
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/249943584

Requirements Reuse and Feature Interaction Management

Article

CITATIONS

16
READS

240

3 authors, including:

Some of the authors of this publication are also working on these related projects:

Empirical Study on the Growth of Open Source and Commercial Software Products View project

Knowledge Acquisition for Knowledge-Based Systems View project

Mohamed Shehata

King Khalid University

22 PUBLICATIONS 880 CITATIONS

SEE PROFILE

Armin Eberlein

University of Regina

128 PUBLICATIONS 2,514 CITATIONS

SEE PROFILE

All content following this page was uploaded by Armin Eberlein on 28 December 2014.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/249943584_Requirements_Reuse_and_Feature_Interaction_Management?enrichId=rgreq-a68f2588ae329c9ae4dd8fd67fd2def5-XXX&enrichSource=Y292ZXJQYWdlOzI0OTk0MzU4NDtBUzoxNzkyMDI2OTExODI1OTNAMTQxOTczNjY1OTM5OQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/249943584_Requirements_Reuse_and_Feature_Interaction_Management?enrichId=rgreq-a68f2588ae329c9ae4dd8fd67fd2def5-XXX&enrichSource=Y292ZXJQYWdlOzI0OTk0MzU4NDtBUzoxNzkyMDI2OTExODI1OTNAMTQxOTczNjY1OTM5OQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Empirical-Study-on-the-Growth-of-Open-Source-and-Commercial-Software-Products?enrichId=rgreq-a68f2588ae329c9ae4dd8fd67fd2def5-XXX&enrichSource=Y292ZXJQYWdlOzI0OTk0MzU4NDtBUzoxNzkyMDI2OTExODI1OTNAMTQxOTczNjY1OTM5OQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Knowledge-Acquisition-for-Knowledge-Based-Systems?enrichId=rgreq-a68f2588ae329c9ae4dd8fd67fd2def5-XXX&enrichSource=Y292ZXJQYWdlOzI0OTk0MzU4NDtBUzoxNzkyMDI2OTExODI1OTNAMTQxOTczNjY1OTM5OQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-a68f2588ae329c9ae4dd8fd67fd2def5-XXX&enrichSource=Y292ZXJQYWdlOzI0OTk0MzU4NDtBUzoxNzkyMDI2OTExODI1OTNAMTQxOTczNjY1OTM5OQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mohamed-Shehata-18?enrichId=rgreq-a68f2588ae329c9ae4dd8fd67fd2def5-XXX&enrichSource=Y292ZXJQYWdlOzI0OTk0MzU4NDtBUzoxNzkyMDI2OTExODI1OTNAMTQxOTczNjY1OTM5OQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mohamed-Shehata-18?enrichId=rgreq-a68f2588ae329c9ae4dd8fd67fd2def5-XXX&enrichSource=Y292ZXJQYWdlOzI0OTk0MzU4NDtBUzoxNzkyMDI2OTExODI1OTNAMTQxOTczNjY1OTM5OQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/King-Khalid-University?enrichId=rgreq-a68f2588ae329c9ae4dd8fd67fd2def5-XXX&enrichSource=Y292ZXJQYWdlOzI0OTk0MzU4NDtBUzoxNzkyMDI2OTExODI1OTNAMTQxOTczNjY1OTM5OQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mohamed-Shehata-18?enrichId=rgreq-a68f2588ae329c9ae4dd8fd67fd2def5-XXX&enrichSource=Y292ZXJQYWdlOzI0OTk0MzU4NDtBUzoxNzkyMDI2OTExODI1OTNAMTQxOTczNjY1OTM5OQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Armin-Eberlein-2?enrichId=rgreq-a68f2588ae329c9ae4dd8fd67fd2def5-XXX&enrichSource=Y292ZXJQYWdlOzI0OTk0MzU4NDtBUzoxNzkyMDI2OTExODI1OTNAMTQxOTczNjY1OTM5OQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Armin-Eberlein-2?enrichId=rgreq-a68f2588ae329c9ae4dd8fd67fd2def5-XXX&enrichSource=Y292ZXJQYWdlOzI0OTk0MzU4NDtBUzoxNzkyMDI2OTExODI1OTNAMTQxOTczNjY1OTM5OQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Regina?enrichId=rgreq-a68f2588ae329c9ae4dd8fd67fd2def5-XXX&enrichSource=Y292ZXJQYWdlOzI0OTk0MzU4NDtBUzoxNzkyMDI2OTExODI1OTNAMTQxOTczNjY1OTM5OQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Armin-Eberlein-2?enrichId=rgreq-a68f2588ae329c9ae4dd8fd67fd2def5-XXX&enrichSource=Y292ZXJQYWdlOzI0OTk0MzU4NDtBUzoxNzkyMDI2OTExODI1OTNAMTQxOTczNjY1OTM5OQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Armin-Eberlein-2?enrichId=rgreq-a68f2588ae329c9ae4dd8fd67fd2def5-XXX&enrichSource=Y292ZXJQYWdlOzI0OTk0MzU4NDtBUzoxNzkyMDI2OTExODI1OTNAMTQxOTczNjY1OTM5OQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Requirements Reuse and Feature Interaction Management

oover
 of Computing Science
rsity of Alberta

 Edmonton, AB, Canada
 Calgary, AB, Canada Hoover@cs.ualberta.ca

 Mohamed S. Shehata Armin Eberlein H. James H
Department of Electrical & Computer Engineering Department

 University of Calgary Unive
 2500 University Drive NW

 {Shehata; Eberlein}@enel.ucalgary.ca

ssue in software
 than most other

s, and in a few
nd frameworks,
k. Frameworks,
tions. Thus the
ework.

ber of different
 a specialized set of services. But the components, each embodying different

sign components
n becomes even
 the absence of a

erstanding of interaction management is key to understanding how to reuse requirements. This
paper introduces a conceptual process framework for formulating and reusing requirements. We classify

irements. We use this
classification in a reusability plan to support our view of the importance of interaction management. The

 plan includes the requirements engineering phase in addition to interaction management as

gement.

stem rather than
sed on reusable
r time is the size
we can do more,
 shorter times to

om requirements
ks to application

e reuse of source
with designs in the form of algorithms and design patterns. The higher the

y the extensive
rates a very high

Most of the research in the area of reuse neglects requirements engineering, except for the kind of
commonality and variability analysis which goes on to develop a framework after the requirements for the
product line have been established. Although it is argued [1] that requirements reuse can introduce even
more reusability at later stages in the product life cycle, it was not until recently that requirements reuse has
received greater attention by researchers.
Most requirements reuse is done in an informal manner by developers who can develop new requirements
specifications quicker because they have developed similar products before. Their experience helps them to
informally reuse requirements. The fact that there is so much in common between many applications in a
domain is what led to the development of frameworks, which embody design, implementation and the

The reuse of artifacts of past software development efforts in future ones is a key i
engineering. Because of the nature of software, the opportunities for reuse are richer
engineering domains. We regularly reuse portions of code implementations, designs, test
cases also requirements. Currently the most common kind of reuse is via components a
which embody design, implementation and the documentation for how to use the framewor
especially domain-specific ones, provide functionality that is common to a set of applica
user of a framework is also implicitly reusing the common requirements that led to the fram
Developers realize that complex applications are often best built by using a num
components, each performing
requirements in different service domains, can interact in unpredictable ways. How to de
to minimize or at least manage interaction is a current issue. This problem of interactio
more significant when reusing requirements. Interactions must be detected and resolved in
specific implementation framework.
The und

reusable requirements into three different levels of abstraction for software requ

new reusability
a third axis.

Keywords: Requirements engineering, reuse, requirements interaction mana

1. Introduction
Software reuse is the process of reusing existing software artifacts in building a new sy
starting development totally from scratch. The development of software systems ba
components has been present from the beginning of computing. What has changed ove
and complexity of the artifacts being reused. The arguments for reuse remain the same:
with higher quality, for lower cost. Because products are getting more complex with
market, there is pressure to reuse larger artifacts.
Reusability can be introduced at different phases in the software development life cycle, fr
to design, to deployment; and at different granularity from subroutine libraries to framewor
servers. For example, at small granularities excellent results have been achieved with th
code in the form of libraries, and
level of abstraction at which reuse takes place, the greater the benefit, as is demonstrated b
use of frameworks in contemporary development. The largest granularity of reuse incorpo
level of abstraction such as the integration of complete products into a complex system.

mailto:Hoover@cs.ualberta.ca
mailto:Eberlein}@enel.ucalgary.ca

documentation for how to use the framework. Frameworks, especially domain-specif
functionality that is common to a set of applications. Thus the user of a framework is also i
the common requirements that led to the framework. But these common requirements are u
of exa

ic ones, provide
mplicitly reusing
sually the result

mining the individual requirements of a number of products, not from any systematic effort at
uirements reuse

ng a number of
ameworks, each
le ways. How to

t issue in the

rameworks there
uirements time is

 consider many
 we need to say

nd resolve them.
nagement of the

quirements at a
ion Management
s the discovery,
might argue that
eated, and since
en a new system
re parameterized
herefore the big
ents or the new
g requirements?
hat might occur.

be continuous.
l and presents a

ulating requirements in a reusable format based on the
anizations. The

anding of how
ortance, was the

n of the different levels of abstraction for software requirements. In the second part of the
paper, this classification is used to introduce our proposed reusability plan, which is an extension of the

rk developers.
ents interaction
general process
anagement with

 our conclusions

uirements might
ion management

tions between features
or components and provide guidance on how to resolve these interactions. For example, in the
telecommunication domain, a very common feature is Call Forward on Busy Line (CFBL). With this
feature, all calls to a subscriber’s line are redirected to a predetermined number when the subscriber’s line
is busy [4]. Another common feature is Call Waiting (CW), which is “a feature that allows the subscriber to
be notified of an incoming call while he is busy in a conversation and to accept the new call by putting the
originating call on hold, then the subscriber is able to toggle between the two calls” [4]. Now if a user
subscribes to both features and then tries to activate both of them at the same time, these two features will
obviously negatively interact as they cannot be activated at the same time. Each of the two features requires
a different action to be taken when someone calls this user and they are busy talking to someone else.

requirements reuse. That said, frameworks are still the most common form of achieving req
at present.
Framework practitioners realize that complex applications are often best built by usi
different frameworks, each performing a specialized set of services [2]. But the fr
embodying different requirements in different service domains, can interact in unpredictab
design subframeworks to minimize or at least detect and resolve interactions is a curren
framework community.
This interaction problem is even more significant at the requirements level. At least with f
is an implementation to analyze. Much of the interaction analysis that could be done at req
moved to framework specialization time. When dealing with requirements alone we have to
possible choices for implementation (even if we use frameworks), and it is not all clear what
in our reusable requirements so that we can even articulate potential interactions, never mi
It is our conviction that requirements reuse must be done in conjunction with a careful ma
relationships and dependencies that arise between reused and new requirements.
We define requirements reuse as the process of analyzing, elicitating and managing re
suitable abstraction level so that they can be reused in new systems. Requirements Interact
(RIM) was first introduced by W. Robinson [3] as “the set of activities directed toward
management, and disposition of critical relationships among a set of requirements”. One
interaction analysis is only necessary at the time when the reusable requirements are cr
these reusable requirements will not change, no further interaction analysis is necessary wh
is built based on the existing reusable library. However, one has to consider that there a
requirements that need specific values, that is, they are really “new” requirements. T
question is how to ensure that the values that are assigned to the parameterized requirem
requirements that are added to the specification will not interact with the already existin
This can only be ensured by continuously analyzing the requirements for any interaction t
Furthermore, requirements evolve over time, so the process of interaction management must
The first part of this paper deals with introducing reusability at the requirements leve
general process framework for eliciting and form
current research that has been conducted by different institutes and research org
development of this process framework helped us in two ways: We gained a better underst
requirements can be reused. The second benefit, which we believe to be of great imp
identificatio

software reusability plan familiar to framewo
The rest of this paper is organized as follows: Section 2 presents the importance of requirem
management. Section 3 presents our understanding of requirements reuse in the form of a
framework. Section 4 combines our view of the importance of requirements interaction m
requirements reuse through the introduction of a 3-axis reusability plan. Section 5 gives
and future work.

2. Requirements interaction management
Requirements interaction management (RIM) addresses the question how reused req
interact with each other in a common environment. It is very similar to feature interact
used in the telecommunication domain in that they both try to detect possible interac

Unfortunately, research in feature interaction has focused mainly on telephony and has a v
of requirements. In addition, the telecommunications domain is well defined and the requirem
reasonably well understood. Several problems caused by neglecting RIM when building a ne
using reusable requirements have been reported in literature, r

ery narrow view
ents of it are

w system
anging from minor issues to real disasters.

The computers and risks literature [5], [6] has numerous examples of incidents caused by reusing existing
etween systems.

use
ble to identify a

anding of how
ortance, was the
e, a requirement

h thus gives it a very low level of
very high level

 levels: domain-

ain for certain
are at a low level of abstraction as

ents).
plications, i.e.,

it to a reusable

nerate a reusable

stems (e.g.
nalities between

romising to build a reusable platform for them. The second part of this process is the
w system that belongs to this specific domain. The developer will reuse requirements

ments which this
produced set of
in more detail in

when developing
starts to analyze

ped systems that have numerous commonalities between them. There are many techniques
o do the analysis such as commonality analysis [7] or design spaces [8]. The output of this

uirements and/or
w when reusing
s to gather each

lated to engine ignition
are gathered into a component called engine ignition). Finally these components are stored in a database

The aim of this phase is to develop a complete set of requirements that describes the new system reusing
some of the requirements stored in our database. This phase proceeds by tailoring the reusable requirements
and adding also some new requirements that are needed to meet the specific needs of this new project.
There are various approaches offered in literature that help the developers during this phase [9] [10].

3.3 Phase 3: Requirements Interaction Management (RIM)
We added this phase as we see it as a very important task that must be done to ensure that the reused and
the new requirements will not have a negative influence on each other. The outcome of this phase is a set of
requirements that have been analyzed for the detection of any interactions between them.

systems in new situations, or by unanticipated interactions b

3. A conceptual process framework for requirements re
Through our review of the current research on reuse at the requirements level, we were a
conceptual process framework that was, more or less common to all approaches.
The development of this framework helped us in two ways: We gained a better underst
requirements can be reused. The second benefit, which we believe to be of great imp
identification of the different levels of abstraction for software requirements. For exampl
can be very specific to a certain system in a certain domain whic
abstraction and a low reuse potential; while another requirement can be very general, with a
of abstraction and thus a higher reuse potential. We identify the following abstraction
specific requirements, generic requirements, and domain-requirements frameworks.
Domain-specific requirements are requirements that are derived from a certain dom
applications and are concerned only with this domain. Therefore, they
they cannot be reused in any other domains and applications (e.g. system-specific requirem
General requirements are requirements that are with some variations common to different ap
one can replace the differentiation part in the requirement with a variable making
requirement (e.g., The system shall support saving of email addresses up to X entries.)
A domain requirements framework is a framework that provides guidance on how to ge
requirements specification document with hookups to facilitate development
The first part of our process for requirements reuse starts with the analysis of a group of sy
systems that are part of a product line) in a certain domain that have numerous commo
them, and thus it is p
actual building of a ne
of the common platform to build the new system, along with introducing the new require
specific system needs. The third part to this process is interaction management of the
requirements. This general process framework can be seen in figure (1) and is described
the following subsections.

3.1 Phase 1: Elicitation
The aim of phase 1 is to create a database of reusable requirements that can be used later
a new system. Phase 1 starts with domain analysis during which a team of developers
already develo
that can be used t
analysis is a set of reusable requirements (kernel requirements and/or parameterized req
optional requirements) along with a set of rules of usage that the developer has to follo
these requirements (e.g. requirements A and B are mutually exclusive). The next step i
group of similar requirements into one component (e.g. all reusable requirements re

ready to be reused.

3.2 Phase 2: Reuse

We suggest that this phase uses both offline and online approaches. An offline approac
when the developer analyzes the requirements without building exec

h is for instance
utable models of the system, whereas

in an online approach models of the system are executed in a run time environment.

Figure (1): Requirements reuse framework

4. A new reusability plan
In section 2 we introduced the importance of requirement interaction management and i
introduced our understanding of requirements engineering reuse. In this section here,
requirements interaction management with the reuse of requirements through the in
reusability plan which is an extended version of the typically used by software architects.
the typical reusability plan on the left side, which focuses only on the design and implemen
the development of the product and which does not address interaction management. T
figure 2 presents our reusability plan in which we extended the original reuse plan
requirements engineering phase and added a third axis labeled “interaction management”.
third axis required us to think what the different levels of abstractions of the different
frameworks, components, patterns, libraries, etc). For example, we can say that libraries,
the implementation level, have a low level of abstraction and their interactions are difficult to
is because code libraries are normally very specific to certain applications and when differe
different places are glued

n section 3 we
we combine

troduction of a
 Figure 2 shows
tation phases of
he right side of
 to include the

The addition of a
 items are (e.g.
which belong to

 resolve. This
nt libraries from

together, most likely contradiction between them will be found (e.g.
ction, etc). Even
the developer to

ion management
domain-specific

asier than between generic requirements. Interactions are the most difficult to manage in
ents are very

stems, and the
s are not fully

nce requirement
 terminals in no
 to work with X
equirements in a
 the system will
ase of domain-

loper can chose
ments may only

ion decisions are made. How can this downstream effect be reflected in the
original requirements?
This proposed reusability plan has various benefits. For example, this reusability plan provides a visual link
between interaction management and the different levels of abstraction of the requirements. This
visualization helped us in developing guidance on how to conduct interaction management during
requirements reusability. It also introduces requirements engineering to be an area of reuse that framework
developers must pay attention to.

contradictions between input/output values, number of variables, global variables contradi
when the developer is able to find a conflict, its resolution is very difficult and requires
look at the details of the code library.
As shown in figure (2), we concluded that as the level of abstraction goes higher, interact
also becomes more difficult. For instance, detecting and resolving interactions between
requirements is e
domain-requirements frameworks. For instance, we can think that domain-specific requirem
well known and defined; they were very well researched and studied already in previous sy
developers have complete details of these requirements. However, generic requirement
specified and known.
For example, consider a distributed network environment in which there is a performa
stating that the system will be able to execute all requests for processing from different
more than 20 msec. Also consider another requirement stating that the system will be able
units to produce an efficiency of Y %. Basically, there is no interaction between the two r
normal situation. However, if X=10,000, there is obviously a clear interaction because
likely not be able to achieve any more the required response time of 2 msec. In the c
requirements frameworks, in which the abstraction level is even higher and the deve
between different alternatives, RIM is even more challenging. It is possible that require
interact after implementat

Figure (2): Requirement reusability plan

5. Summary and future work.
In this paper we presented our understanding of how requirements engineering reuse is car
a general framework that describes a common procedure that we were able to iden
approach

ried out through
tify in various

es. We combined both, requirements reuse and interaction management in a reuse plan that
rent levels of

icial for anyone
prehensive

hat helps detect
 can be used in
ase. The second
on requirements

omain, which is very time
consuming but very efficient in the detection of feature interactions. This framework has the advantage that

used to detect known interactions with very little amount of effort as in the first level but it also
can be used to detect full interactions using formal methods. This framework is outlined in [11].

-92051-CMC,

oehlich, A. G. Olekshy. (2000), Developing engineered product
ed by the

g Institute, Denver, CO, Aug. 2000, pp. 451--476. Published as Software Product
ublishers, 2000.

 Management, Georgia

 systems VI , IOS

System safety and Computers, Addison-Wesley Pub. Co. Inc.
, 1995.

efining Families: The Commonality Analysis, in Proceedings of the

00), Mapping requirements to reusable components using
neering (ICRE'00),

se: A domain-Specific Approach from Avionics, Journal
of Systems Software, 1997: 38: 197-209.
[10] M. Mannion, B. Keepence, H. Kaindl, J. Wheadon, (1999), Reusing Single Requirements From
Application Family Requirements, 21st International Conference on Software Engineering (ICSE'99) Los
Angeles, CA, May 1999. pp 453-462 ISBN 1-58113-074-0.
[11] M. Shehata, A. Eberlein, (2002), Requirements Interaction Management: A Multi-Level Framework,
To appear in SEA 2002 - The 6th IASTED International Conference on Software Engineering and
Applications. MIT, Cambridge, USA - November 4-6, 2002.

described what levels of interaction management the developer should expect at diffe
abstractions.
We are convinced that a requirements interaction management framework is very benef
considering requirements reuse. For this purpose, our future work focuses on developing a com
requirements interaction framework. This framework will be a three-level framework t
different interactions at different levels of complexity. The first level of this framework
situations where information on known interactions is already available in a knowledge b
level identifies likely (but not guaranteed) interactions between requirements based
attributes. The third level requires the development of formal models of the d

it can be

References

[1] SPC (1992), Software Productivity Consortium Reuse, Adoption Guidebook, SPC
November 1992.
[2] H. J. Hoover, P. G. Sorenson, G. Fr
support applications. In Proceedings of the 1st Software Product Line Conference, sponsor
Software Engineerin
Lines - Experience and Research Directions, P. Donahoe, ed., Kluwer Academic P
 [3] W. N. Robinson. P. Pawlowski, S. Volkov, (1999), Requirements Interaction
State University, Atlanta, GA, August 30, 1999.
[4] M. Calder, E. Magill, (2000), Feature interactions in telecommunications and software
Press, ISBN 1586030655.
[5] N.G. Leveson, (1995), Software:
[6] P. Ladkin, (1995), In The Risks Digest, P. G. Neumann (Ed.), ACM, 15.30, December
[7] M. Ardis, D. Weiss, (1997), D
Nineteenth International Conference on Software Engineering, pp. 649-650, May 1997.
[8] L. Baum, M. Becker, L. Geyer, G. Molter, (20
design spaces, In Proceedings of the 4th International Conference on Requirements Engi
19-23 June 2000, Schaumburg, Illinois, USA.
[9] W. Lam, (1997), Achieving Requirements Reu

View publication statsView publication stats

https://www.researchgate.net/publication/249943584

