TORONTO, MIT300, MIT1003, and
DUT-OMRON, to illustrate its efficiency. The results of the proposed model are quantitatively and
qualitatively compared to classic and state-of-the-art deep learning models. Using the proposed deep
learning model, a global accuracy of up to 96.22% is achieved for the prediction of visual saliency.

Keywords: visual saliency; Convolutional Neural Networks; VGG-16; semantic segmentation;
deep learning

1. Introduction

Humans have a strong ability to pay attention to a specific part of an image instead of processing
the entire image. This phenomenon of visual attention has been studied for over a century [1].
Visual attention is defined as the processes that enable an observer to focus on selected aspects of the
retinal image over non-selected aspects. In other words, visual attention refers to a set of cognitive
procedures that select relevant information and filter out irrelevant information from cluttered visual
scenes. The task of visual attention prediction is a popular research area in the computer vision and
neuroscience fields. In general, Visual Attention (HVA) is based on two strategies: bottom-up and
top-down visual attention. Bottom-up models mainly employ low-level cues, such as color, intensity,
and texture. Additionally, the bottom-up strategy tries to select regions which show the prominent
characteristics of their surroundings [2,3]. In contrast, top-down approaches are task-oriented and
try to locate a target object from a specific category. They also depend on the features of the object
of interest [4,5]. Accordingly, bottom-up and top-down approaches are mainly driven by the visual
characteristics of a scene and the task of interest, respectively [6,7].

In the last few years, several models have been proposed for the prediction of human visual
saliency, with the most common technique being a saliency map. Saliency maps illustrate that the
location of human attention is focused on a particular area within the whole image [8–10]. In addition,
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a saliency map is an image that shows each pixel’s unique quality. Importantly, the purpose of a
saliency map is to change the representation of an image to a smooth image that is more meaningful
and easier to analyze [11,12].

Deep Convolutional Neural Networks (CNNs) have been commonly used in the field of visual
attention. This is because CNNs are strong visual models and they are able to learn features from a raw
image dataset (low-level feature) and create a feature map (high-level feature) [13,14]. This scenario
describes how the human visual system can detect the location of visual attention. In the last few years,
several deep learning models have been used to predict visual saliency points, most of which have
achieved impressive performances compared to conventional methods [15–18]. The task of extracting
a saliency map has further opened the door for several applications, especially in computer vision,
including object detection, object recognition, scene classification, video understanding, and image
compression [19].

This study aims to propose the application of a semantic segmentation model based on the VGG-16
network (see Section 2.1 for more details on the VGG-16 network) to predict human visual attention in
the field of view. Specifically, the main objective of this research is to improve the accuracy of visual
saliency prediction by proposing a fully convolutional neural network-based model.

The proposed method that we used falls under the bottom-up category. Therefore, in the results
section, we only compare our proposed method with relevant bottom-up methods (see Section 4.1 for
more details on relevant methods).

The proposed model was developed based on the encoder-decoder architecture, wherein the
fine-tuning strategy was applied in the encoder stage (i.e., VGG-16 model) [20]. More specifically,
this study uses a VGG-16 model that was trained on more than a million images from the ImageNet
database [20,21]. In addition, we trained the proposed model using SALICON images (see Section 3.3.1
for more details on the SALICON dataset) and their ground truth data [22], and evaluated the
results over several datasets, including TORONTO, MIT300, MIT1003, and DUT-OMRON [23–25].
The contributions of this paper can be summarized in the following points:

(1) A deep learning architecture based on the VGG-16 network that is able to predict visual saliency
is proposed. As opposed to the current state-of-the-art technique that uses three stages in the
encoder/decoder architecture [26], the proposed network uses five encoder and decoder stages to
produce a useful saliency map (e.g., visual saliency). This makes the proposed architecture more
powerful for extracting more specific deep features;

(2) The proposed model is the first to use a semantic segmentation technique within the
encoder-decoder architecture to classify all image pixels into the appropriate class (foreground or
background), where the foreground is most likely a salient object;

(3) The proposed model is evaluated using four well-known datasets, including TORONTO, MIT300,
MIT1003, and DUT-OMRON. The proposed model achieves a reasonable result, with a global
accuracy of 96.22%.

To this end, the proposed method, based on the VGG-16 network, is described in Section 2;
the materials and methods of the proposed model in Section 3; and the quantitative and qualitative
experimental results obtained from the four datasets are explained in Section 4. Finally, we summarize our
results in the conclusion and report potential future uses, applications, and improvements to this research
in Section 5 (Our source code is available at: https://github.com/Bashir2020/Saliency-_model_-2019).

2. The Proposed Method

The proposed model is based on a semantic segmentation technique using the VGG-16 network.
Hereby, we thoroughly explain all the important information about the VGG-16 network in the
next sub-sections.

https://github.com/Bashir2020/Saliency-_model_-2019
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2.1. The VGG-16 Netwok Architecture

In this section, we describe the architecture of the proposed model. Our model architecture
consists of encoder-decoder stages; the encoder stage has five convolutional blocks (conv1, conv2,
conv3, conv4, and conv5). The encoder blocks are learned by down-sampling, which applies different
receptive field sizes to create the feature maps. The decoder stage also has five deconvolution blocks
(decon1, decon2, decon3, decon4, and decon5). The decoder blocks up-sample the feature maps and
this creates an output the same size as the input image. The encoder blocks are adopted from a
pretrained network called VGG-16 [21].

The VGG-16 network was developed by Simonyan and Zisserman in the 2014 ILSVRC
competition [20]. Generally, the VGG-16 network contains thirteen convolution layers, five pooling
layers, and three fully connected layers [27]. The VGG-16 network is trained on more than a million
images from the ImageNet database [28] and can classify images into 1000 object classes. The VGG-16
network has an image input size of 224 × 224. Figure 1a,b shows the general structure and the data
flow through the VGG-16 network.
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Figure 1. General Structure of the VGG-16 network: (a) Convolution layers of the VGG-16 network,
and (b) data flow in the VGG-16 network [20].

The major difference between the VGG-16 network and previous networks is the use of a series
of convolution layers with small receptive fields (3 × 3) in the first layers instead of a few layers.
This results in fewer parameters and more nonlinearities in between, making the decision function
more selective and the model easier to apply for training [20].

The input image is passed over a series of convolution layers with 3 × 3 convolutional filters.
This is beneficial because the filter will capture the notation of the center, left/right, and up/down.
The convolution stride is set to 1 pixel, whereas the padding is set to 1 pixel. Five max-pooling layers
are used after convolution layers for the down-sampling operation (i.e., dimensionality reduction).
Each max-pooling is also performed over 2 × 2 pixels, with a stride value of 2. In addition, three
fully-connected (FC) layers follow a series of convolution layers. Specifically, the first two have 4096
channels each, and the third has 1000 channels. The structure of the fully connected layers is the same
in all networks. The final layer is a soft-max layer that must have the same number of nodes as the
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output layer. The function of the soft-max layer is to map the non-normalized output to probability
distribution through predicted output classes [20].

The convolutional neural network can be considered as the composition of several functions,
as follows:

f (x) = fL (. . . f2 ( f1 (x; w1); w2) . . .), wL) (1)

where each function fL takes a datum xL and parameter vector wL as the input and produces a datum
xL+1 as the output. The parameters w = (w1, . . . , wL) are learned from the input data for solving a
specific problem, for example, image classification. Moreover, there is a function called non-linear
activation (i.e., not linear function) that is associated with the convolution layers. This function is
also used to keep all the input values of the network as the positive value. Equation (2) explains
this concept.

yi jk = max
(
0, xi jk

)
(2)

There is another important operator also associated with the architecture of the VGG-16 network
that is called the pooling operator. The purpose of this operator is to reduce the dimension of the input
volume (i.e., sub-sampling method) and preserve discriminant information. There are several types of
operator, such as max-pooling, average-pooling, and sum-pooling. For instance, the output of a p× p
max-pooling operator is

yi jk = max
{
yi′ j′k : i ≤ i′ < i + p, j ≤ j′ < j + p

}
(3)

2.2. Visual Saliency Prediction Model

In this section, we propose a visual saliency prediction model based on a semantic segmentation
algorithm, where the fixation map is modeled as the foreground (salient object). A semantic
segmentation algorithm classifies and labels every pixel in an image into objects (foreground) and the
background [29]. There are many applications for semantic segmentation, including road segmentation
for autonomous driving and cancer cell segmentation for medical diagnosis.

The architecture of the proposed semantic segmentation model is illustrated in Figure 2. To obtain
a multi-level prediction, each output of the convolution layer (encoder) must be directly connected
to the corresponding deconvolution layer (decoder). In general, the task of visual attention uses
a combination of low-level and high-level features. In other words, we incorporate multi-layer
information together to produce the output saliency map. Low-level features, such as edges, corners,
and orientations, are captured by small-level receptive fields, while high-level features, such as semantic
information (e.g., object parts or faces), are extracted by high-level receptive fields. Moreover, there are
many receptive field sizes, and each corresponds to the layer size. Therefore, based on the advantages
of CNNs, we can use small and high receptive fields in down-sampling (e.g., multi-convolution layers,
such as in the VGG-16 network) to create feature maps. Both low- and high-level features are very
important for predicting human visual saliency. Therefore, our proposed model produces the final
saliency map based on a combination of all the outputs of the individual deconvolution operations.
Additionally, in our proposed model, we only consider the CNN layers that create feature maps and we
exclude the fully connected layers. In addition, the saliency combination block represents the merged
multi-layer output saliency predictions (i.e., the prediction average achieves a higher performance
compared to that of a single-layer output).
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Assume we have an input image, and its feature map is Fl−1 of the l-th layer and the convolution
processes are specified by the weight, Wl. Therefore, the output of the feature map can be calculated by

F l = fcon
(
Fl−1; Wl

con

)
= Wl

con ∗ Fl−1, l = 1 . . . .L (4)

where F0 is the input image, the symbol * indicates the convolution operation, and L is the number of
layers. The deconvolution operation is opposed to the convolution operation and these can be run in
two directions (forward and backward through of convolution), where it performs the up-sampling
operation represented by Equation (5):

fdecon(F; Wdecon) = Wdecon ∅s F (5)

where ∅s is the stride convolution and s is an up-sampling factor. The output operation of the decoder
is then given as follows:

Yl = D
(
Fl ; Wl

decon

)
(6)

where D is the deconvolution operation and Wl
decon is the kernel weight of the deconvolution layer.

Moreover, the total number of weights can be explained by

W =
(
W1

con, . . . , WL
con, Wl1

decon , . . . , WlM
decon

)
(7)

where M represents the output prediction maps. Additionally, the loss-function is a Stochastic Gradient
Descent with Momentum (SGDM, Equation (8)). The objective of this function is to accelerate gradient
vectors in the right direction and increase the speed of convergence. In other words, SGDM optimizes
the differentiable function and decreases classification errors [26,30]. The loss function can also be
defined by Equation (8):

{0, 1}L(α) = YlogHl + (1−Y) log(1−Hl), Y (8)

where L(α) is the cross entropy between the predicted probability Hl and the ground truth (GT) labeled
Y.
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3. Materials and Methods

In this section, we describe all the steps for implementing our work, including training, adjusting
the parameters of, validating, and testing the model with several available benchmark datasets
(TORONTO, MIT300, MIT1003, and DUT-OMRON).

3.1. Model Training

The proposed model was trained on a standard dataset (i.e., SALICON) [22]. This dataset consists
of a training dataset (10,000 images) and validation dataset (5000 images), both with ground truth data
and a test dataset (5000 images) without ground truth data. All the images are in JPG format, except
for the ground truth dataset, which is in grayscale PNG format, and all images have a resolution of
640 × 480. At the beginning of the training, all the weights of the filters were initialized based on the
pre-trained network (VGG-16), which has an input image of 224 × 224 and a Gaussian distribution with
a 0.01 standard deviation and zero mean for the weights of each layer [22]. The purpose of using the
VGG-16 pre-trained network is to transfer the learned knowledge and reuse it to predict human visual
saliency. Additionally, the network parameters were as follows: Initial Learn Rate: 0.01; Max Epochs:
10; Mini Batch Size: 10; and number of iterations: 620. The network was trained on 10,000 images
and used selected images from the test datasets for testing (the global accuracy of the proposed model
was 96.22%). Moreover, using the loss function (SGDM), the model parameters learned to increase the
speed of convergence and to decrease output errors. Figure 3 illustrates the training progress produced
by the proposed model from the specified training images (SALICON).
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3.2. Model Testing

This section is devoted to testing the proposed model with several dataset images (test images).
As we illustrated in the previous section, the SALICON test images are available without ground truth,
thus, we suggested the use of other datasets, such as TORONTO, MIT300, MIT1003, and DUT-OMRON
datasets, for model testing. Figure 4 shows the model testing of the selected images. Note that the
proposed model has the ability to detect the most salient objects in the scene.
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3.3. Datasets

The proposed model was tested on several well-known datasets, including TORONTO, MIT 300,
MIT1003, and DUT-OMRON, which are described below. During the model testing, given an inquiry
image, we obtained the saliency map prediction from the last saliency combination layer. The average
time required to test an image was about 15 s.

3.3.1. SALICON

SALICON is the largest dataset for visual attention on the popular Microsoft Common Objects in
context (MS COCO) image database [22]. It contains 10,000 training images, 5000 validation images,
and 5000 testing images, with a fixed resolution of 480 × 640, collected from the Microsoft COCO
dataset. This dataset also includes the ground truth data for the training and validation datasets;
however, the ground truth data for the test datasets were not available [22].

3.3.2. TORONTO

The TORONTO dataset contains 120 colour images with a fixed resolution of 511 × 681 pixels.
This dataset contains both indoor and outdoor environments and was free-viewed by 20 human
subjects [24].

3.3.3. MIT300

MIT300 is a collection of 300 images that contains the eye movement data of 39 observers. It should
be noted that MIT300 is a challenging dataset since its images are highly varied and natural. Saliency
maps of all images are withheld and employed by the MIT Saliency Benchmark for model evaluation
(http://saliency.mit.edu/results_mit300.html) [31].

3.3.4. MIT1003

MIT1003 is a collection of 1003 images from the Flicker and LabelMe collections. Saliency maps
were also obtained from the eye-tracking data of 15 users. It is the largest eye fixation dataset, wherein
there are 779 landscapes and 228 portraits images that vary in size from 405 × 405 to 1024 × 1024
pixels [31].

3.3.5. DUT-OMRON

DUT-OMRON contains 5168 high quality images that were manually selected from more than
140,000 images. Images in this database have one or more salient objects and a relatively complex
background [32].

3.4. Evaluation Metrics

There are several indices for evaluation metrics to measure the agreement between visual saliency
and model prediction. There are also previous studies on saliency metrics, which explain that it is hard
to perform a fair comparison to evaluate saliency models using one metric [33]. In general, saliency
evaluation indices are divided into location-based and distribution-based metrics. The former type of
evaluation considers the saliency map at district locations; the latter considers both predicted saliency
and human eye fixation maps as continuous distributions. The most well-known location-based
indices are the Area Under the Receiver Operating Characteristic (ROC) curve in two versions of Judd
and Borji [29]. Alternatively, the most commonly used distribution-based indices are the Normalized
Scanpath Saliency (NSS) and Similarity Metrics (SIM). These indices are described in detail in the
following sections [29].

http://saliency.mit.edu/results_mit300.html


Information 2019, 10, 257 9 of 15

3.4.1. Normalized Scanpath Saliency (NSS)

The NSS metric was introduced to the saliency community as a simple correspondence measure
between human eye fixation and model prediction. NSS is susceptible to false positives and relative
differences in saliency across the image. Given a saliency map S and a binary map of fixation location
F, then

NSS =
1
N

∑N

i=1
S (i)xF(i), (9)

where

N =
∑

i
F(i) and S =

S− µ(s)
σ(S)

where N is the total number of human eye positions and σ(S) is the standard deviation.

3.4.2. Similarity Metric (SIM)

The similarity metric (SIM) uses the normalized probability distributions of the saliency and human
eye fixation maps. SIM is calculated as the sum of the minimum values of each pixel. The similarity
between these two maps is calculated as

SIM =
∑
i=1

min(Ś(i), Ǵ (i)) (10)

where Ś and Ǵ are the normalized saliency map and the fixation map, respectively. A similarity score
between zero and one indicates that the distributions are the same and that they do not overlap.

3.4.3. Judd Implementation (AUC-Judd)

The AUC-Judd metric is widely used to evaluate saliency models. The saliency map is treated as
a binary classifier to separate positive from negative samples at various thresholds. The true positive
(tp) rate is the proportion of the saliency map’s values above a certain threshold at fixation locations.
The false positive (fp) rate is the proportion of the saliency map’s values that occur above the threshold
of non-fixated pixels. In this implementation, the thresholds are sampled from the saliency map’s
values [34,35].

3.4.4. Borji Implementation (AUC-Borji)

The AUC-Borji metric uses a uniform random sample of image pixels as negatives and defines the
fixation map’s (saliency map) values above the threshold of these pixels as false positives. This version
of the Area Under ROC curve measurement is based on Ali Borji’s code. The saliency map is treated as
a binary classifier to separate positive from negative samples at various thresholds. The true positive
(TP) rate is the proportion of the saliency map’s values above the threshold of fixation locations.
The false positive (FP) rate is the proportion of the saliency map’s values that occur above the threshold
sampled from random pixels (as many samples as fixations, sampled uniformly from all image pixels).
In this implementation, threshold values are sampled at a fixed step size [36].

3.4.5. Semantic Segmentation Metrices

These metrices are used to evaluate the prediction results against the ground truth data. In this
study two different semantic segmentation matrices are used, which Global Accuracy and Weighted
Intersection over Union (WeightedIoU). Specifically, the Global Accuracy is the ratio of correctly
classified pixels, regardless of class, to the total number of pixels, and the WeightedIoU is the average
IoU of all classes, weighted by the number of pixels in the class, wherein the MeanIoU is the average
IoU score of all classes in that particular image [34,37].
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4. Experimental Results

4.1. Quantitative Comparison of the Proposed Model with other State-of-the-Art Models

To evaluate the efficiency of the proposed model, we compared it to six state-of-the-art models.
We selected four dataset benchmarks (TORONTO, MIT300, MIT1003, and DUT-OMRON) for a
comparison of the quantitative results. These results are reported in Tables 1–4, respectively.

Table 1. Comparison of the quantitative scores of several models for the TORONTO [31] dataset.

Model NSS SIM AUC-Judd AUC-Borji

ITTI [38] 1.30 0.45 0.80 0.80
AIM [23] 0.84 0.36 0.76 0.75

Judd Model [34] 1.15 0.40 0.78 0.77
GBVS [31] 1.52 0.49 0.83 0.83

Mr-CNN [39] 1.41 0.47 0.80 0.79
DVA [26] 2.12 0.58 0.86 0.86

Proposed Model 3.00 0.42 0.91 0.87

Note: Humans baseline [29] 3.29 1.00 0.92 0.88.

Table 2. Comparison of the quantitative scores of several models for the MIT300 [31] dataset.

Model NSS SIM AUC-Judd AUC-Borji

ITTI 0.97 0.44 0.75 0.74
AIM 0.79 0.40 0.77 0.75

Judd Model 1.18 0.42 0.81 0.80
GBVS 1.24 0.48 0.81 0.80

Mr-CNN 1.13 0.45 0.77 0.76
DVA 1.98 0.58 0.85 0.78

Proposed Model 2.43 0.51 0.87 0.80

Table 3. Comparison of the quantitative scores of several models for the MIT1003 [31] dataset.

Model NSS SIM AUC-Judd AUC-Borji

ITTI 1.10 0.32 0.77 0.76
AIM 0.82 0.27 0.79 0.76

Judd Model 1.18 0.42 0.81 0.80
GBVS 1.38 0.36 0.83 0.81

Mr-CNN 1.36 0.35 0.80 0.77
DVA 2.38 0.50 0.87 0.85

Proposed Model 2.39 0.42 0.87 0.80

Table 4. Comparison of the quantitative scores of several models for the DUT-OMRON [31] dataset.

Model NSS SIM AUC-Judd AUC-Borji

ITTI 3.09 0.53 0.83 0.83
AIM 1.05 0.32 0.77 0.75

GBVS 1.71 0.43 0.87 0.85
DVA 3.09 0.53 0.91 0.86

Proposed Model 2.50 0.49 0.91 0.84
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Table 1 shows that, with the TORONTO dataset, the proposed model outperforms the other
six models in terms of the NSS, AUC-Judd, and AUC-Borji metrics; however, in terms of the SIM
(similarity) metric, the DVA algorithm [26] has the best results. This is because the SIM metric is better
suited for non-binary classifiers. However, the proposed algorithm is a binary classifier. The other
metrics used in the study (NSS, AUC-Judd, and AUC-Borji) are all binary classifier metrics.

From Table 2, one can see similar results for the MIT300 dataset and TORONTO dataset, except
for the AUC-Borji metric, where the GBVS and Judd models perform slightly better than the proposed
model. Table 3 illustrates that for the MIT1003 dataset, the proposed model again outperforms the
other six models in terms of the NSS and AUC-Judd metrics; however, in terms of the other two metrics,
the DVA model provides the best performance. From Table 4, one can see that for the DUT-OMRON
dataset, the proposed model outperforms the other six models only in terms of the AUC-Judd metric
and the DVA model provides the best performance in terms of the other three metrics. Overall, for all
four investigated datasets, the proposed model provides the highest AUC-Judd metric.

Table 5 explains the evaluation metrics obtained from the proposed model. Specifically, the highest
and lowest Global Accuracies were obtained when the model was tested on the TORONTO dataset
(global accuracy of 96.22%), and the MIT300 dataset (global accuracy of 94.13%), respectively.

Table 5. Model predication results (i.e., global accuracy) for several datasets (TORONTO, MIT300,
MIT1003, and DUT-OMRON).

Datasets Global Accuracy WeightedIoU

TORONTO 0.96227 0.94375
MIT300 0.94131 0.91924
MIT1003 0.94862 0.92638

DUT-OMRON 0.94484 0.92605

4.2. Qualitative Comparison of the Proposed Model with Other State-of-the-Art Models

We first qualitatively tested the proposed model with the SALICON dataset; then, we evaluated
the model with the TORONTO, MIT300, MIT1003, and DUT-OMRON datasets. Figure 5 illustrates
the saliency map results obtained when the proposed model and five other state-of-the-art models
are applied to sample images drawn from the studied dataset. From this figure, one can see that the
proposed model is capable of predicting most of the salient objects in the given images.
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5. Conclusions

In this study, a deep learning model has been proposed to predict visual saliency on images.
This work uses a deep network with five encoders and five decoders (convolution and deconvolution)
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and the semantic segmentation approach to predict human visual saliency. The proposed model
generates a sequence of features at the multi-stage level to produce a saliency map. The experimental
results obtained from the analysis of four benchmark datasets illustrate the superior prediction capability
of the proposed model with respect to other state-of-the-art methods. Additionally, the proposed
model achieved an accuracy of more than 94% for all datasets, although the highest performance
(i.e., 96%) was obtained with the TORONTO dataset. Additionally, in the training stage, the increased
number of training images will increase the prediction accuracy of the proposed model; however, the
model requires a larger memory.

In the future, we will focus on how to collect a new dataset, create its ground truth data (e.g., data
augmentation method), and design new models with improved evaluation metrics. Importantly, it is
possible to use the model presented herein to facilitate other tasks, such as salient object detection,
scene classification, and object detection. Moreover, this work provides the basis to develop new
models that are able to learn from high-level understanding; for example, they will be able to detect
the most interesting part of the image (e.g., a human face) and the most important person in the scene.
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