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Abstract

Background/Foreground separation is a fundamental
and challenging task of many computer vision applications.
The F-measure performance of state-of-the-art models is
limited due to the lack of fine details in the predicted output
(i.e., the foreground object), and the limited labeled data. In
this paper, we propose a background/foreground separation
model based on a transformer that has a higher learning ca-
pacity than the convolutional neural networks. The model is
trained using self-supervised learning to leverage the lim-
ited data and learn a strong object representation that is
invariant to changes. The proposed method, dubbed Trans-
Blast, reformulates the background/foreground separation
problem in self-supervised learning using the augmented
subspace loss function. The augmented subspace loss func-
tion consists of two components: 1) the cross-entropy loss
function and 2) the subspace that depends on Singular
Value Decomposition (SVD). The proposed model is eval-
uated using three benchmarks, namely CDNet, DAVIS, and
SegTrackV2. The performance of TransBlast outperforms
state-of-the-art background/foreground separation models
in terms of F-measure.

1. Introduction

Background/Foreground separation (also known as fore-
ground segmentation) is the task of separating the moving
foreground from its background. This task has gained much
attention in the last few years due to its importance in many
computer vision applications such as autonomous driving
[22], object tracking [1, 2, 3], and surveillance [46].

Most research efforts in this area have been devoted to

relying on building deep architectures which heavily de-
pend on supervised or unsupervised Convolutional neural
networks (ConvNet). For example, [39] uses an end-to-
end ConvNet based on correlation learning-based edge ex-
traction. However, these architectures usually produce ob-
jects that lack fine details. Moreover, the learning-based
techniques are more powerful for extracting low-level, mid-
level, and high-level features from image or video frames.
However, from literature, it is observed that all ConvNet-
based methods are not able to give good performance in
terms of fine details in addition to the need for heavy fine-
tuning. This paper introduces a novel design that is moti-
vated by the success of Transformer architectures in Natu-
ral Language Processing (NLP) and computer vision. The
proposed architecture is designed in Self-supervised learn-
ing using Barlow twins [58] to leverage the limited data for
background/foreground separation.

The proposed architecture (TransBlast) consists of five
components: 1) convolutional encoder, 2) transformer, 3)
convolutional decoder, 4) multiple-output combiner block
(MOC-block), and 5) subspace learning module. The con-
volutional encoder embeds the input into feature maps. The
feature maps are then divided into patches and used as an
input to the transformer. The output of the transformer
is patches with the same number of input patches. These
patches are reshaped to form feature maps. The reshaped
feature maps are then used as an input to the convolutional
decoder. An output is produced from each block in the de-
coder. Finally, all outputs are scaled and combined using the
MOC-block to produce multi-scale semantic feature maps.
These feature maps are then used during the optimization
to train TransBlast based on subspace learning module that
help producing a high fidelity segmented object. Moreover,
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the same feature maps are used to produce the final output.

TransBlast combines Convolutional Neural Network
(CNN) Encoder and Decoder in addition to Transformer
Encoder and Decoder in the same architecture. Conse-
quently, TransBlast inherits a strong inductive bias from
CNN, which allows efficient training and convergence. On
the other hand, TransBlast relaxes the inductive bias from
the transformer, which increases the overall network gen-
eralization. Moreover, TransBlast augments the loss func-
tion with a subspace that is learned based on Singular Value
Decomposition (SVD). This subspace controls the weights
of the MLP network as shown in Figure 1 to produce the
Eigenvalues that are maximized during the training to force
the MLP network to learn the subspace. The learned sub-
space forces the network to predict the foreground fine de-
tails. It is worth mentioning that TransBlast is trained us-
ing self-supervised learning to leverage the limited data and
learn strong object representation. This representation is ro-
bust against different transformations.

To summarize, the main contributions of this paper are:

» TransBlast is a novel self-supervised architecture with
a transformer for background/foreground separation.
The proposed architecture is designed such that the
segmented foreground has fine details. The fine de-
tails are inherited from the augmented loss with the
subspace learning.

* A novel augmented loss function that uses the sub-
space learning as a component in the loss function to
augment the cross-entropy component. The augmen-
tation is done by maximizing the Eigenvalues of the
low-rank of the subspace during the optimization.

» Using self-supervised learning to leverage the limited
data and learn strong object representation that is ro-
bust to different challenging scenarios.

2. Related work

In this section, we review different moving object de-
tection and segmentation techniques. The techniques are
categorized into three different categories: 1) Unsupervised
learning techniques (i.e., Statistical-based and subspace
learning methods), 2) supervised learning techniques (i.e.,
Deep learning-based techniques), and 3)semi-supervised
learning.

Unsupervised learning techniques: This category uses
holistic methods to filter foreground objects from the back-
ground without labels as in [8, 50]. In [17] null space was
used to present the image in the null feature space, thus
maximizing the distance between the foreground and back-
ground features and enabling the segmentation of the fore-
ground objects. In [24, 12, 38] optical flow was used to

detect foreground objects. While these methods can pro-
vide good accuracy in foreground segmentation, they heav-
ily depend on hyper-parameter fine-tuning that have to be
adjusted for each dataset. Consequently, making them less
adaptable and robust to changes from the datasets they were
initially designed based on.

Supervised learning methods: The main advantage of

deep learning-based techniques is their ability to learn cru-
cial features that help distinguish between the foreground
and background classes as in [36, 9]. This category can
be further divided into two different sets: 1) Convolution-
based networks and 2) Transformer-based networks.
In Convolution-based networks, the network consists of
convolution, pooling, batch normalization, etc. By stack-
ing the layers to form a pyramid, with the higher-level lay-
ers learning features from wider receptive fields. In these
methods [13, 21, 41, 42, 43, 44, 7, 35], convolution-based
network is used as the backbone for the architecture. Over-
all, the performance in this sub-category is relatively good
compared to the statistical-based techniques. However, the
predicted foreground usually lacks the fine details due to
large receptive field and pooling layers.

Transformers-based networks have recently raised a lot
of interest in solving computer vision tasks [15, 37, 14, 60],
In DETR an end-to-end object detector was introduced in
which the image is represented through a sequence of spa-
tial features enabling the use of traditional transformer ar-
chitectures that are usually used in NLPs. This method
simplifies the traditional detection pipeline while achieving
comparable results with CNN-based architectures. How-
ever, the method suffers from slow convergence. In a
follow-up work, Deformable DETR [60] was proposed to
improve on DETR by adding a deformable attention mod-
ule and applying a pre-filter to extract key elements out of
the feature map. SETR [59] introduced a new segmenta-
tion model treating the input image as a sequence of im-
age patches with patch embedding. In [57] another end-
to-end object segmentation method was introduced namely
VisTR that is based on transformers. VisTR introduced
a new strategy for sequence matching and segmentation.
[16] a new approach uses sparse attention operator was in-
troduced to solve the computational complexities in other
transformer-based methods, thus enabling the processing of
high-resolution videos.

Semi-supervised learning: Leverages the usage of few-
labeled data and maintain good performance. In [19],
they proposed an algorithm that is composed of segmenta-
tion, background initialization, graph construction, unseen
sampling, and a semi-supervised learning method showing
one bound for the sample complexity in semi-supervised
learning, and two bounds for the condition number of the
Sobolev norm. In [20], two architectures are proposed for
moving object segmentation (MOS) using semi-supervised
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learning and a new evaluation procedure for GSP-based
MOS algorithms.

Even though the previous methods achieve a good per-
formance, they lack the fine details in the predicted out-
puts. Consequently, the performance is degraded over time.
TransBlast achieves high performance by maintaining the
fine details of the segmented foreground over time.

3. TransBlast architecture

The proposed TransBlast is a novel Transformer-based
network architecture for background/foreground separation.
The loss function of TransBlast is designed to be augmented
by subspace learning. The architecture of TransBlast is
shown in Figure 1. TransBlast is an encoder-decoder archi-
tecture. The encoder is divided into a convolutional encoder
and a Transformer encoder. The same goes for the decoder.
TransBlast uses transformer due to its learning capacity is
better than the convolutional neural network (CNN). Hence,
it can learn a stronger object representation than that of a
CNN.

TransBlast input is a single RGB frame with a fixed di-
mensions 256 x 256 x 3. A convolutional encoder is used
to transform the input from the image space to the feature
space. The CNN encoder consists of 3 residual blocks with
a max-pooling layer between every two residual blocks.
Each residual block has 2 convolutional layers with ReLU
activation function followed by skip connection from input
to the output of the second convolutional layer. Then, batch
normalization is added after skip connection.The number of
filters and the filter size is fixed in all convolutional layers
of the network, which are 64 and 3 x 3, respectively. The
output feature maps of the CNN encoder have dimensions
64 x 64 x 64 corresponding to height, width, and channel
(i.e., HxW x (). The feature maps are divided into patches
with the size 4 x 4 x 64. This will result in 16 x 16 = 256
patches. Each patch is flattened to form 1 — D vector of
size 1024. All flatten patches are used as an input to the
transformer encoder.

The transformer encoder consists of 6 encoder block. In
each encoder block, a layer normalization is applied to the
input patches x. Then, the input is transformed to three
inputs ¢, k, and v as following:

g=z+pk=x+pv=u 9]

where g, k, and v are the query, key, and value, respectively.
p is the position encoding which is a learnable vector. An
multi-head attention layer A,,; is applied on ¢, k, and v,
such that:

g x kT
Ag, k) = , 2
(q,k) NP 2)
A(g, k) = softmaz(A(g, k)), 3)

where dy, is a scaling factor which is the dimension of k.

Amh (Q7 kv U) = pTOJ(A(qa k) X ’U), (4)

where proj is a linear projection layer. A skip connection
from before the A,,, to after it is added. Then, a layer
normalization followed by feed-forward network f fn with
another skip connection is applied as following:

l':l'—i—Amh(q,k,'U), (5)
r = layeTno’rm (fL‘), (6)
v =+ () ™

where f fn is the feed-forward network consists of two lin-
ear projections layers. Then x is feed as an input to the next
encoder block along with the position encoding p.

The transformer decoder also consists of 6 decoder
blocks. Each decoder block has the same structure as the
encoder block but has two A,,, layers. The decoder out-
put is a set of flattened patches with the same dimensions
as the input flattened patches of the encoder. These output
patches are unflattened to form 4 x 4 x 64 patches. Then,
the unflattened patches are reshaped to form feature maps
of dimensions 64 x 64 x 64.

The convolutional decoder uses the reshaped transformer
output as an input and decodes it to output a binary im-
age where black pixel means background pixel and white
pixel means foreground object pixel. The architecture of
the CNN decoder is 2 residual blocks with an up-sampling
layer between every two residual blocks. The two residual
blocks have the same number of filters, which is 64, and
ReLU activation function. A convolutional layer with a 2
filter and sigmoid activation function is added to each block.
This convolutional layer is used to output 2 binary images
from each block—one binary image for the segmented fore-
ground and another one for the predicted boundaries of the
foreground. An extra up-sampling layer is added before
the convolutional layer of the first block to make the out-
put match the final output size.

The multiple-output combiner block (MOC-block) con-
sists of a residual block that uses the output feature maps
of the convolutional decoder and the 2 outputs as an input.
This residual block learns to combine the feature maps and
different outputs to produce feature maps that highlight the
moving objects and their boundaries. At the end of MOC-
block a single convolutional layer with one filter and sig-
moid activation function to produce the final output, which
is a binary image with dimensions 256 x 256 x 1.

The subspace module augments the cross-entropy loss
function by calculating the SVD for the output tensor of the
MOC-block. Then, the decomposed matrix S is extracted
to produce the low-rank approximation matrix S5, as shown
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in Figure 1. The low-rank approximation matrix Sy is cal- technique. The CNN decoder is replaced by 3 linear pro-
culated from 57 as follows: jection layers. Each projection layer has 4096 neurons. The
S, = UsyT ) CNN decoder is removed because it is a task-specific part

(i.e., related to the foreground segmentation task only), and

Sy = Up S, VI 9) in self-supervised learning, we focus on learning a strong
object representation that is independent of any task (i.e.,
task-agnostic representation). Then, TransBlast is trans-
formed to Siamese architecture [11], where two branches
of the same network with shared weights but use different
inputs. The modified TransBlast for using Barlow twins is
shown in Figure 2. The different inputs are augmented from
the original input image. TransBlast uses data augmentation
techniques such as random image crop, horizontal flipping,
color jitter, grayscale, gaussian blur, and solarization. Each
data augmentation technique is applied with a probability.

where U and V' are orthogonal matrices, and X is a diagonal
matrix with non-negative entries. Note that, the diagonal
in the ¥ matrix is ordered descending with respect to the
singular values. The k is the top singular values (i.e., low-
rank). The low-rank approximation matrix S, is fed into
a multi-layer perception (MLP), which is 4-layers network.
The output of the MLP is two Eigenvalues. The objective
is to maximize the Eigenvalues during the training when
added to the cross-entropy as described in the next section.

4. TransBlast training The two branches extract embedding vectors z* and 2% for
the different inputs z* and . A cross-correlation is ap-

TransBlast is trained using a self-supervised learning plied on these two embedding vectors, which is computed

technique that allows the model to learn a strong object rep- as:

resentation for the input image using unlabeled data. The Zz{:}izfj

learning process is divided into two phases: 1) Pre-text task cij = b . (10)

(learning representation using Barlow twins [58]) and 2) \/2(2641)2 \/Z(zfj)2

Down-stream task (use the trained model to learn to seg- b b

ment foreground objects). If the resulted cross-correlation c is an identity matrix I,
In the pre-text task phase, the network architecture is this means both embedding vectors are the same, and this

changed to use Barlow twins as a representation learning is the target of Barlow twins technique to force the network
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to extract embedding vector that is invariant to the different
data augmentation techniques. This is done by computing
a loss function that minimizes the difference between the
computed cross-correlation and the identity matrix. This
loss function £ g7 is computed as:

EBT = Z( i C77 +QZZ ij CU 2~ (11)

i i

Since, the identity matrix I has ones on the diagonal [;;
and zeros on the rest of the matrix, the loss function can be
rewritten as:

lpr = Z (1=ci)® +ad > ey’ (12)
i it

In down-stream task phase, the CNN decoder is added to
the network trained by Barlow twins. All parameters in the
network that have been updated using Barlow twins will be
kept unchanged (i.e., frozen parameters) during this phase.
Only the parameters in CNN decoder will be updated. This
CNN decoder transforms the embedding representation that
is learned by Barlow twins to segmenting objects in fore-
ground domain. The input in this phase is a single image
and the output is the binary image as mentioned in previous

section. The loss function in this phase is computed as:

2
lprs =Ly, 9) + > (L, 9") + Ly, 5).  (13)

i=1

where /ppg is the loss function for the back-
ground/foreground separation, ¢ is a cross-entropy
loss function, y is the ground-truth, y is the output of the
network, ¢* is the output of zth decoder block, y; is the
boundaries ground-truth, and g is the predicted boundaries
of the i*" decoder block.

The loss function of the subspace learning module
(SLM) that augments the cross-entropy is given by:

2
Cspar = —BY (M) (14)
=

Where [ is an empirical strength value that is set to 0.2, A
is the Eigenvalue that is produced by MLP. The final aug-
mented loss function is calculated as follows:

Crinal = Brs —lspum- (15)

5. Experiments

Two different versions of the proposed model are eval-
uated in this section. The first version is TransBlast-LA,
which is the network without loss augmentation. The pur-
pose of this version is to show the strength of the proposed
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Figure 3. Sample results from CDNet dataset.

network alone and how loss augmentation will affect the
performance of the network. The second version is Trans-
Blast, which is the full proposed model. Evaluation of the
proposed TransBlast is done using three benchmarks CD-
Net, DAVIS, and SegTrackV2. Another dataset is used in
the Barlow twins training phase, which is Mini-ImageNet.

5.1. Benchmarks

Mini-ImageNet [51] is a subset from the large scale
dataset ImageNet [45]. Mini-ImageNet consists of 100
different classes, with overall 60,000 colored images, 600
per class. This dataset is used in the pretext task of self-
supervised learning to learn a strong object representation
using the Barlow twins technique.

ChangeDetection.Net (CDNet) 2014 [55] dataset con-
sists of 11 different challenges. Each challenge has a num-
ber of videos ranges from 4 to 6, the number of frames in
each video ranges from 1000 to 8000. The total number of
videos in the dataset is 53 videos.

Densely Annotated VIideo Segmentation (DAVIS) [40]
is a video object segmentation dataset. DAVIS consists of
50 videos. Each video has a number of frames ranges from
50 to 104. In each video, a single object is annotated, which
is the object of interest in this video.

SegTrackV2 [30] is a video multiple objects segmenta-
tion dataset. The number of videos in the dataset is 14, and
the number of frames ranged from 21 to 279 in each video.

5.2. Results

The proposed model TransBlast is pre-trained using Bar-
low twins to learn strong object representation from the
Mini-ImageNet dataset. Then, in the downstream phase,
the convolutional decoder is added, and its parameters are
updated using the foreground segmentation datasets. In this
phase, the rest of the network parameters is also fine-tuned.

In Table 1, the proposed model is trained on 200 frames
from each video, and testing is done on the rest of the
frames. The proposed model outperforms state-of-the-art
models even without loss augmentation. This proves that
transformer-based network with self-supervised initializa-
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Table 1. Results of TransBlast compared to state-of-the-art methods on CDNet, methods with * means the results are reproduced.

Method FPR FNR Re Pr F-Measure
IUTIS-5 [6] 0.005 0.215 0.789 0.808 0.771
SemanticBGS [10] 0.004 0.211 0.789 0.830 0.789
BSUV-Net [49] 0.005 0.179 0.820 0.811 0.786
BSUV-Net-SBGS [49] | 0.005 0.182 0.817 0.831 0.798
DeepBS [4] 0.009 0245 0.754 0.833 0.745
SuBSENSE [47] 0.009 0.187 0.812 0.751 0.741
WisenetMD [29] 0.009 0.182 0.817 0.766 0.753
PAWCS [48] 0.005 0.228 0.771 0.785 0.740
FgSegNetV2* [33] 0.005 0.080 0.893 0.741 0.801 ©)
CascadeCNN* [56] 0.007 0.097 0.821 0.771 0.786
TransBlast-LA (ours) | 0.004 0.086 0.841 0.797 0.8159
TransBlast (ours) 0.004 0.083 0.867 0.811 0.831<D

Table 2. Results of TransBlast compared to state-of-the-art models
in DAVIS. * means the results are reproduced.

Model PT OF | F-Measure
CNIM [5] Yes Yes | 0.8509
LUCID [23] Yes No 0.820
STRCEF [28] No No 0.816
DSRFCNS3D [27] No No 0.766
DCL [31] No No 0.711
DHS [34] No No 0.758
RFCN [52] No No 0.740
LGFOGR [54] No No 0.601
RST [26] No No 0.645
SAG [53] No No 0.548
UOVOS [61] No No 0.772
FeSegNet* [33] No No | 0.847®
CascadeCNN* [56] No No 0.814
TransBlast-LA (ours) | No No 0.845
TransBlast (ours) Yes No 0.8590D

CascadeCNN

FgSegNet

TransBlast

Figure 4. Sample results from SegTrackV2 dataset.

tion outperforms the CNN-based networks when the model
is trained using the augmented loss function, the perfor-
mance increase, even more, achieving 0.831 in terms of F-
measure.

Results in Tables 2 and 3 are produced by training the

Table 3. Results of TransBlast compared to state-of-the-art models
in SegTrackV2. * means the results are reproduced.

Model F-Measure
DCL [31] 0.730
UOVOS [61] 0.643
SSAV [18] 0.801
MBNM [32] 0.716
DSRFCN3D [27] 0.878
RFCN [52] 0.737
DHS [34] 0.762
LGFOGR [54] 0.614
RST [26] 0.677
SAG [53] 0.646
GDHEF [25] 0.868
STRCF [28] 0.899@
FgSegNet* [33] 0.780
CascadeCNN* [56] 0.767
TransBlast-LA (ours) 0.8823
TransBlast (ours) 0.904D

Figure 5. Sample results from DAVIS dataset.

model using 25 frames from each video in the dataset. If
the video has less than 25 frames, as in some videos of Seg-
TrackV2, the model is trained on half of the frames.
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Table 4. Effect of each component in TransBlast.

Transformer MOC-block Boundary optimization  Self-supervised Loss augmentation | F-Measure
No No No No No 0.702
Yes No No No No 0.836
Yes Yes No No No 0.857
Yes Yes Yes No No 0.873
Yes Yes Yes Yes No 0.882
Yes Yes Yes Yes Yes 0.904

F-Measure vs. Threshold

03 FgSegNet
02 CascadeCNN
0.1 TransBlast (ours)

1 2 3 4 5 6 7 8 9
Threshold

Figure 6. Results of TransBlast against three other models in Seg-
Track V2 using different threshold values.

the DAVIS dataset are shown in Table 2. TransBlast-LA
achieved the 4! place. Training the model using the pro-
posed loss function caused the performance to be signifi-
cantly improved from the 4" place to the 1% place. In this
table, (PT) means the model requires pre-training, and (OF)
means the model applies online fine-tuning.

Table 3 shows the results of the proposed model against
state-of-the-art models in SegTrackV2. TransBlast-LA is
on the 37 place compared to state-of-the-art, and when ap-
plied the loss augmentation, the model outperformed state-
of-the-art and achieved 1°¢ place. The results of the two
models FgSegNet and CascadeCNN are produced by train-
ing the models using the same training set. The reason for
producing the results of other models is to compare the out-
puts visually as shown in Figures 3, 4, and 5. Also, to com-
pare the output of different models against different thresh-
old values as shown in the Ablation study subsection 5.3.

5.3. Ablation study

A study is made to show the effect of different thresh-
old values on the proposed model against other models. As
shown in Figure 6, the performance of all CNN-based mod-
els is affected by the threshold value. The performance
keeps increasing until a certain threshold value then starts
to decrease again. On the other hand, the performance of
the proposed TransBlast does not get affected by the thresh-
old value. This is due to the strong learned object repre-
sentation, and also because the TransBlast is based on the
transformer, which is a well-known for its ability to learn a
representation that is better than the CNN in many different

computer vision tasks (e.g., Object detection in [14]).

The effect of different components in TransBlast is
shown in Table 4. The results in this table are produced
using the SegTrackV?2 dataset. The components presented
in the table are transformer, MOC-Block, boundary opti-
mization (i.e., optimized to extract the boundaries), self-
supervised learning using Barlow twins, and loss augmen-
tation. As shown in Table 4, when the network had only the
convolutional encoder/decoder, the performance was 0.702
in F-measure. After adding the transformer, the perfor-
mance becomes 0.836. Adding MOC-block, which com-
bines multiple outputs at different scales, improved the per-
formance by 2.1%. When the network is trained to extract
boundaries using the proposed loss function in Eq. 13 in
Section 4, the performance improved by almost 1.6%. Pre-
training the network self-supervised learning improved the
performance by 0.9%. Finally, the full proposed TransBlast
achieved 0.904 F-Measure, which is the first place in this
dataset.

6. Conclusion

The proposed TransBlast is a transformer-based archi-
tecture for background/foreground separation. TransBlast
takes advantage of Convolutional Neural Network (CNN),
where the training benefits from the strong inductive bias.
Moreover, TransBlast relaxes the inductive bias in the
Transformer leading to generalization and fine details in the
predicted output.

TransBlast is trained using self-supervised learning to
leverage the limited labeled data and learn strong object
representation. The loss function of background/foreground
separation in TransBlast is augmented by the subspace that
is based on SVD. The augmented loss function uses MLP
to produce Eigenvalues which are used during the optimiza-
tion process to learn the subspace. To make the loss more
computationally efficient, TransBlast uses the subspace-
based on the low-rank of the matrix produced by SVD.

TransBlast is evaluated using three benchmarks,

namely CDNet, DAVIS, and SegTrackV2. The per-
formance of TransBlast outperforms state-of-the-art
background/foreground separation models, achieving

0.831, 0.859, and 0.904 on DAVIS and SegTrackV2,
respectively.
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