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Abstract. We propose NullSpaceNet, a novel network that maps from
the pixel level input to a joint-nullspace (as opposed to the traditional
feature space), where the newly learned joint-nullspace features have
clearer interpretation and are more separable. NullSpaceNet ensures that
all inputs from the same class are collapsed into one point in this new
joint-nullspace, and the different classes are collapsed into different points
with high separation margins. Moreover, a novel differentiable loss func-
tion is proposed that has a closed-form solution with no free-parameters.
NullSpaceNet exhibits superior performance when tested against VGG16
with fully-connected layer over 4 different datasets, with accuracy gain of
up to 4.55%, a reduction in learnable parameters from∼ 135Mto ∼ 19M ,
and reduction in inference time of ∼ 99% in favor of NullSpaceNet. This
means that NullSpaceNet needs less than 1% of the time it takes a tra-
ditional CNN to classify a batch of images with better accuracy.

Keywords: Feature Learning, Convolutional Neural Network, Joint-
Nullspace.

1 Introduction

In recent years, Convolutional Neural Networks (CNNs) have revolutionized
computer vision tasks such as object tracking [1,2,29,3], surveillance systems
[19], image understanding [25], computer interactions [30] and generative mod-
els [17]. Image classification is one of the core tasks in computer vision, espe-
cially in Large Scale Visual Recognition Challenges (e.g., ILSVRC15) [35]. Most
classification networks consist of two parts: 1) the feature extractor and 2) the
classifier. The feature extractor uses a stack of convolutional layers to extract the
deep features from the input images through consecutive convolutional opera-
tions. The classifier uses fully-connected layers with a softmax layer. It has been
proven that most of the network’s learnable parameters are located in the fully
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connected layers [23]. For example, the classifier in VGG16 has 102.76 million
parameters, while the feature extractor has only 32 million parameters. Conse-
quently, this huge amount of learnable parameters causes a heavy load in the
training phase.

In this paper, we propose NullSpaceNet, a novel network that maps from the
input pixel level to a joint-nullspace, as opposed to a traditional CNN that maps
the input pixel level to a feature space. The newly learned nullspace features
have a clear interpretation and are more separable. In particular, instead of
using the fully connected layers with the categorical cross-entropy to maximize
the likelihood between the estimated class probabilities and the true probability
of the correct class, NullSpaceNet projects the pixel level inputs onto a joint-
nullspace. All inputs from the same class are collapsed into one point in this new
joint-nullspace and the different classes are collapsed into different points with
high separation margins. Moreover, the hyperplane that has the orthonormal
vectors of the projected nullspace features is well-defined and can be described
as shown in Eq. 22 and Fig. 2. In contrast to a traditional CNN used in a
classification task, which optimizes its weights by maximizing the likelihood
between the estimated class probability of the network’s output and the true
probability, NullSpaceNet minimizes the within-class scatter matrix (to be zero
or very close to zero), while maintaining the between-class scatter matrix to be
always positive. This makes the classification task more robust as shown in Fig.
3 (a) and Fig. 3 (b). The results are available online 1

To summarize, the main contributions of this paper are three-fold:

1. A novel Network (NullSpaceNet) that learns to map from the input pixel
level to a joint-nullspace. The formulation of NullSpaceNet ensures that the
nullspace features from the same class are collapsed into a single point while
the ones from different classes are collapsed into different points.

2. A differentiable loss function is developed to train NullSpaceNet. The pro-
posed loss function is different from the standard categorical cross-entropy.
The proposed loss function ensures that the within-class scatter matrix van-
ishes while maintaining a positive between-class scatter matrix.

3. The proposed NullSpaceNet has a clear interpretation, both mathematically
and geometrically.

The effect of these three contributions result in accuracy gain of up to 4.55%, a
reduction in learnable parameters from ∼ 135Mto ∼ 19M , and reduction in in-
ference time of ∼ 99% in favor of NullSpaceNet. This means that NullSpaceNet
needs less than 1% of the time it takes a traditional CNN to classify a batch of
images with better accuracy over all 4 datasets we used in testing.
The rest of the paper is organized as follows: Related work is presented in section
2, then section 3 details the proposed NullSpaceNet. The training and inference
phases are presented in section 4. The experimental results are presented in sec-
tion 5. Finally, section 6 concludes the paper.

1 https://github.com/NullSpaceNet

https://github.com/NullSpaceNet
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2 Related Work

Linear Discriminant Analysis (LDA) and nullspace have existed as analytical
methods for a significant period of time [40,12,34,24,9,7]. LDA has been fre-
quently been employed as a dimensionality reduction tool or feature extractor
within the filed of classification [14,38,16,15,15,10,37,21,28,26]. Nullspace can be
derived from the Fisher-criterion objective function in an analytical way. This
work [8] used multiple local nullspaces to detect the small moving objects in
aerial videos. Using the nullspace allows the detector to nullify the background
while maintaining the moving objects.
Nullspace has been used in [27] to specify whether the incoming data belongs to
the existing class or not. In particular, they used Incremental Kernel Nullspaec
Discriminitve (IKNDA). To speedup their method, an intelligent update scheme
is used to extract information from newely added samples. The work in [32]
proposed Max-Mahalanobis distribution (MMD) using LDA to improve the the
robustness of the adversarial attack. [39] proposed to learn a capsule subspace
using orthogonal projection. The length of the resultant capsules is utilized to
score the probability of belonging to different categories. The authors in [31] pro-
posed to apply the Hybrid Orthogonal Projection Estimation (HOPE) to CNN
for image classification. HOPE is a hybrid model that combines orthogonal lin-
ear projection, for feature extraction, with mixture models. The idea in HOPE
to allow for extraction of useful information from high-dimension feature vectors
while filtering out irrelevant noise. [36] used LDA with the Fisher-criterion on
VGG16 to classify facial gender. LDA was applied on the output of the last
layer to derive a light weight version of VGG16. A Bayesian classification is
then used to classify the output. Notice that, this is completely different from
NullSpaceNet, where we reformulate the learning process in a differentiable way
to train the network to learn a joint-nullspace. DeepLDA [6] proposed to use
LDA to learn to maximize eigenvalues of the Fisher-criterion. After training,
DeepLDA uses the entire training set to extract the dominant basis vectors to
project the new samples. In contrast to all previous methods, we use the nullspace
in VGG16 in a learnable way with a differentiable loss function to project the
pixel level input to a joint-nullspace.
The only work we found that included using LDA in a deep learning framework
was presented in [6], where the authors solved the LDA and integrated it in
a deep CNN. It is worth mentioning that the work in [6] did not include any
reference to any usage of nullspace. In our work, we do not solve for the LDA,
instead we reformulate the problem within the nullspace to train the network to
project from the pixel level onto the joint-nullspace.

3 Proposed Method: NullSpaceNet

3.1 Problem Definition

Given a dataset of training images X = {x1, x2, ..., xN} ∈ Rw×h×d, where w, h
and d are the width, height, and depth of each image, respectively and N is
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the number of images in the training dataset. Each image is associated with a
respective class C, where C = {c1, c2, ..., cn} ∈ R, n is the number of classes in
the training dataset. In this paper, we use the VGG16 as the backbone network,
hence, the training images will be fed into the feature extractor part φ(x; θ).
The objective is to force the network to learn a joint-nullspace that maps from
the pixel level to a strong discriminative nullspace. The learned nullspace will
replace the classifier part, which has the most network’s learnable parameters.

3.2 Proposed Architecture

NullSpaceNet inherits its architecture from VGG16 . Our contribution is the
addition of the nullspace layer as shown in Fig. 1 . Also, we added a (Conv-
BatchNormalization-Relu) layer with kernel size=3 to produce a 2D tensor of
shape 1 × 800 before the nullspace layer, in the case of STL10 dataset. In the
case of CIFAR10 and CIFAR100, we change the kerenl size=1 of the last layer.
NullSpaceNet has 19 layers, each layer consists of (Conv-BatchNormalization-
Relu), we consider the pooling as a stand-alone layer.
The novelty of NullSpaceNet lies in the nullspace layer and the diffrentiable
loss function we propose in section 3.3. The nulllspace layer forces the network,
through the backpropagation, to learn the projection from the input pixel level
onto a joint-nullspace, where the joint-nullspace features have optimal separa-
tion margins. The Nullspace layer achieves this through spanning vectors of the
optimal within-class scatter matrix as it will be discussed in more details in sec-
tion 3.3. Formulating the nullspace layer in this way prevents the network from
the Small Sample Size (SSS) problem (i.e., the model has a high dimensional
output features while training on small batches of images).

!t
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Fig. 1: NullSpaceNet architecture, the feature extractor part is inherited from
V GG16. The NullSpace layer is at the end of the architecture. Note that the
nullspace layer has been magnified for the sake of visualization.
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3.3 Mathematical Formulation of The Loss Function

Background: To derive a differentiable loss function to train the joint-nullspace,
we start from the linear discriminant analysis (LDA) [11]. In this paper, we
assume that the output of the feature extractor part in the network for each
image is F ∈ RD×1, where D is the depth of the output. The objective of the
LDA is to find a projection matrix P ∈ RD×M that minimizes the within-class
scatter matrix and maximizes the between-class scatter matrix simultaneously.
This can be achieved by maximizing the Fisher-discriminant criterion J (P ) as
follows:

J (P ) =
P>SbP

P>SwP
(1)

Where P is the projection matrix, Sb and Sw are the between-class and within-
class scatter matrices, respectively. The optimization of Eq. 1 can be solved for
the generalized eigenvalue problem as follows:

SbP = λSwP (2)

where λ is the eigenvalue of the eigenvector S−1
w Sb.

Derivation of the proposed novel loss function:
Lemma 1: By investigating the output of the network’s feature extractor, it
turns out that the network has a tendency to minimize the within-class scatter
matrix, which is the constraint in the denominator of Eq. 1. However, it does
not put constraints on the between-class scatter matrix as shown in Fig. 3(b).
Proof: The visualization in Fig. 3 (b). The learned features of VGG16 with FC
layer are scattered with no constraints on the between-class scattered matrix
where some classes (e.g.,class #4, #5 and class #2 and #8) are overlapped.
Based on Lemma 1, we force two constraints on the learning process. In par-
ticular, we force the between-class scatter matrix to always be positive while
minimizing the within-class scatter matrix to be zero as follows:

P>SbP > 0 (3)

P>SwP = 0 (4)

Lemma 2: When the network satisfies the two constraints in Lemma 1, the
distribution of the same class features in the new joint-nullspace approaches the
Dirac Delta function.
Proof: Assuming the features are represented by the normal distribution, for
simplicity, we will use a 1-D dimensional normal distribution.∫

g(x̄)f
(
x̄|µ̄, σ̄2

)
dx̄ (5)

where g(x̄) is the mean value function of the projected features by the network
onto the joint-nullspace and σ̄ is the standard deviation of the distribution. We



6 Authors Suppressed Due to Excessive Length

take the limit of Eq. 5 as σ̄2 approaches 0.

lim
σ̄2→0

(

∫
g(x̄)f(x̄|µ̄, 0)dx̄) =

∫
g(x̄)δ(x̄− µ̄)dx̄ = g(µ̄) (6)

Using Lemma 1 and Lemma 2 to find the limit of Eq. 1 (which guarantee the
best separability as explained above), we get:

lim
(PTSwP )→0

J (P ) =∞ (7)

Since the between-class scatter matrix Sb in Eq. 3 is hard to calculate, especially
in the case of high dimensional features, we calculate Sb using the total-class
scatter matrix St and the within-class scatter matrix Sw (see Eq. 10 for mathe-
matical definition of them) as follows:

Sb = St − Sw (8)

By substituting Eq.8 in Eq. 4 we get (since the derivation is long we will provide
the details in the supplementary material):

P>StP > 0 (9)

Since the output of the NullSpaceNet is f ∈ RD×N when the input batch images
X ∈ Rw×h×d×N , where N is the number of images. We define the the within-
class scatter matrix Sw and the total-class scatter matrix St from the output of
NullSpaceNet as follows:

Sw =
1

N
F>w Fw, St =

1

N
F>t Ft (10)

where Fw is the centered class mean output features (i.e, subtracting the class
mean from each feature output belonging to this class), and Ft is the centered
global mean output features as shown in Eq. 11.

Fw =
1

N
(X − µc)>, Ft =

1

N
(X − µg)> (11)

Where µc is the class mean and µgis the global mean of the dataset.
Now, we want to integrate the scatter matrices the we derived in Eq. 10 in the
joint-nullspace formulation. Let Ut denote the nullspace of the total-class scatter
matrix and Uw denote the nullspace of within-class matrix. From the definition
of the nullspace and using the fact that St is non-negative definite, we get:

Ut =
{
u ∈ RD | Stu = 0

}
=
{
u ∈ RD | u>Stu = 0

}
=
{
u ∈ RD | (Ftu)>Ftu = 0

}
=
{
u ∈ RD | Ftu = 0

}
.

(12)

similarly, we get Uw (details are provided in the supplementary material).
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Lemma 3: The projection matrix P that satisfies the constraints in Eq. 3
and Eq. 4 can be achieved, if and only if, P lies in the shared space between U⊥t
and Uw as shown in Eq. 13.

P ∈ (U⊥t ∩ Uw). (13)

where U⊥t is the orthogonal complement subspace of Ut spanned by the the cen-
tered global mean output features, it can be obtained using the Gram-Schmidt
process [18].
Proof: Geometrically by looking at Eq. 12 and Uw, the only space that satisfies
Stu = 0 and Swu = 0 is the joint-space where U⊥t and Uw are overlapped [14].
Now we have the nullspace of Sw which is Uw and the nullspace of St which
is Ut. One problem with the calculation the nullspace of Sw is that the dimen-
sionality of nullspace is at least (D + C − n), where D is data dimensionality
(which is high when we use the output of NullSpaceNet, e.g., 2048), C is the
number of classes, and n is the sample sizes as it has been proved in [4]. To
address this problem, we revert to Eq. 8 where it can be seen that St is the
intersection of the nullspace of Sb and the nullspace of Sw. Hence, the nullspace
of St can be removed based on this observation. We proceed with the solution
using the Singular Value Decomposition (SVD) theory to decompose Ft (which
was introduced in Eq. 11) as follows:

Ft = UΣV T (14)

Where U and V are orthogonal.

Σ =

(
Σt 0
0 0

)
(15)

Σt is the diagonal matrix Σt ∈ Rt×t with the eigenvalues. Now we can represent
St as follows:

St = FtF
T
t

= V ΣTUTUΣV T

= UΣΣTUT

= U

(
Σ2
t 0

0 0

)
UT

(16)

We select a part of orthogonal basis of U with dimension U1 ∈ Rm×t where
t = RANK(St), using the new subspace U1 spanned by the new set of the
orthogonal basis we project the scatter matrices as follows:

S̃b = U1SbU
T
1 , S̃w = U1SwU

T
1 , and S̃t = U1StU

T
1 (17)

Where (̃.) represents the reduced version of the decomposed Sb, Sw, andSt.
From Eq. 14 and Eq. 17 we can apply the SVD again on Ft with complexity
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of O
(
Dn2

)
instead of O

(
D2n

)
. Now instead of calculating the nullspace of Sw,

we can calculate the nullspace of S̃w as shown in Eq. 18. This gives the network
two advantages: 1) the model does not suffer from the small sample size (SSS)
problem, e.g., the model has a high dimensional output features while training on
small batches of images, as in [6], and 2) it is faster than solving the generalized
eigenvalue problem.

W = Span(S̃w) (18)

Where W is the nullspace of S̃w. Finally, the projection matrix that satisfies Eq.
3 and Eq. 4 can be calculated by:

P = W ×M (19)

Where M is the eigenvectors of WT S̃bW corresponding to the non-zero eigen-
values.

Algorithm 1 Steps to Calculate the Proposed Loss Function

input : The output of the last layer of V GG16 F ∈ RD×N

output: Optimize the weights of the NullSpaceNet using the proposed differentiable
loss function L based on the nullspace formulation

1: Calculate matrix Ft;
2: Calculate SV D(FT

t );
3: Calculate the scatter matrices Sw, Sb, St;
4: Calculate matrices S̄t, S̄b, S̄w from Eq. 17;
5: Calculate the nullspace W of S̄w using Eq. 18;
6: Solve for the eigenvlaues of WT S̃bW ;
7: Formulate the loss function over the average of the non-zero eigenvalues from the

last step using Eq. 20;
8: Use the proposed differentiable loss function in Eqs. 20 and 21 to train the network

3.4 Gradient of the Loss Function

Training the NullSpaceNet requires the loss function to be differentiable every-
where. Hence, we propose a novel differentiable loss function that maximizes the
positive (or minimizes the negative) of the average non-zero eigenvalues of the
decomposed WT S̃bW . We define k as the number of eigenvalues in two cases: 1)
when {E1, ..., Ec−1} > 0, and 2) when {Ek, ..., Ec−1} < 0. The steps to calculate
the proposed differentiable loss function is shown in Alg. 1. The final equation
of these steps is shown in Eq. 20.

L(φ(E; θ)) = −
k∑
i=1

SV DEi
(WT S̃bW ) (20)

Where E ∈ {E1, . . . , Ek} = {Ej |Ej < min {E1, . . . , EC−1}+ ε}.
Using the chain rule, the derivative of the loss function in Eq. 20 w.r.t the last
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layer H of NullSpaceNet is given by Eq. 21 (details are given in the supplemen-
tary materials).

∂L
∂H

= −
k∑
i=1

∂SV DEi
(WT S̃bW )∑k

i=1 ψ
T
i

(
∂S̃b

∂H − ψi
∂S̃w

∂H

)
ψi
×

∑k
i=1 ψ

T
i

(
∂S̃b

∂H − Ei
∂S̃w

∂H

)
ψi

∂H

(21)

Where ψi are the Eigenvectors associated with the Eigenvalues Ei

3.5 Insights into NullSpaceNet

In this section, we provide a deeper look, both mathematically and geometri-
cally, into the proposed NullSpaceNet.
Mathematical Insights: The main idea of NullSaceNet is to learn to project
the input data onto another subspace (different from the traditional feature
space) that satisfies the two constraints in Eq. 3 and Eq. 4. The new proposed
subspace (i.e., joint-nullspace) mathematically forces the within-class scatter ma-
trix to vanish through the optimization of the proposed loss function in Eqs. 20
and 21. Meanwhile the new joint-nullspace mathematically forces the between-
class scatter matrix to always be positive through the optimization of the loss
function in Eq. 20.
Geometric Insights: The features that are produced by NullSpaceNet are liv-
ing in the hyperplane represented by U⊥t ∩Uw, and all inputs from the same class
are collapsed into one point, while the inputs from different classes are collapsed
into different points as shown in Fig. 2. The hyperplane now is well-defined and
all the features are located in a confined space that can be precisely described
both mathematically and geometrically.

Fig. 2: Geometric illustration of the learned feature projected by the network in
the joint-nullspace. Each color associated with a letter encodes a class, note that
all inputs from the same class are collapsed into a single point. Notice that all
classes exist on the Grey-colored hyperplane (U⊥t ∩ Uw) including point k.
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4 Training and Inference of NullSpaceNet

4.1 NullSpaceNet Training Phase

Firstly, the input batch of images is fed into the input layer as shown in Fig. .
1. The batch undergoes the operation of the layers such as convolution, normal-
ization, and pooling, then to the nullspace layer, where all calculations and the
loss function are performed as shown in Alg. 1.

4.2 NullSpaceNet Inference Phase

Even though the training phase does not require a special setup, the inference
phase in the NullSpaceNet is different. After the network is trained using the
proposed differentiable loss function in Eq. 20, we feed the entire training set
into NullSpaceNet, then extract the output mean of each class from the last
layer µk = (µ1, ..., µC) that has the dimension RD×N , where N is the number
of images. The eigenvectors of the decomposed WT S̃bW will be calculated, the
number of the basis vectors are C−1, where C is the number of training classes.
From Eq. 19, the projection matrix P is calculated. Using the hyperplane equa-
tion, any output of the testing dataset tT can be classified using the hyperplane
equation [13] (Eq. 22) below:

argmaxk βk(t) = tTΣ−1µk −
1

2
µTkΣ−1µk (22)

Where Σ = P × PT and β is the hyperplane.

5 Experimental Results

Implementation Details
NullSpaceNet has been implemented in Python using PyTorch framework [33].
All experiments have been performed on Linux with Xeon E5 @2.20 GHz CPU
and NVIDIA Titan XP GPU. All experiments are performed on networks trained
from scratch. We set ε to 1 and the number of epochs for the training to 200.
We used Adam optimizer [20] with learning rate of 0.0001, a momentum of 0.9,
and a batch size of 400 images.
Datasets
The datasets CIFAR10 and CIFAR100 [22] have resolution of 32 × 32. CIFAR10
has 10 classes collected from natural images, while CIFAR100 has 100 classes.
Each dataset has 50,000 images for training and 10,000 images for testing. We
used 49,000 for training, 1,000 for validation and 10,000 for testing for both
datasets. STL10 dataset [5] has 10 classes with higher image resolutions, in con-
trast to CIFAR datasets, to show the effect of higher image resolution on the
performance. STL10 has 5,000 images for training, while the testing set has 8,000
images. We used 5,000 for training set, 1,000 for validation set from the testing
set and the remaining 7,000 for testing.
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(a) NullSpaceNet

 

(b) VGG16 with FC

Fig. 3: t-SNE visualization of the learned features on STL10 dataset using (a)
NullSpaceNet, (b) VGG16 with FC layer.

Results on CIFAR10 Dataset
The results on CIFAR10 dataset are shown in Table 1. VGG16 with fully-
connected (FC) layer and categorical-cross entropy achieves a test accuracy of
93.51%, while the proposed NullSpaceNet achives 94.01%.
The accuracy difference between the proposed NullSpaceNet and the VGG16
with FC layer is ∼ 0.5%, in favor of NullSpaceNet. More importantly, there is
a significant reduction in the network parameters of NullSpaceNet compared to
VGG16 with FC layer. The parameters went down from ∼ 134 million in VGG16
with FC layer to ∼ 18 million in NullSpaceNet, which is a reduction of 92.99%.
Table 3 shows the inference time required per batch (2000 images), the time
required by VGG16 with FC is 0.6841 seconds while NullSpaceNet required only
0.0051 secconds, which is a reduction of 99.25% in favor of NullSpaceNet.
Results on CIFAR100 Dataset
The results on CIFAR100 dataset are shown in Table 2. NullSpaceNet outper-
forms VGG16 with FC layer by 0.07%; still the gain is not significant similar
to the CIFAR10 dataset. But, the number of parameters in NullSpaceNet has
been reduced from ∼ 134 millions to ∼ 18 million parameters. Table 3 shows the
inference time required per batch (2000 images), the time required by VGG16
with FC is 0.6841 seconds while NullSpaceNet required only 0.0051 secconds,
which is a reduction of 99.25% in favor of NullSpaceNet.
The importance of conducting this experiment on CIFAR100 dataset is to prove
that NullSpaceNet performance is not affected by the increase in the number of
classes in the classification task.
Results on STL10 Dataset
The results on STL10 dataset are shown in Tables 4 and 5. NullSpaceNet outper-
forms VGG16 with FC layer in terms of accuracy with gain of 2.57%, parameters
reduction of 92.99%, and inference time reduction of 99.22%. It is worth not-
ing that NullSpaceNet significantly benefits from the higher image resolution,
STL10 has images resolution of 64 × 64.
To visualize the learned features by NullSpaceNet and VGG16 with FC layer on
STL10 dataset, t-SNE is used to provide Fig. 3. Each color is associated with a
number that represents a class in the STL10 dataset. It can be seen from Fig. 3(a)
that the within-class scatter matrix for all classes has been reduced to minimum
and the between-class scatter maximized the margin separation between class.
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By examining Fig. 3(b), the classes are overlapping and the separation margin
is not optimal. Fig. 3 visualizes the power of the new proposed NullSpaceNet.
Results on ImageNet
Results on ImageNet are shown in Table 7. Note that we used only 50,000 images
from ImageNet. ImageNet has a higher resolution compared to CIFAR datasets
and STL10, we have downscaled all images to be 128 × 128. The number of
parameters have increased from ∼ 134 to ∼ 135 in VGG16+FC, while it went
up from ∼ 18 to ∼ 19 in the case of NullSpaceNet. AS it can be seen from Table
7, the accuracy gain is more evident in favor of NullSpaceNet, as the resolu-
tion increases. NullSpaceNet has an accuracy of 98.87% compared to 94.32% in
VGG16+FC, which is a gain of +4.55%. The inference time for VGG16+FC is
1.5653 seconds per batch, while NullSpaceNet needed only 0.0168 seconds, which
is a reduction of 98.92%.
Effect of Image Resolution
The accuracy gain between the proposed NullSpaceNet and the VGG16 with FC
layer when tested on CIFAR10 and CIFAR100 is 0.5% and 0.07%, respectively,
in favor of NullSpaceNet. The gain suggests that the accuracy does not signifi-
cantly benefit from the projection onto the proposed joint-nullspace in this case.
This can be justified based on the fact that the images resolution in CIFAR10
and CIFAR100 is 32 × 32. This means that the number of pixel level features to
be mapped in either the feature space or the joint-null space is small, and hence
explains the small accuracy gain.
This justification is further supported in lights of the results on the STL10
dataset (which has higher images resolution 64 × 64), and consequently better
accuracy in favor of NullSpaceNet. Furthermore, another experiment has been
performed on a reduced resolution version of STL10 dataset. All training images
have been reduced to 32 ×32 resolution, similar to CIFAR10 and CIFAR100
dataset. NullSpaceNet has been trained on the modified version STL10, and the
results are shown in Table 6. It is seen that the accuracy gain is similar to the
ones in CIFAR10 and CIFAR100. Another experiment has been conducted on
ImageNet, the results are shown in table 7 and it shows a cccuracy difference of
4.55%. This confirms our justification that NullSpaceNet power becomes more
clear in cases of images with higher resolution. In general, NullSpaceNet will
outperform VGG16 with FC layer in all cases. All results are summarized in
table 8
Top-k Error Rate on STL10

Top-k error rate is the fraction of the testing set for which the true label is not
among the five labels that are most likely by the model prediction [23]. The top
row shows the training and testing loss. In the bottom row, we report the top-1
and top-5 accuracy on the STL10 dataset.



Title Suppressed Due to Excessive Length 13

0 100 200
Epoch

-20

-15

-10

-5

0

Lo
ss

Train loss
Test loss

0 100 200
Epoch

Lo
ss

Train loss
Test loss

0 100 200
Epoch

-15

-10

-5

Lo
ss

NullSpaceNet
Training and testing loss-STL10

Train loss
Test loss

0 100 200
Epoch

A
cc

u
ra

cy

Top-1 and Top-5 Accuracy-CIFAR10

Top 1
Top 5

0 100 200
Epoch

0

20

40

60

80

A
cc

u
ra

cy

Top-1 and Top-5 Accuracy-CIFAR100

Top 1
Top 5

0 100 200
Epoch

A
cc

u
ra

cy

Top-1 and Top-5 Accuracy-STL10

Top 1
Top 5

100

Training and testing loss-CIFAR100Training and testing loss-CIFAR10
NullSpaceNetNullSpaceNet

NullSpaceNetNullSpaceNetNullSpaceNet

20

40

60

80

0

100

20

40

60

80
100

0

-20

-15

-10

-5

0 0

-20

Fig. 4: Acuuracies and Losses on CIFAR10, CIFAR100, and STL10 - Top row:
Training and testing losses, Bottom row: the top-1 and top-5 accuracy.
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Fig. 5: Top-1 error on the validation set of STL10. At the beginning,
NullSpaceNet and VGG16+FC have almost the same error rate, then
NullSpaceNet has lower error rate as the number of epochs increase.

Table 1: Test Accuracy on CIFAR10.

Architecture Accuracy # Parameters

V GG16 + FC (cross-entropy loss) 93.51% 134,309,962

NullSpaceNet (Proposed) 94.01% 18,411,936

6 Conclusions and Future Work

A typical CNN optimizes the weights of the network by maximizing the likelihood
between the estimated probability of the predicted class and the true probabil-
ity of the correct class. In contrast, NullSpaceNet learns to project the features
from the pixel level (i.e, input image ) onto a joint-nullspace. All features from
the same class are collapsed into a single point in the learned joint-nullspace,
whereas all features from different classes are collapsed into different points with
high separation margins. Also, a novel differentiable loss function is developed
to train NullSpaceNet to learn to project the features onto the joint-nullspace.
NullSpaceNet with the proposed differentiable loss function exhibits a superior
performance, with accuracy gain of 0.07−2.57%, and reduction in inference time
of 99.22−99.25% in favor of NullSpaceNet. This means that NullSpaceNet needs
less than 1% of the time it takes a traditional CNN to classify a batch of images
with slightly better accuracy, Future work include extending this work to other
fields such as object tracking.
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Table 2: Test Accuracy on CIFAR100.

Architecture Accuracy # Parameters

V GG16 + FC (cross-entropy loss) 92.26% 134,309,962

NullSpaceNet( proposed ) 92.33% 18,411,936

Table 3: Inference time and number of parameters on CIFAR10/CIFAR100

Architecture # Parameters Average inference time/batch

V GG16 + FC (cross-entropy loss) 134,309,962 0.6841 Seconds

NullSpaceNet(proposed) 18,411,936 0.0051 Seconds

Table 4: Test Accuracy STL10 dataset.

Architecture Accuracy # Parameters

V GG16 + FC (cross-entropy loss) 93.74% 134,309,962

NullSpaceNet (proposed) 96.31% 18,411,936

Table 5: Inference time and number of parameters on STL10.

Architecture # Parameters Average inference time/batch

V GG16 + FC (cross-entropy loss) 134,309,962 1.3487 Seconds

NullSpaceNet(proposed) 18,411,936 0.0105 Seconds

Table 6: Test Accuracy on modified version of STL10 (32 × 32).

Architecture Accuracy # Parameters

V GG16 + FC (cross-entropy loss) 93.89% 134,309,962

NullSpaceNet (Proposed) 93.91% 18,411,936

Table 7: Test Accuracy on ImageNet dataset with image resolution 128 × 128.
Only 50,000 images were used.

Architecture Accuracy # Parameters Average Inference time/batch

V GG16 + FC (cross-entropy loss) 94.32% 135,310,123 1.5653

NullSpaceNet (Proposed) 98.87% 19,415,654 0.0168

Table 8: A summerization of the results on 4 datasets, CIFAR10, CIFAR100,
STL10, and ImagNet. All results are in favor of NullSpaceNet

Dataset Accuracy Difference Image Size Parameters Reduction Time Reduction

CIFAR10 +0.5% 32× 32 +86.29% +99.25%

CIFAR100 +0.07% 32× 32 +86.29% +99.25%

STL10 +2.57% 64× 64 +86.29% +99.22%

STL10 (modified) +0.02% 32× 32 +86.29% +99.22%

ImageNet +4.55% 128× 128 +85.65% +98.92%
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